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Abstract 

The critical situation of the European eel (Anguilla anguilla) has urged the development of 

sperm cryopreservation protocols for reproduction in captivity and cryobanking. In the last 

years, two research groups have developed their own protocols in Spain and Hungary with 

positive results, but difficult to compare. 

Here, a series of experiments were conducted to test the quality of thawed sperm after using 

both protocols, determining which of them produce the best results and aiming for 

standardization. The quality of thawed sperm was assessed by studying the motility and 

kinetic values of thawed sperm from both cryopreservation protocols using a computer-

assisted sperm analysis (CASA-Mot) system. In addition, a viability analysis was performed 

using flow cytometry to test if the cryoprotectants or the freezing-thawing process led to a 

reduction in spermatozoa survival. Furthermore, since during cryopreservation the sperm 

was treated with methylated cryoprotectants (DMSO or methanol) that may induce epigenetic 

changes in the sperm DNA (cytosine methylation) and could affect the offspring, we 

conducted a luminometric methylation assay (LUMA) to study the DNA methylation levels 

induced by both protocols.  

In this work, all the above-mentioned parameters were analyzed in fresh and frozen-thawed 

sperm samples. Our results showed that thawed sperm samples from both protocols 

presented lower sperm motility and velocity, and lower percentage of live cells than those 

shown in fresh sperm samples. Furthermore, sperm samples from the methanol based 

protocol showed significantly higher motility, velocity and percentage of live spermatozoa 

than the same sperm samples treated with the DMSO based protocol. In addition, the DMSO 

based protocol induced a hypomethylation of sperm DNA compared to fresh samples 

whereas the methanol based protocol did not alter sperm DNA methylation level. Our results 

indicate that the methanol based protocol is a more suitable protocol that preserves better 

the motility and genetic qualities of the European eel sperm. 

Keywords: Anguilla anguilla; Methanol; DMSO; DNA methylation; Epigenetics 



Abbreviations: DMSO, dimethyl sulfoxide; ROS, reactive oxygen species; rhCG, 

recombinant human chorionic gonadotropin; CASA-Mot, computer assisted sperm analysis 

motility module; FBS, foetal bovine serum; HBSS, Hank´s balanced salt solution.   



1. Introduction

During the last years, a drastic decrease has been observed in the number of European eels 

(Anguilla anguilla) returning from Europe and North Africa to the spawning sites in the 

Atlantic Ocean (Dekker 2000; Jacoby & Gollock, 2014). Several impacts such as water 

pollution, overfishing or habitat fragmentation, have led the European eel to be included on 

the IUCN red list as critically endangered (Jacoby & Gollock, 2014). Consequently, the 

development of techniques and protocols for reproduction in captivity are necessary to 

reverse this situation. 

The maturation of the European eel in captivity is only achieved by costly and long hormonal 

treatments (Asturiano et al., 2006; Gallego et al., 2012; Pérez et al., 2000), and still the 

production of gametes in both sexes can be unsynchronized (Asturiano et al., 2016). During 

the last years, several researchers have worked in the development of new maturation 

protocols such as alternative hormonal treatments with recombinant hormones (Peñaranda 

et al., 2018) or androgen implants (Di Biase et al., 2017; Mordenti et al., 2018), but the timing 

of final maturation in females is still highly variable and difficult to control (Mylonas et al., 

2017). Therefore, the development of cryopreservation protocols for European eel sperm has 

been considered important for reproduction management, by guaranteeing the availability of 

both types of gametes when female spawns (Asturiano et al., 2017), besides its application 

for cryobanking and future broodstock management. 

Cryopreservation of European eel sperm has been faced by different groups since early 

2000s. Mainly two groups of research established successfully their own cryopreservation 

protocols in Spain (Asturiano et al., 2003; 2004; Peñaranda et al., 2009) and Hungary (Müller 

et al., 2004; Szabó et al., 2005). These protocols differ greatly in many aspects such as the 

composition of the extenders, the cryoprotectants used, the volume of the straws or the 

cooling rates within others, evidencing the need for standardization (Asturiano et al., 2017; 

Rosenthal et al., 2010). 

