
HAL Id: hal-01892940
https://hal.science/hal-01892940

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Stage-Wise Learning of Reaching Using Little Prior
Knowledge

François de La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry Chateau

To cite this version:
François de La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry Chateau. Stage-Wise
Learning of Reaching Using Little Prior Knowledge. Frontiers in Robotics and AI, 2018, 5,
�10.3389/frobt.2018.00110�. �hal-01892940�

https://hal.science/hal-01892940
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

ORIGINAL RESEARCH
published: 01 October 2018

doi: 10.3389/frobt.2018.00110

Frontiers in Robotics and AI | www.frontiersin.org 1 October 2018 | Volume 5 | Article 110

Edited by:

Vieri Giuliano Santucci,

Istituto di Scienze e Tecnologie Della

Cognizione (ISTC), Italy

Reviewed by:

Kathryn Elizabeth Kasmarik,

University of New South Wales

Canberra, Australia

Carlos Maestre,

Université Pierre et Marie Curie,

France

*Correspondence:

François de La Bourdonnaye

francois.de_la_bourdonnaye@uca.fr

Specialty section:

This article was submitted to

Computational Intelligence,

a section of the journal

Frontiers in Robotics and AI

Received: 25 June 2018

Accepted: 03 September 2018

Published: 01 October 2018

Citation:

de La Bourdonnaye F, Teulière C,

Triesch J and Chateau T (2018)

Stage-Wise Learning of Reaching

Using Little Prior Knowledge.

Front. Robot. AI 5:110.

doi: 10.3389/frobt.2018.00110

Stage-Wise Learning of Reaching
Using Little Prior Knowledge

François de La Bourdonnaye 1*, Céline Teulière 1, Jochen Triesch 2 and Thierry Chateau 1

1CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France, 2 Frankfurt Institute for

Advanced Studies, Frankfurt am Main, Germany

In some manipulation robotics environments, because of the difficulty of precisely

modeling dynamics and computing features which describe well the variety of

scene appearances, hand-programming a robot behavior is often intractable. Deep

reinforcement learning methods partially alleviate this problem in that they can dispense

with hand-crafted features for the state representation and do not need pre-computed

dynamics. However, they often use prior information in the task definition in the form of

shaping rewards which guide the robot toward goal state areas but require engineering

or human supervision and can lead to sub-optimal behavior. In this work we consider

a complex robot reaching task with a large range of initial object positions and initial

arm positions and propose a new learning approach with minimal supervision. Inspired

by developmental robotics, our method consists of a weakly-supervised stage-wise

procedure of three tasks. First, the robot learns to fixate the object with a 2-camera

system. Second, it learns hand-eye coordination by learning to fixate its end-effector.

Third, using the knowledge acquired in the previous steps, it learns to reach the object

at different positions and from a large set of initial robot joint angles. Experiments in

a simulated environment show that our stage-wise framework yields similar reaching

performances, compared with a supervised setting without using kinematic models,

hand-crafted features, calibration parameters or supervised visual modules.

Keywords: deep reinforcement learning, weakly-supervised, stage-wise learning, manipulation robotics,

hierarchical learning

1. INTRODUCTION

In manipulation robotics, various tasks cannot be programmed by hand because dynamics
is hard to compute or/and hand-crafted features do not describe well enough the variety of
scene appearances. Deep reinforcement learning tackles both of these issues in that features are
automatically computed by optimization and dynamics is not required (Levine et al., 2016; Gu
et al., 2017; Riedmiller et al., 2018). In manipulation robotics, the success of a task is often defined
by a sparse reward (i.e., a positive signal is given to the robot only if the full task is successfully
completed) in a high-dimensional state space, which makes learning slow since in some high-
dimensional robotics tasks, it is very unlikely to get a first success when the initial states are far
from the targeted ones. Although the use of several agents in parallel has shown good performances
with a sparse only reward (Levine et al., 2017), it requires expensive resources and materials as well
as a simplified action space which are not always possible to get. Provided an expert knowledge
is available, learning by demonstration (Kober and Peters, 2009; Nair et al., 2017; Sermanet et al.,
2017) can also be used to guide the robot to sparse-reward areas. But it requires prior knowledge
on the optimal/sub-optimal behavior for a specific task.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00110
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00110&domain=pdf&date_stamp=2018-10-01
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:francois.de_la_bourdonnaye@uca.fr
https://doi.org/10.3389/frobt.2018.00110
https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full
http://loop.frontiersin.org/people/554726/overview
http://loop.frontiersin.org/people/1023/overview

