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Introduction

Geometric transformations are often involved in 2D and 3D digital image processing such as image registration [START_REF] Zitová | Image registration methods: A survey[END_REF]. Among them, rigid motions, i.e. translations, rotations and their composition, are fundamental ones. When a rigid motion is applied to a digital image, we need to digitize the result in order to map back each point onto the Cartesian grid. In such a point-wise model of rigid motions in Z n , this final digitization step induces discontinuities in the transformation space. A direct consequence is the loss of geometric and topological invariance during rigid motions in Z n , as shown in Fig. 1, by contrast with rigid motions in R n where geometry and topology are preserved.

These topological issues have been studied in Z 2 . In particular, a class of digital images that preserve their topological properties during rigid motions-called regular images-was identified, as well as the "regularization" process based on an upsampling strategy. This regularization approach allows to create regular images out of non-regular ones [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF]. However, this up-sampling strategy in Z 2 cannot be directly extended to Z 3 , leading to topological open problems in 3D digitized rigid motions [START_REF] Bazin | Digital homeomorphisms in deformable registration[END_REF]. In this paper, we investigate this topic.

In particular, we consider an alternative approach to regularity, based on quasi-rregular polygons, which are used as intermediate continuous models of digital shapes for their rigid motions in Z 2 [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF]. This approach, which relies on a mixed dicretecontinuous paradigm (see [START_REF] Largeteau-Skapin | Discrete-Euclidean operations[END_REF] for related works), relies on three steps: polygonizing the boundary of a given digital set; applying a rigid motion on the polygon; and digitizing the transformed polygon. Topological issues may occur during the last step. In this context, the class of quasi-r-regular polygons provides guarantees on topological preservation between the polygons and their digitized analogue. It should be mentioned that quasi-r-regularity is related to the classical notions of r-regularity [START_REF] Pavlidis | Algorithms for Graphics and Image Processing[END_REF] and r-halfregularity [START_REF] Stelldinger | Digitization of non-regular shapes in arbitrary dimensions[END_REF] for continuous sets with smooth and polygonal boundaries, respectively. The main advantage of this approach is its possible extension to 3D [START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF], by contrast to the notion of regularity.

Our first contribution is a link between the two concepts of regularity and quasi-rregularity, in 2D. We also show that such a link does not exist in 3D. This difference explains why a straightforward extension of image regularity to 3D does not preserve topology under the point-wise rigid motions in Z 3 . This fact emphasizes that quasi-rregular polyhedra may be a key concept for topology-preserving 3D rigid motion on Z 3 . Then, a question arises: which polyhedrization method(s) can guarantee generating quasi-r-regular polyhedra from 3D binary images? Our first investigations show that polyhedral isosurfaces generated by the marching cubes method [START_REF] Lorensen | Marching cubes: A high-resolution 3D surface construction algorithm[END_REF]-mostly used for 3D digital images-do not fulfill quasi-r-regularity requirements in R 3 , whereas, its 2D analogue, namely the marching squares method allows one to generate quasi-r-regular polygons in R 2 . 

Rigid Motions on Z n

Let us consider a bounded, closed, connected subset X of the Euclidean space R n , n ≥ 2.

A rigid motion on R n is defined by a mapping

T : R n → R n x → Rx + t ( 1 
)
where R is a rotation matrix and t ∈ R n is a translation vector. Such bijective transformation T is isometric and orientation-preserving, so that T(X) has the same shape as X i.e., both its geometry and topology are preserved.

If we simply apply a rigid motion T, such as defined in Eq. ( 1), to the discrete set Z n , we generally have T(Z n ) Z n . Then, in order to map back onto Z n , we need a digitization operator

D : R n → Z n (x 1 , . . . , x n ) → x 1 + 1 2 , . . . , x n + 1 2 (2)
where s denotes the greatest integer lower than s. A discrete version of T is then obtained by

T = D • T |Z n (3) 
so that the point-wise rigid motion of a finite subset X on Z n is given by T (X). Due to the behavior of D that maps R n onto Z n , digitized rigid motions are, most of the time, non-bijective (see Fig. 2). In addition, they guarantee neither topology nor geometry preservation of X (see Fig. 1).