The success of a sperm cryopreservation protocol is commonly assessed using parameters 

such as sperm viability and motility, fertilizing capacity and the quality of the offspring 



(Cabrita et al., 2010). However, in the case of the eel both protocols have yielded high post-

thaw sperm viability (58 to 63%) and motility values ranging between 18 and 38% (Asturiano 

et al., 2017). Furthermore, the fertilizing capacity of the Spanish protocol (from now on 

referred as DMSO protocol)  was successfully tested by producing European eel larvae after 

fertilization with thawed sperm (Asturiano et al., 2016), and following the Hungarian protocol 

(from now on referred as methanol protocol), hybrid larvae were successfully produced using 

thawed sperm from European eel and eggs from Japanese eel (Anguilla japonica) (Müller et 

al., 2012; 2018). In this last study, Müller and collaborators showed that the malformation 

rate of larvae was higher when using cryopreserved sperm than in the control groups using 

fresh sperm, suggesting that the cryopreservation methodology needs further refinement.  

Aditionally, a growing concern is that the epigenetic effects of cryopreservation on the sperm 

DNA might be altered by the freezing, cryobanking and thawing process (Labbé et al., 2017; 

Pérez-Cerezales et al., 2010). The use of methylated cryoprotectants such as methanol or 

dimethyl sulfoxide (DMSO) has been proven to produce reactive oxygen species (ROS) that 

can induce cytosine methylation in fish sperm (De Mello et al., 2017; Kawai et al., 2010). 

Methylation of cytosine residues in DNA is considered to be one of the major epigenetic 

mechanisms stabilizing gene silencing (Schaefer et al., 2007). Furthermore, cytosine 

methylation can be altered by cryopreservation, inducing hypo- and hypermethylation profiles 

in sperm DNA (Labbé et al., 2017). Therefore, the study of epigenetic effects of 

cryopreservation may be a good indicator of the success of a cryopreservation protocol, 

since damaged DNA or abnormal DNA regulation have been observed to have a negative 

effect on the generated embryos (Herráez et al., 2017).   

The main objective of this work was to compare the main protocols previously developed for 

European eel sperm cryopreservation, aiming for standardization. The comparison was 

made considering sperm quality after thawing, when sperm motilities, sperm velocities, and 

sperm viability were analyzed. Furthermore, epigenetic effects of sperm cryopreservation 

were studied by analyzing whether DNA methylation patterns were affected by the different 

cryopreservation protocols. 



2. Material and methods

2.1. Ethics statement  

The protocol was approved by the Experimental Animal Ethics Committee from the 

Universitat Politècnica de València (UPV) and final permission was given by the local 

government (Generalitat Valenciana, Permit Number: 2015/VSC/PEA/00064). 

2.2. Fish handling  

For this experiment, 28 immature male European eels from the fish farm Valenciana de 

Acuicultura S.A. (Puzol, Valencia) were brought to our facilities in the Universitat Politècnica 

de València. Fish were distributed in two 200 L aquaria with recirculation systems, and 

thermostats and coolers to maintain water temperature at 20 ºC. They were gradually 

acclimated to seawater (salinity 37 ± 0.2 g/L) increasing the salinity 10 ppt each 2 days for 8 

days, and 2 days more of resting at 37 ppt. The aquaria were covered to maintain a constant 

shadow and reduce fish stress.  

After 10 days of acclimation, male fish anesthetized with benzocaine (60 ppm) were weekly 

treated with injections of recombinant human chorionic gonadotropin (rhCG; Ovitrelle, 

Madrid, Spain, 1.5 IU/g fish) to induce maturation and spermiation (Gallego et al., 2012; 

Pérez et al., 2000). From the sixth week of hormonal treatment, sperm samples were 

collected weekly, 24h after the hormone injections. 

For sperm collection, fish were anesthetized with benzocaine. Thereafter, the genital area 

was carefully cleaned with distilled water and thoroughly dried with paper to avoid 

contamination with feces, urine or seawater to avoid accidental sperm activation. Then, 

sperm was collected by applying a ventral massage from the pectoral fins to the genital 

opening and collected in graduated Falcon tubes using a vacuum pump.   

Sperm samples were collected after 11-14 weeks of hormonal treatment. The samples were 

diluted 1:9 (sperm:extender) in P1 medium (in mM: NaCl 125, NaHCO3 20, MgCl2 2.5, CaCl2 



1, KCl 30; pH adjusted to 8.5, described by Peñaranda et al., 2010) , kept in plastic tubes at 

4 ºC and evaluated for motility. 