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

An alternative solution consists of using shaping rewards.
They allow to guide the exploration of the agent toward goal state
areas, i.e., the probability of receiving sparse rewards is increased.
Using shaping rewards leads to two main issues. First, they can
lead to sub-optimal policies (Popov et al., 2017) by biasing the
exploration process, e.g., the solution specified by the reward
function may not be optimal. Second, they generally require
tedious engineering work or other forms of supervision. For
instance, for manipulation tasks such as block stacking, reaching,
door pushing or pulling (Deisenroth et al., 2011; Chebotar et al.,
2017; Ghadirzadeh et al., 2017; Gu et al., 2017; Tsurumine et al.,
2017), an informative reward is computed based on a distance
measure between a current and a target pose. However, this
requires to know robot kinematics and target position (through
supervised visual tracking or measure). In a similar way, in
Levine et al. (2015, 2016) (for tasks such as placing wooden
rings or screwing bottle caps onto bottles), informative shaping
rewards have been computed using a distance measure between
current end-effector or manipulated object positions and their
corresponding target positions. However, they require knowledge
of kinematics or non-trivial visual modules. For similar tasks, a
more sophisticated set-up has been proposed in Finn et al. (2016):
the shaping reward is based on the distance between current
visual features and target features, both of them being computed
by an autoencoder. This requires to place the robot at the target
position and extract target visual features each time the target
location changes.

Another category of solutions to make learning with sparse-
only rewards tractable consists in decomposing the whole
problem into simpler sub-problems. For instance, assuming one
goal state is known, a mechanism of learning from easy missions
(Asada et al., 1996) can be used to learn very precise robotic
manipulation tasks such as inserting and turning a key in a lock
or assembling a gear onto an axle (Florensa et al., 2017). This
method consists in starting learning the task from initial states
close to the goal state and as far as learning improves, states
are initialized further and further. Nevertheless, this method
assumes the knowledge of a goal state and up to our knowledge,
has not been proven efficient yet for a multi target position
setting. Furthermore, hierarchical reinforcement learning can
be used to decompose complex tasks such as block stacking
into simpler sub-tasks. For instance, (Gudimella et al., 2017)
quickly learns a block stacking task using Concept Network
Reinforcement Learning (CNRL), a hierarchical framework
which decomposes the problem into sub-problems like reaching
the working area, grasping, reaching the second working area,
and stacking. However, these sub-tasks use shaping rewards
requiring kinematics and target pose knowledge. Besides, a
similar task is learned using another hierarchical reinforcement
learning framework called Scheduled Auxiliary Control (SAC-X)
(Riedmiller et al., 2018). This uses auxiliary rewards (sparse
for most of them) encouraging the robot to discover sub-goals
such as making objects closer, making an object higher or
lower than the other one, maximizing or minimizing the sum
of finger tactile sensors. One key aspect of this architecture is
that learning to achieve the sub-goals does not bias the learned

policy and is only used to explore more the environment.
However, some of these auxiliary rewards still require object
tracking in the images and are not necessarily adaptable to any
object.