Regular Images and Topological Invariance under Rigid Motions

The above problems were studied in [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF] and led to the notion of regularity in Z 2 defined in the frameworks of digital topology [START_REF] Kong | Digital topology: Introduction and survey[END_REF] and well-composed images [START_REF] Latecki | Well-composed sets[END_REF] (see Sec. 3.2).

Unfortunately, this notion of regularity is inadequate in Z 3 (Sec. 3.3).

Digital Topology and Well-composed Images

Digital topology [START_REF] Kong | Digital topology: Introduction and survey[END_REF] provides a simple framework for handling the topology of binary images in Z n . It is shown in [START_REF] Mazo | Digital imaging: A unified topological framework[END_REF] that it is compliant with other discrete models (e.g. Khalimsky grids [START_REF] Khalimsky | Topological structures in computer science[END_REF] and cubical complexes [START_REF] Kovalevsky | Finite topology as applied to image analysis[END_REF]) but also with continuous notions of topology [START_REF] Mazo | Paths, homotopy and reduction in digital images[END_REF]. Practically, digital topology relies on adjacency relations: two distinct points p, q ∈ Z 2 are k-adjacent if pq ≤ 1 with k = 2n (resp. 3 n -1) when = 1 (resp. ∞). In the case of Z 2 (resp. Z 3 ), we retrieve the well-known 4-and 8-adjacency (resp. 6-and 26-adjacency) relations. If two points p, q are k-adjacent, we note p k q.

From the reflexive-transitive closure of the k-adjacency relation on a finite subset X ⊂ Z n , we derive the k-connectivity relation on X. It is an equivalence relation whose equivalence classes are called the k-connected components of X. Due to paradoxes related to the discrete version of the Jordan theorem [START_REF] Maunder | Algebraic Topology[END_REF], some dual adjacencies are used for X and its complement X = Z n \ X, namely the (k, k)-adjacencies [START_REF] Rosenfeld | Digital topology[END_REF], where (k, k) = (2n, 3 n -1) or (3 n -1, 2n).

The notion of well-composedness [START_REF] Latecki | Well-composed sets[END_REF] was then introduced to characterize some digital sets X whose structure intrinsically avoids the topological issues of the Jordan theorem in Z 2 and further in higher dimensions.

Definition 1 (Well-composed sets [START_REF] Latecki | Well-composed sets[END_REF]). We say that a set X ⊂ Z 2 is weakly wellcomposed if any 8-connected component of X is also a 4-connected component. We say that X is well-composed if both X and X are weakly well-composed.

The notion of well-composedness on sets is trivially extended to binary images: an image I : Z 2 → {0, 1}, defined by the finite set

X = I -1 ({1}) = {p ∈ Z 2 | I(p) = 1} is well-composed when X is well-composed.
This definition implies that the boundary 5 of X is a set of 1-manifolds whenever X is well-composed. In particular, a definition of well-composedness in Z n , n ≥ 3, is based on this (n -1)-manifoldness characterization. This discussion is out of the scope of this paper; the interested reader is referred to [START_REF] Boutry | A tutorial on well-composedness[END_REF][START_REF] Latecki | 3D well-composed pictures[END_REF] for more details. 5 Here, the notion of boundary is related to the continuous embedding of X into the Euclidean space R 2 . More precisely, we associate each point p ∈ X with the closed unit square i.e., a Voronoi cell or a pixel centered in p. The union of these squares forms a polygon P in R 2 , and we consider the boundary of this polygon. The way of passing from X ⊂ Z 2 to P ⊂ R 2 will be called "polygonization" and more extensively discussed in Sec. 4.

Topological Invariance under Rigid Motions in Z 2

Given a binary image I, a rigid motion T : Z 2 → Z 2 , and the transformed image6 I T obtained from I and T , a frequent question in image analysis is: "does T preserve the topology between I and I T ?". It is generally answered by observing the topological invariants of these images. Among the simplest topological invariants are the Euler-Poincaré characteristics and the Betti numbers. However, these are too weak to accurately model the notion of "topology preservation" between digital images [START_REF] Maunder | Algebraic Topology[END_REF]. Therefore, it is necessary to consider stronger topological invariants, e.g. the (digital) fundamental group [START_REF] Kong | A digital fundamental group[END_REF], the homotopy-type (considered via various notions of simple points [START_REF] Bertrand | On P-simple points[END_REF][START_REF] Bertrand | A new characterization of three-dimensional simple points[END_REF] or simple sets [START_REF] Passat | An introduction to simple sets[END_REF]), or the adjacency tree [START_REF] Rosenfeld | Adjacency in digital pictures[END_REF]. The adjacency tree was considered in [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF] and allowed to develop comprehensive proofs of the topology preservation properties. Indeed, in the 2D case, this topology preservation is equivalent to the preservation of the homotopytype [START_REF] Rosenfeld | Topology-preserving deformations of two-valued digital pictures[END_REF], that is the most commonly used topological invariant in 2D image processing.