2.3. Evaluation of sperm motility 

In a maximum of 2 h after the sperm extraction, sperm samples were evaluated in triplicates 

following the method described by Gallego et al. (2013). Briefly, each sperm sample was 

activated by mixing 0.5 µL of P1-diluted sperm sample with 4.5 µL of artificial seawater (in 

mM: NaCl 354.7, MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4, in distilled water) with 2% 

(w:v) bovine serum albumin (BSA), pH adjusted to 8.2 and osmolality of 1100 mOsm/kg. The 

activation was performed in an ISAS Spermtrack 10 counting chamber (Proiser R+D, S.L., 

Spain) on a microscope in negative phase with a 10X magnification (Nikon Eclipse 80i) 

connected to a computer with an ISAS 782M camera (Proiser R+D, S.L., Spain), recording 

60 frames per second (fps). All samples were analyzed 15 s after activation, using the CASA 

module ISAS v1 software (Proiser R+D, S.L., Spain). Several kinetic parameters such as 

percentage of motile spermatozoa (MOT, %), progressive motility (pMOT, %), curvilinear 

velocity (VCL, µm/s), straight-line velocity (VSL, µm/s), and average path velocity (VAP, 

µm/s), as well as percentage of slow (average path velocity (VAP) = 10-50 µm/s), medium 

(VAP = 50-100 µm/s) and fast (VAP >100 µm/s) spermatozoa were recorded for further 

analysis (Gallego and Asturiano 2018a for details). Samples with motility values higher than 

65% were selected for cryopreservation. 

2.4. Experimental design 

A total number of 18 sperm samples were selected for cryopreservation. Each sample was 

first evaluated for motility and then frozen and thawed following both protocols. In addition, 

before freezing, each sample was evaluated for motility approximately 10 minutes after 

diluted with the freezing media corresponding to each protocol. Then, four straws (IMV 

Technologies, l’Aigle, France) of 250 µL for the DMSO protocol and four straws of 500 µL for 

the methanol protocol were frozen. Therefrom, three straws per protocol were thawed and 



immediately analyzed with CASA-Mot for sperm quality. Moreover, 50 µL of fresh and 

thawed sperm from each sample were used for the viability analysis using the flow cytometer 

(see down). The left straw per protocol was maintained frozen in liquid nitrogen and was sent 

to INRA’s lab in Rennes (France) for sperm epigenetic analysis, by studying the DNA 

methylation level. In addition, 100 µL of fresh sperm from each sample were frozen as well 

by directly throwing the tube with the sperm into the liquid nitrogen and then storing it at -80 

ºC for DNA methylation analysis of the sperm control. We demonstrated previously that such 

snap freezing allows that the DNA methylation level of the fresh sperm is preserved 

(unpublished data).  

2.5. Cryopreservation protocols 

Every selected sample was frozen and thawed following both protocols. For the DMSO 

protocol, a freezing medium was prepared in advance by mixing a modified P1 extender 

solution (in mM: NaCl 50, NaHCO3 100, MgCl2 2.5, CaCl2 1, KCl 30; described by Peñaranda 

et al., 2009; and named M5 in that paper), 25% (v/v) of fetal bovine serum (FBS) and 10% 

(v/v) of DMSO. The freezing medium was adjusted to a pH of 6.5, an osmolality of 330 

mOsm/kg and maintained at 4 ºC. Thereafter, a dilution 1:2 of sperm: freezing medium, was 

prepared and immediately packed in 250 µL straws, sealed with modeling clay and frozen for 

5 min in liquid nitrogen vapor 1 cm above the surface using a floating structure. Following, 

the straws were thrown into the liquid nitrogen where the sperm was preserved as long as 

needed. The thawing consisted in a water bath at 30 ºC for 8 s. 

For the methanol protocol, modified Tanaka´s extender (in mM: NaCl 137, NaHCO3 76.2) 

was prepared in advance and maintained at 4 ºC. Then, a dilution consisting in 

sperm:Tanaka’s extender:methanol (1:8:1) was prepared and packed in 500 µL straws, and 

frozen for 3 min in liquid nitrogen vapor 3 cm above the liquid nitrogen before throwing the 

straws into the liquid nitrogen. For thawing, the straws were immersed in a water bath at 40 

ºC for 13 s. 



2.6. Thawed sperm evaluation 

The quality of thawed sperm samples was assessed by analyzing several sperm motility 

parameters with CASA-Mot, sperm viability (membrane integrity) with a flow cytometer and 

epigenetic effects with an analysis of sperm DNA methylation pattern. 

The motility analysis was performed using CASA-Mot as explained above. In addition, a 

viability analysis was conducted with flow cytometry using a fluorescence kit (LIVE/DEAD 

Sperm Viability Kit, Thermo Fisher Scientific, MA, USA) containing the membrane-

permeating dye SYBR 14, that stains the nuclei of membrane-intact cells fluorescent green 

and the non-permeating propidium iodide (PI), that counterstains the nuclei of cells with a 

damaged membrane fluorescent red. Here, 0.5 µL of SYBR 14 (100 µM) and 2 µL of PI (2.4 

mM) were added to 50 µL of fresh or thawed sperm samples and incubated at room 

temperature in the dark for 10 min. Thereafter, samples were diluted in 500 µL of extender 

solution (P1 medium for the Spanish protocol or Tanaka´s medium for the Hungarian 

protocol) and were analyzed with a flow cytometer (Beckman Coulter FC500). The analyses 

were performed using the voltages: SS= 199, FS= 199, FL1= 377 and FL2= 372; for a 

maximum number of 5,000 events or 15 s at low flow. 

Finally, a study of DNA methylation level was conducted in fresh and thawed sperm. Sperm 

DNA was extracted using the phenol/chloroform method: about 20×106 spermatozoa in 10 µL 

Hank´s balanced salt solution (HBSS) 300 were digested overnight at 42 °C under agitation 

in 1mL of TNES buffer (125 mM NaCl, 10 mM EDTA, 17 mM SDS, 4 M urea, 10 mM Tris-

HCl, pH 8) with 75 µg of proteinase K (Sigma Aldrich, P6556). One mL phenol-chloroform-

isoamyl alcohol (25:24:1) was added and vigorously mixed. After centrifugation for 15 min at 

8,000 g at 4 °C, the upper phase (800 µL) was mixed with 200 µL NaCl 5 M and 2 mL of cold 

(-20 °C) 100% ethanol. After centrifugation, the dried DNA pellet was mixed with 100 µg/mL 

RNase in water (Promega, A7973) and incubated 1 h at 37 °C. Whole DNA methylation level 

was estimated using LUMA (luminometric methylation assay) (Karimi et al., 2006). Genomic 

DNA from each sperm (0.5-1 µg) was digested 4 h at 37 °C with 7.5 units of either HpaII and 

EcoRI (NEB R3101) or MspI and EcoRI in a total volume of 30 μL in duplicate. For 



pyrosequencing of the digested samples, 20 µL of digested DNA were mixed with 20 µL of 

annealing buffer (Qiagen, 979009) and samples were placed in a Qiagen PyroMark Q96 ID. 

The instrument was programmed to add dNTPs in the following order: A, C+G, T, C+G, 

water, A, T. Peak heights (PH) were analyzed using the PyroMark Q96 software. A and T 

peaks refers to the amount of DNA cleaved by EcoRI (DNA content controls) whereas C + G 

peaks show the amount of DNA cleaved by MspI and HpaII. The percentage of methylation 

was calculated as 100 x (1-(PH HpaII/PH MspI)). The PH HpaII/PH MspI ratio was calculated 

by doing (PH HpaII/PH EcoRI) / (PH MspI/PH EcoRI). 

2.7. Statistical analysis 

Sperm viability and motility parameters were subjected to analysis of variance (General 

Linear Model, GLM). As fixed effect was chosen fresh or thawed sperm from both protocols, 

i.e. “fresh sperm”, “thawed DMSO” and “thawed methanol”. For all models, an examination of 

the residual plots verified that no systematic patterns occurred in the errors. Model results of 

p-values<0.05 were considered significant. 

For the statistical analysis of DNA levels, a non-parametric test (paired Wilcoxon test) was 

performed. Differences were considered as significant if p<0.05. 

All analyses were conducted in the R-environment (R_Development_Core_Team, 2010). 