Definition 2 (Topological invariance [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF]). Let I be a binary and well-composed image. We say that I is topologically invariant if any transformed image I T has an adjacency-tree isomorphic to that of I.

In [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF], a new notion of regularity was then introduced for 2D images.

Definition 3 (Regular image [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF]). Let I : Z 2 → {0, 1} be a non-singular7 , wellcomposed image. Let v ∈ {0, 1}. We say that I is v-regular if for any p, q ∈ I -1 ({v}), we have

p 4 q ⇒ ∃ ⊆ I -1 ({v}), p, q ∈ (4) 
where = {x, x + 1} × {y, y + 1} ⊂ Z 2 . We say that I is regular if it is both 0and 1-regular.

The regularity-which strengthens the notion of well-composedness-provides sufficient conditions for topological invariance under rigid motions.

Theorem 1 ([18]

). An image I : Z 2 → {0, 1} is topologically invariant if it is regular.

Topological Alterations under Rigid Motions on Z 3

In Z 2 , Def. 3 describes a regular set X (resp. its complement X) as a cover of 2×2 squares that must locally intersect everywhere. Intuitively, the extension of this definition to Z 3 would consist of considering a cover of 2 × 2 × 2 cubes, that would also locally overlap everywhere. One may expect that a regular image in Z 3 would also be topologically invariant. However, this is false, in general.

Indeed, for any regular image I containing a connected set X (composed of at least one 2 × 2 × 2 cube), we can find an ad hoc transformation T and a point p that I T (p) = 1 whereas for any q 6 p we have I T (p) = 0. An example of such a case is illustrated in Fig. 3 (a). This provides us with counterexamples to the putative extension of Th. 1 to the 3D case. For an illustration, we refer the reader to Fig. 3 (b,c).

∈ Z 3 such (a) (b) (c) (d) (e)
This implies that the notion of regularity reaches its limit of validity 8 in Z 2 . Alternative approaches are then required to handle the case of topology preservation under rigid motions in higher dimensions. 8 Beyond the limitations of regularity, the notion of topological invariance of Def. 2 is also insufficient in Z 3 . Indeed, the adjacency tree cannot model topological patterns that appear in Z 3 , such as the tunnels: e.g. a sphere and a torus have isomorphic adjacency trees. Considering stronger topological invariants, e.g. homotopy type or fundamental group, becomes mandatory.

Quasi-regular Polytopes and their Digitization

As discussed previously, the topological properties of digital sets in Z n may be altered by rigid motions. This is due, in particular, to the process (Eq. ( 3)) that aims to map back the transformed result from R n to Z n . In practice, this issue is the same as the problem of digitization encountered for defining the digital analogue of a continuous set.

Recently, the notion of quasi-r-regularity [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF] was introduced together with an algorithmic scheme in order to perform rigid motions on digital sets in Z 2 . The scheme relies on the use of an intermediate modeling of a 2D digital set as a piecewise affine subset of R 2 , namely a polygon. This polygon is transformed by the rigid motion, and a result in Z 2 is then retrieved by a final digitization of the transformed polygon. The polygon in R 2 and its digitized analogue in Z 2 have the same topology if the polygon is quasi-r-regular.

Then, the use of an intermediate continuous model allows one to avoid the alterations induced by the standard pointwise definition of rigid motions that led to the difficulties identified in the case of regularity (see Sec. 3.2).

We recall the definitions of quasi-r-regularity that was initially defined in R 2 [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF] and then extended to R 3 [START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF]. These definitions and associated results are developed in the case of simply connected (i.e. connected, without tunnels / holes) digital sets.

Definition 4 (Quasi-r-regularity [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF]). Let X ⊂ R n (n = 2, 3) be a bounded, simply connected set. We say that X is quasi-r-regular with margin rr (with r ≥ r > 0) if it satisfies the following four properties:

-X B r is non-empty and connected, -

X B r is connected, -X ⊆ X B r ⊕ B r , -X ⊆ X B r ⊕ B r ,
with ⊕, the standard dilation and erosion operators and B r , B r ⊂ R n the closed balls of radius r and r , respectively.

The Gauss digitization of a quasi-r-regular set X ⊂ R 2 (namely X ∩ Z 2 ) is a wellcomposed set that remains simply connected, thus preserving its topological properties from R 2 to Z 2 .

Proposition 1 ([16]). If X ⊂ R 2 is quasi-1-regular with margin √ 2-1, then X = X ∩Z 2
and X = X ∩ Z 2 are both 4-connected. In particular, X ⊂ Z 2 is well-composed.

In [START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF], a similar result 9 was obtained for convex quasi-r-regular sets of R 3 . This result is extended hereafter to any quasi-r-regular sets of R 3 .

Proposition 2 (Extended from [START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF]). If X ⊂ R 3 is quasi-1-regular with margin 2 √ 3 -1, then X = X ∩ Z 3 and X = X ∩ Z 3 are both 6-connected.

9 Erratum: In [START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF], the proposed proof contains an error. The 6-connectedness of (X • B 1 ) ∩ Z 3 is claimed by using [START_REF] Stelldinger | Topological equivalence between a 3D object and the reconstruction of its digital image[END_REF]Th. 16] with an invalid value. We correct this error in the proposed proof of Proposition 2, that does no longer rely on [START_REF] Stelldinger | Topological equivalence between a 3D object and the reconstruction of its digital image[END_REF]Th. 16].

Proof. We only prove the 6-connectedness of X; the same reasoning holds for X. Let us first prove that (X • B 1 ) ∩ Z 3 is 6-connected. Let p and q be two distinct points of (X • B 1 ) ∩ Z 3 . Let B p 1 and B q 1 be two balls of radius 1, included in X • B 1 and such that p ∈ B p 1 and q ∈ B q 1 (such balls exist, from the definition of opening). Let b p and b q be the centers of B p 1 and B q 1 , respectively. We have b p , b q ∈ X B 1 , from the definition of erosion. Since X B 1 is connected in R 3 , there exists a continuous path Π from b p to b q in X B 1 . Note that for any ball B 1 , we always have B 1 ∩ Z 3 non-empty and 6-connected; in particular it contains at least two points of Z 3 . For a value ε > 0 small enough, two balls B 1 and B 1 with centres distant of ε are such that B 1 ∩ B 1 ∩ Z 3 ∅. As a consequence, the union b∈Π B 1 (b) ∩ Z 3 (with B 1 (b) the ball of center b) is a 6connected set of Z 3 , and p, q are then connected in (X • B 1 ) ∩ Z 3 . Our purpose is then to prove that any integer point p in X \ (X • B 1 ) is 6-adjacent to a point of (X

• B 1 ) ∩ Z 3 . Let p ∈ X \ (X • B 1 ) be such point. From Def. 4, we have p ∈ X ⊆ X B 1 ⊕ B 2 √ 3
. Then, from the definition of dilation, there exists b ∈ X B 1 such that b is the center of a ball

B 2 √ 3
(b) of radius 2 √ 3 , and p is a point within this ball. The distance between b and p is lower than 2 √ 3 . As b is a point of X B 1 , it is also the center of a ball B 1 (b) of radius 1 included in X • B 1 . From the definition of adjacency, any point q being 6-adjacent to p belongs to the sphere S 1 (p) of radius 1 and center p. Let us consider the intersection D between S 1 (p) and B 1 (b). This set D is a spherical dome, namely a part of the sphere S 1 (p) with a circular boundary C. This set C also corresponds to the intersection of S 1 (p) and the 2D plane orthogonal to the line (bp) and intersecting the segment [bp] at an equal distance lower than 1 √ 3 from both b and p. Then, the radius of this circle C is greater than 1

2 -( 1 √ 3 ) 2 = √ 6 
3 . In particular, C encompasses an equilateral triangle of edge length √ 2. As a consequence, the spherical dome D of S 1 (p) bounded by this circle always contains at least one point q 6 p. As such point q lies in (X • B 1 ) ∩ Z 3 , it follows that X is 6-connected.