3. Results

Results from this comparison experiment showed that all samples, independently of the 

protocol used, decreased their percentage of motile cells and cell velocity after 

cryopreservation (Figure 1). In addition, the motility results from thawed samples of sperm 

cryopreserved with the methanol protocol showed higher motility (32.4 ± 1.8%) than those 

from the DMSO protocol (10.8 ± 0.9%) (Figure 1). All the sperm kinetic parameters analyzed 

showed the same pattern, with higher motility and faster velocities in samples preserved with 

the methanol protocol than those preserved with the DMSO one (Figure 1). Furthermore, the 

proportion of fast cells (faster than 100 µm/s) was also significantly reduced after 



cryopreservation (Figure 2). Nevertheless, thawed samples of sperm cryopreserved with the 

methanol protocol presented a higher percentage (47.9 ± 1.5%) of fast cells than using the 

DMSO one (29.6 ± 2.1%). Note that the sperm was instantly activated when diluted in the 

freezing medium of the DMSO protocol before freezing, clearly affecting the motility after 

thawing (Figure 3), whereas samples diluted in the freezing medium containing methanol 

were not activated (no differences with fresh samples) and did not affect the sperm motility 

prior to freezing (Figure 3). 

Cell viability results (Figure 4) showed that there were more live spermatozoa in thawed 

sperm samples from the methanol protocol than from the DMSO one, and although survival 

in both cases was high (>75%), it was still lower than viability measured in fresh sperm 

samples. 

The analysis of cysteine methylation in fresh and thawed sperm (Figure 5) showed that 

sperm samples treated with the DMSO protocol had lower DNA methylation than fresh 

samples and samples treated with the methanol protocol, whereas these two showed no 

differences between each other.  

4. Discussion

In this work, we described and compared the two main protocols available for European eel 

sperm cryopreservation. Our results indicated that in every case, the sperm motility of 

thawed sperm was lower than in fresh sperm. The reduction in post-thawing sperm quality 

compared to fresh sperm is consistent with the available bibliography, although there is a 

great variation between fish species (Asturiano et al., 2017; Horváth et al., 2015). For 

instance, Dziewulska et al. (2011) used several cryoprotectants (DMSO and methanol as in 

the present study) to freeze fresh sperm samples of Atlantic salmon (Salmo salar) with a 

motility of 70-95%. The study showed that the sperm motility after thawing was significantly 

lower than in fresh samples, with post-thawing motility values in the best protocol of 8.2%, 

using DMSO as cryoprotectant. Oppositely, a different study with cryopreserved sperm from 

brown trout (Salmo trutta) using methanol as cryoprotectant, obtained motilities of thawed 



sperm higher than 60%, which represented a reduction of only 20% of motility compared to 

fresh samples (Horváth et al., 2015). 

In the present study, the data of sperm quality from thawed samples showed that 

cryopreservation using the methanol protocol, caused higher motility values than the DMSO 

protocol. Although the values obtained with the methanol protocol were consistent with the 

bibliography (Müller et al., 2004; Szabó et al., 2005), the motility results from the DMSO 

protocol were lower than previously reported (Asturiano et al., 2003, 2004; Peñaranda et al., 

2009). Although the samples were frozen immediately after the addition of the freezing media 

containing DMSO to the sperm, it has been proved that the presence of DMSO in the 

freezing media activates the European eel sperm (Peñaranda et al., 2009), and lead to a 

reduced post-thawed sperm motility. Even though the DMSO protocol was improved to 

reduce activation by increasing the concentration of NaHCO3, decreasing the pH of the 

media (Peñaranda et al., 2009; Vílchez et al., 2017), fast manipulation was still required. In 

this study, we show that the sperm was activated after diluting in the freezing media (before 

freezing) containing DMSO. This pre-freezing activation naturally affects the final sperm 

motility of thawed sperm samples. 

Although DMSO is the most used cryoprotectant for fish sperm (Gallego & Asturiano, 2018b; 

Martínez-Páramo et al., 2017), methanol has also been widely used in freshwater species 

such as sturgeons, salmonids, tench or Eurasian perch within others (reviewed by Asturiano 

et al., 2017). Furthermore, it has been recently used in cryopreservation protocols for 

Japanese eel sperm (Koh et al., 2017; Müller et al., 2017, 2018). As cryoprotectant, 

methanol has been reported to penetrate more rapidly the cells and being less toxic than 

DMSO (Horváth et al., 2015). In addition, methanol is osmotically inert and therefore does 

not activate sperm by osmotic shock (De Baulny et al., 1997; Horváth et al., 2005). In our 

study, the methanol was apparently less toxic than the DMSO, because thawed samples 

from the methanol protocol presented higher survival than samples from the DMSO protocol. 