Remark 1. The value r (see Def. 4), required to define the margin r -1 for quasi-1regular sets, is

√ 2 = 2 √ 2 in Z 2 and 2 √ 3 in Z 3 .
The above proof allows us to understand that in Z n , the required value r is 2 √ n . Indeed, the crucial part of the proof is to ensure that a point p of X \ (X • B 1 ) ∩ Z n remains 2n-adjacent to points of (X • B 1 ) ∩ Z n . To this end, let us consider a (n -1)-simplex of R n , whose vertices are spatially organized as the n points induced by the orthonormal basis of R n . This (n -1)-simplex must be encompassed by the (n -2)-sphere C that is the intersection between the (n -1)-sphere S 1 (p) of center p and radius 1 and the hyperplane orthogonal to the segment [bp] and equidistant to p and a point b ∈ X B 1 defined as the centre of a ball B 2 √ n (b) that contains p. Note that p is, by construction, at a distance r from b. The distance between the barycentre of this (n -1)-simplex and its vertices, i.e. the radius of the (n -1)-sphere

C is 1 -1 n .
Since each point of C is at a distance 1 of p while the center of C is on the segment [bp], at a distance r 2 from p, it follows that the distance between p and b, namely r , is 2

√ n .
The following property is a direct corollary of this remark, and provides a dimensional limit of validity for the notion of quasi-1-regularity. Property 1. In R 4 , the value r required for quasi-1-regularity is 2 √ 4 = 1. Then, the margin rr is equal to 0, in other words, no margin is permitted. The notion of quasir-regularity then becomes similar to that of r-regularity [START_REF] Pavlidis | Algorithms for Graphics and Image Processing[END_REF]. In particular, only smooth sets of R 4 can be quasi-1-regular.

5 Links between Regularity and Quasi-r-regularity: the Cubic Polygonal Model

We now investigate the links between the notions of regularity [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF] (Sec. 3) and quasir-regularity [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF][START_REF] Ngo | Convexity invariance of voxel objects under rigid motions[END_REF] (Sec. 4). Note that we still focus on simply connected sets.

2D Case

The paradigm of quasi-r-regularity for rigid motion of digital sets X ⊂ Z 2 acts in three steps. First, a polygon P ⊂ R 2 is defined as a continuous representation of X. Note that there exist various ways of carrying out polygonization. The main constraint is the coherence between the polygon P and its digital analogue X. In particular, it is important to satisfy P ∩ Z 2 = X. Second, the polygon P is transformed by T (Eq. ( 1)). In other words, we build a new polygon P T = T(P) = {T(x) | x ∈ P}. Third, the transformed polygon P T ⊂ R 2 is digitized to map the result back onto Z 2 . To this end, we use the Gauss digitization model, i.e. we set

X T = P T ∩ Z 2 = T(P) ∩ Z 2 .
When considering the notion of regularity, at the first sight, the paradigm for rigid motion of digital sets X ⊂ Z 2 may appear as a different one. It is however the same. In order to compute the transformed object X T from X, we do not use the forward transformation model, but the backward one. More precisely, we define

X T as [D • (T -1 )] -1 (X), that is X T = {x ∈ Z 2 | D • (T -1 )(x) ∈ X}.
But this formula is equivalent 10to X T = T(P (X)) ∩ Z 2 where P (X) ⊂ R 2 is the polygon defined as P (X) = X ⊕ , with ⊂ R 2 the closed, unit square centered on (0, 0). In other words, we implicitly apply the three-step polygonization-based algorithm involved in the context of quasir-regularity, with a specific kind of polygonization, called cubic polygonization. This polygonization associates a digital set X ⊂ Z 2 with its set of pixels, i.e. Voronoi cells in R 2 . In particular, it is plain that such polygonization satisfies P (X) ∩ Z 2 = X.

The question which now arises is to determine whether a regular digital set X leads to a quasi-1-regular polygon P (X). The answer is negative; this emphasizes the fact that quasi-1-regularity is a sufficient, yet non-necessary condition for topology preservation.

Property 2. The regularity of a simply connected set X ⊂ Z 2 does not imply the quasi-1-regularity of P (X).

To prove this property, it is sufficient to exhibit a counterexample. A simple one is the object X ⊂ Z 2 defined as the union of two 2 × 2 patterns intersecting in exactly one point; for instance, X = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 1), (1, 2), (2, 2)}. This set is obviously regular, but the associated polygon P (X) is not quasi-1-regular. Indeed, we have P (X)

B 1 = {( 1 2 , 1 2 ), ( 3 2 , 3 
2 )}, which is composed of two points in R 2 and is nonconnected.

In [START_REF] Ngo | Topology-preserving rigid transformation of 2D digital images[END_REF] the strategy for building a regular set from a well-composed set X was to up-sample X, i.e. to define a new set X 2 ∈ Z 2 such that (x, y) ∈ X ⇔ (2x, 2y) + {0, 1} × {0, 1} ⊆ X 2 . By applying the same strategy on a regular set X, we can build an upsampled set X 2 ⊂ Z 2 which is still regular, but also quasi-1-regular. In other words, with the cubic polygonization model, regularity implies quasi-r-regularity-up to an up-sampling realized by doubling the resolution of the Cartesian grid.

Proposition 3. If a simply connected set X ⊂ Z 2 is regular, then X 2 ⊂ Z 2 is regular and P (X 2 ) ⊂ R 2 is quasi-1-regular with margin √ 2 -1.
Proof. The regularity of X 2 is obvious. We show the non-vacuity and connectedness of P (X 2 ) B 1 and the fact that P (X 2 ) ⊆ P (X 2 ) B 1 ⊕ B √ 2 ; the same reasoning holds for P (X 2 ). Since X is regular, it is defined as X = S ⊕ {0, 1} 2 where S = {(x, y) ∈ X | (x, y) + {0, 1} 2 ⊂ X}. By definition, we have X 2 = (x,y)∈S (2x, 2y) + {0, 1, 2, 3} 2 . Let (x, y) ∈ S . We have ((2x, 2y)

+ {0, 1, 2, 3} 2 ) ⊕ = [2x -1 2 , 2x + 7 2 ] × [2y -1 2 , 2y + 7 2 ]
, and then ((2x, 2y)

+ {0, 1, 2, 3} 2 ) ⊕ B 1 = [2x + 1 2 , 2x + 5 2 ] × [2y + 1 2 , 2y + 5 2 ]. Then we have P (X 2 ) = (x,y)∈S (2x, 2y)+{0, 1, 2, 3} 2 ⊕ = (x,y)∈S [2x -1 2 , 2x + 7 2 ]×[2y-1 2 , 2y+ 7 
2 ] on the one hand, and

P (X 2 ) B 1 = X 2 ⊕ B 1 ⊇ (x,y)∈S [2x + 1 2 , 2x + 5 2 ] × [2y + 1 2 , 2y + 5 2 ]
, on the other hand. Due to the specific square structure of X 2 and its regularity, we have

P (X 2 ) 2 = (x,y)∈S [2x -1 2 , 2x + 7 2 ] × [2y -1 2 , 2y + 7 2 ] 2 = (x,y)∈S [2x + 1 2 , 2x + 5 2 ] × [2y + 1 2 , 2y + 5 2 ]
, where 2 is the square of edge size 2 centered on (0, 0). In particular, we have P (X 2 )

2 ⊆ P (X 2 ) B 1 , and we note R = (P (X 2 ) B 1 ) \ (P (X 2 ) 2 ) the residue between both. The non-vacuity of P (X 2 ) B 1 directly follows from the non-vacuity of P (X 2 )

2 . Up to a translation of (-1 2 , -1 2 ) and a scaling of factor 1 2 , the set P (X 2 ) 2 is equal to (x,y)∈S [x, x+1]×[y, y+1]. The existence of a continuous path between two points of (x,y)∈S [x, x + 1] × [y, y + 1] is equivalent to the existence of a 4-path between two points of (x,y)∈S {x, x + 1} × {y, y + 1} = (x,y)∈S (x, y) + {0, 1} 2 = X. Since X is 4-connected in Z 2 , it follows that P (X 2 )

2 is connected in R 2 . The residue R is composed of connected components of R 2 (namely "triangular" shapes formed by two edges of length 1 adjacent to the border of P (X 2 )

2 and a third concave, edge defined as a the quadrant of a circle of radius 1); the connectedness of P (X 2 ) B 1 = (P (X 2 )

2 ) ∪ R then follows from that of P (X 2 ) 2 . We have

P (X 2 ) = P (X 2 ) 2 ⊕ 2 . Since B 1 ⊂ 2 ⊂ B √ 2 
, the decreasingness of erosion and increasingness of dilation lead to P (X 2 ) ⊆ P (X 2 ) B 1 ⊕ B √ 2 .