Furthermore, we confirmed that since methanol is osmotically inert, it did not activate the 

sperm, oppositely to the DMSO that activated the sperm due to the increase of osmolality. 



This difference could partially explain the higher motility and velocity of thawed samples 

treated with the methanol protocol. Furthermore, both protocols differ in other aspects such 

as extender composition, dilution rate, volume and freezing rate that could also affect the 

thawed sperm motility. 

Sperm from the DMSO protocol presented a loss of methylation compared to fresh sperm, 

whereas sperm from the methanol protocol remained similar to the fresh control. Changes in 

cytosine methylation levels after cryopreservation have been little explored in fish. Primarily, 

the concern arose for the use of methylating cryoprotectants that in the presence of ROS 

may led to cytosine methylation (Kawai et al., 2010). Indeed, Riesco and Robles (2013) 

observed in zebrafish that some promoter regions were hypermethylated after genital ridge 

cryopreservation in DMSO. However, in tambaqui (Colossoma macropomum) sperm, 

cryopreservation with either DMSO or methanol induced in both cases a sperm DNA 

hypomethylation (De Mello et al., 2017), contrarily to what could have been expected from 

the model study from Kawai et al. (2010). It is therefore not clear if the cryoprotectant 

molecule is the main parameter affecting DNA methylation. It was reported that 

cryopreservation-induced changes in DNA methylation could be species dependent (Labbé 

et al., 2017), and that cryopreservation with methods which are not optimal for a given 

species would induce more epigenetic effect (Labbé et al., 2014). In our case, the fact that 

the methanol protocol did not change the overall DNA methylation level would indicate that 

the epigenetic risk is reduced with this method. 

5. Conclusions

In conclusion, this study show that the methanol cryopreservation protocol, is nowadays the 

most suitable protocol for European eel sperm cryopreservation, giving the best sperm 

motility, sperm velocity and cell survival values. Furthermore, the methylation level of sperm 

DNA from thawed samples with this method are the same as in fresh sperm, indicating that 

there are not drastic epigenetic changes when sperm is cryopreserved in this way.  
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Figure captions  

Figure 1.  

Sperm kinetic results from fresh sperm, thawed sperm from methanol cryopreservation 

protocol (Hungarian protocol) and thawed sperm from DMSO protocol (Spanish protocol). 

The motility analyses show MOT (motility) and PM (progressive motility). The velocity results 

presented here are VCL (curvilinear velocity), VSL (straight-line velocity) and VAP (average 

path velocity). Boxplots with different letters are significantly different (p < 0.05; n = 16-18). 

Figure 2. 

Comparison of the percentage of different velocity groups [slow (VAP = 10-50 µm/s), medium 

(VAP = 50-100 µm/s) and fast (VAP > 100 µm/s)] of thawed sperm samples from the DMSO 

and methanol protocols, and from fresh sperm. Different letters indicate significant 

differences between percentages of fast cells (p < 0.05; n = 16-18). 

Figure 3. 

Effect of freezing medium dilution on sperm motility. Percentage of motile cells after 

activation with artificial sea water. “Fresh” column shows motility from fresh samples. “Pre-

cryo” columns shows the sperm motility of sea water-activated samples after being diluted 

with freezing medium containing DMSO or methanol before cryopreservation, and “Thawed” 

columns shows the sperm motility of thawed and sea water-activated samples from the 

DMSO or methanol protocol. Values are means ± SEM of sperm from 16 samples. Means 

with different letters are significantly different (p < 0.05). 

Figure 4.  

Comparative viability data from flow cytometry of fresh sperm and thawed sperm from 

methanol and DMSO cryopreservation protocols. Values represent means ± SEM (n = 12). 

Different letters indicate significant differences (p < 0.05) between means. 



Figure 5 

Global DNA methylation of eel sperm. Average percentage ± SD (n=9) of 5-methylcytosine 

on fresh and thawed samples. Different letters indicate significant differences (p<0.05). 
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Highlights 

 Two previously validated protocols for the cryopreservation of European eel were

compared.

 This work represent an important step in standardization of the sperm cryopreservation

protocol of a farmed and endangered species such as the European eel.

 The study have shown effects on sperm motility and epigenetic changes caused by

cryopreservation in eel thawed sperm.