3D Case

As already observed in Sec. 3.3, the extension of the notion of regularity to Z 3 leads to 3D regular sets that may not be topologically invariant (see Fig. 3 for examples). Actually, we have an even stronger result, regularity in 3D never leads to quasi-r-regularity.

Property 3. Let X ⊂ Z 3 be a simply connected, regular set. Let P (X) = X ⊕ , with ⊂ R 3 the closed, unit cube centered at (0, 0, 0). Then P (X) is never quasi-1-regular with margin 2 √ 3 -1.

To prove this property, it is sufficient to observe that for any salient vertex v of P (X) (such vertex exists, as X is finite and P (X) is then bounded), the distance between v and P (X) B 1 is

√ 3 > 2 √ 3 . Then, v does not belong to P (X) B 1 ⊕ B 2 √ 3
. In particular, the up-sampling strategy proposed in the 2D case is useless in 3D. Indeed, in 2D this up-sampling allowed us to tackle connectedness issues in P (X) B 1 , whereas in 3D connectedness issues occur in the complement part P (X) \ (P (X) B 1 ), and the size of this residue is not impacted by increasing the resolution of the Cartesian grid.

6 Links between Regularity and Quasi-r-regularity: the Marching Squares / Cubes Polygonal Model

2D Case

The above cubic polygonization is the model implicitly considered when applying a pointwise rigid motion with the backward transformation model, and with the nearest neighbour digitization operator D (Eq. ( 2)). This trivial polygonization is directly mapped on the pixel structure of the image, leading to a poor modeling of the shape of the underlying continuous set. There exist numerous ways of polygonizing a digital set. Here, we investigate the marching squares (MS) model, which is probably the simplest polygonization, except from the cubic one. In our case, the considered images are binary and regular. Then, the MS polygonization is the same as the cubic polygonization, except in the 2 × 2 configurations (x, y) + {0, 1} 2 where one point (for instance (x, y)) belongs to X (resp. X) while the other three belong to X (resp. X). In that case, the edge of the MS polygon, noted P (X), associated to X is a segment between the points (x, y + 1 2 ), (x + 1 2 , y) (whereas the cubic polygon P (X) would locally have edges / segments between the points (x, y + 1 2 ), (x + 1 2 , y + 1 2 ) and (x + 1 2 , y + 1 2 ), (x + 1 2 , y)). In the case of a regular object X ⊂ Z 2 , the MS polygonization can be formalized as follows. We have X = S ⊕ {0, 1} 2 , where S = {(x, y) ∈ X | (x, y) + {0, 1} 2 ⊂ X}. By setting S = ( 1 2 , 1 2 ) + S , this rewrites as X = (x,y)∈S (x, y) + {-1 2 , 1 2 } 2 . In other words, S is the set of barycenters of the 2 × 2 square subsets of points forming X. Let C be the octagon centered on (0, 0), formed by the two edges [(-1 2 , 1), ( 1 2 , 1)] and [( 12 , 1), (1, 1

2 )], and the other six edges obtained by rotation of center (0, 0) and angles k.π/2, k = 1, 2, 3, of these two edges. (Note that the distance between (0, 0) and the four edges induced by

[(-1 2 , 1), ( 1 2 , 1)] (resp. [( 1 2 , 1), (1, 1 2 )]) is 1 (resp. 3 2 √ 2 > 1)). Let G = {[p, q] ⊂ R 2 | p, q ∈ S ∧ 0 < p -q 2 ≤ √ 2}.
In other words, G is the set of the continuous straight segments linking the points of S that are either 4-or 8-adjacent in the grid Z 2 + ( 1 2 , 1 2 ).

Property 4. Let X be a simply connected set. If X is regular, then P (X) = G ⊕ C Despite its simplicity, this MS polygonization model is sufficient for linking the notions of regularity and quasi-r-regularity. Proposition 4. Let X ⊂ Z 2 be a simply connected set. If X is regular, then P (X) ⊂ R 2 is quasi-1-regular with margin √ 2 -1.

Proof. We show the non-vacuity and connectedness of P (X) B 1 and the fact that P (X) ⊆ P (X) B 1 ⊕ B √ 2 ; the same reasoning holds for P (X). We have B 1 ⊂ C. Then, it leads to S ⊂ G ⊆ G ⊕ C B 1 = P (X) B 1 . The non-vacuity of P (X) B 1 derives from that of S and S . From the definition of regularity, it is plain that G is a connected subset of R 2 . Since C is convex, G ⊕ C is also a connected subset of R 2 . But as B 1 is convex and

B 1 ⊂ C, G ⊕ C B 1 = P (X) B 1 is also connected in R 2 .
We have

C ⊂ B √ 2 , then G ⊕ C ⊆ G ⊕ B √ 2 .
But we also have G ⊆ P (X) B 1 , then G ⊕ B √ 2 ⊆ P (X) B 1 ⊕ B √ 2 . It follows that P (X) = G ⊕ C ⊆ P (X) B 1 ⊕ B √ 2 .

3D Case

Similarly to the case of the cubic polyhedrization, we observe that the standard marching cubes (MC) method [START_REF] Lorensen | Marching cubes: A high-resolution 3D surface construction algorithm[END_REF], namely the 3D version of the marching squares, also fails to generate a quasi-r-regular polyhedron from a regular set.

Property 5. Let X ⊂ Z 3 be a simply connected, regular set. Let P (X) be the polyhedron generated from X by MC polyhedrization. Then P (X) is never quasi-1-regular with margin 2 √ 3 -1.

To prove this property, it is sufficient to observe that there exists a vertex v on a convex part of P (X) (such vertex exists, as X is finite and P (X) is then bounded), such that the distance between v and P (X) B 1 is

√ 6 2 > 2 √
3 . Thus, v does not belong to P (X)

B 1 ⊕ B 2 √ 3 .

Conclusion

In this article, we observed that the notion of quasi-r-regularity allows one to define polygons / polyhedra that preserve their topology under digitization in Z n for n = 2, 3 (this property is no longer true in Z n , n ≥ 4). As a consequence, building a quasir-regular polygon / polyhedron from a digital set in Z 2 or Z 3 for handling topologypreserving rigid motions is relevant. In this context, we established that two simple polygonization models (cubic model and marching squares) can link the notions of regularity and quasi-r-regularity in Z 2 . However, in 3D, the corresponding models fail to generate quasi-r-regular polyhedra in R 3 . Our further works will consist of investigating other kinds of polyhedrization devoted to 3D regular images.

Fig. 1 :

 1 Fig. 1: Digital images (left) and their images under digitized rigid motions (right). (a) A digital disk. (b) A digital plane. These sets preserve neither topology nor geometry.

Fig. 2 :

 2 Fig. 2: (a) Points of Z 2 (triangles), initially located at the center of unit squares of the Cartesian tilling of the Euclidean space. (b) After a rigid motion T of these points (circles), some of the unit square cells contain no point (non-surjectivity, green cells) or two points (non-injectivity, red cells); the transformation T is no longer bijective.

Fig. 3 :

 3 Fig. 3: (a) A sample of a regular set X ⊂ Z 3 , illustrated as its voxel polyhedron P ⊂ R 3 (in green); X is 6-connected. Let us consider a rigid motion T -1 of Z 3 , a part of which (transformation of a point and its 6-adjacent neighbourhood) is illustrated by blue dots. The central point (in dark blue) lies in P, whereas all of its 6-adjacent points (in light blue) do not. With such a transformation, [D • (T -1 )] -1 (X) is not 6-connected anymore. (b,c) A counterexample to the topology-preservation of a part of a 3D regular image under rigid motion: (b) a part of a regular set, which is 6-connected; (c) the transformed set, obtained after applying a rigid motion, which is no longer 6-connected; see, e.g. the blue voxel, which has all of its 6-adjacent points in the background. (d,e) Another counterexample to the topology-preservation of a 3D regular image under rigid motion: (d) a regular set, which is 6-connected; (e) the transformed set, which is no longer 6connected (see the blue voxel).

In practice, we consider the backward transformation model such that T = D • (T -1 ) |Z 2 rather than Eq. (3), so that T is surjective. This means that the transformed image I T = I • D • (T -1 ) |Z 2 = I • T has no points with either no or double / conflicted values.

An image I is singular if ∃p ∈ Z 2 , ∀q ∈ Z 2 , q 4 p ⇒ I(p) I(q) .

This equivalence, presented here in the 2D case, holds for any dimension n ≥ 2, with being the unit n-cube.
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