In this paper, we consider the task of touching an object
with the end-effector palm and we propose to learn it by
decomposing the whole problem into simpler sub-problems
and by using minimal prior knowledge. In other terms, our
approach does not use kinematic models, hand-crafted features,
calibration parameters and supervised visual modules. The task
more precisely consists of reaching an object put on a table with
the end-effector palm at several object positions and from several
initial arm positions. This task can be considered and used as a
pre-grasping task because target arm joint angles for our task are
very close to target arm joint angles for grasping. The difficulty
of our task relies on the fact that the arm has to reach from
a large set of initial conditions (different object positions and
initial arm positions, see Figure 5) so that it frequently has to
substantially modify its orientation to reach the target with the
palm. In this paper, we extend our prior work de La Bourdonnaye
et al. (2018) to the more complex setting of multiple object
positions. Besides, we conduct additional experiments to study
of the influence of different reward terms. In this work, we have
taken inspiration from the human development (Fischer, 1980;
Carey et al., 1997) and developmental robotics (Hoffmann et al.,
2005). To grasp an object, humans usually fixate it first, and
then grasp it. This assertion does not mean that the only way to
localize an object is to bring it in the fovea. Indeed, expert jugglers
use information in the periphery of vision to detect juggling
balls (Huys and Beek, 2002) and a monkey study reported that
81% of the neurons of the parietal reach region encode location
in eye-centered coordinates (Batista et al., 1999). However, it
can be a sufficient tool if these neurons are deficient (in case
of widespread cortical atrophy Carey et al., 1997) and has the
advantage of being compact. The rationale of our method is that
an informative shaping reward for the object touching task can be
constructed from the knowledge of simpler anterior tasks learned
withminimal supervision.More precisely, the robot first learns to
fixate objects (de La Bourdonnaye et al., 2017) and its own end-
effector using a single deep reinforcement learning framework
with little prior knowledge in the goal specification. Based on
these two skills, an informative shaping reward is built, efficiently
guiding the robot toward goal state areas. Our experiments
show that learning this task with our weakly-supervised stage-
wise framework yields same reaching performances as with
a supervised reward, while learning with a sparse reward is
slow. Our contribution is the design of our weakly-supervised
framework which is efficient to learn to reach objects at several
object positions and from several initial arm positions in a single
shot.

The remainder is organized as follows. Section 2 presents
basics about deep reinforcement learning, our stage-wise
framework for reaching learning and the experimental protocol
designed to validate our framework. Section 3 describes the
results obtained and section 4 discusses the work from a broader
perspective.

Frontiers in Robotics and AI | www.frontiersin.org 2 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

2. METHODS AND MATERIALS

This section presents the methods and the materials used in our
experiments.

2.1. Background
Our work uses deep reinforcement learning. This section
provides basics of reinforcement learning and the algorithm used
to learn the different stages.

2.1.1. Reinforcement Learning
Reinforcement learning (RL) is a class of algorithms used to
solve sequential decision making problems through learning. It
is distinguishable from the dynamic programming category in
that it does not require prior knowledge about dynamics and the
reward signal. Most RL algorithms are based on Markov decision
processes < S,A,R,T > where S is the set of states, A the set of
actions, T the transition model (T : S×A → S) and R the reward
function (R : S× A → R).

The source of learning comes from interaction between
the agent and the environment and is composed of tuples <

s, a, r, s′ > called transitions. s represents a state value and a the
action performed at state s. After the execution of the action a,
the agent receives a reward r and reaches a new state s′.

The goal of an RL agent is to adapt its behavior to maximize a
criterion linked to the future rewards. In the paper, we consider
the sum of discounted future rewards as a learning goal: J =
∑∞

k= 0 rkγ
k, where γ ∈ [0, 1] is a discount factor and rk the

reward value at step k.
In our work, to optimize the criterion, we train a deterministic

policy π : S → A jointly with the state-action value function Q in
an actor-critic set-up:

Qπ (s, a) = Eπ

[∞
∑

k= 0

rkγ
k

∣

∣

∣

∣

∣

s, a

]

, (s, a) ∈ S× A. (1)

2.1.2. Deep Reinforcement Learning
The curse of dimensionality (Bellman, 1961), the problem of
representing RL functions with a large input space was explored
with neural networks a long time ago (Tesauro, 1994). However,
the use of neural networks for RL becamemore andmore popular
with the arrival of GPUs and the emergence of deep learning since
high-dimensional state spaces could be used without requiring
hand-crafted features. For instance, deep autoencoders were used
to reduce the state space (composed of raw image pixels) of a Q
function (Lange and Riedmiller, 2010) in an unsupervised way.
Furthermore, deep convolutional neural networks were utilized
to approximate the Q function (DQN: deep Q network) of an
agent playing Atari games and outperforming human players
(Mnih et al., 2015) directly from raw image pixels.

In our work, we use the DDPG algorithm (Lillicrap et al.,
2016) which can solve RL problems with a high-dimensional
state space and a continuous action space (like several other
candidate algorithms). This algorithm combines the off-policy
deterministic policy gradient algorithm (Silver et al., 2014) and
the DQN.

DDPG is an “actor-critic” algorithm updating the critic
Qφ with parameters φ and the deterministic policy πθ with
parameters θ as follows. At each time-step, we choose a mini-
batch of Nb transitions from a large memory buffer of size Ntrans

using a uniform distribution:

< si, ai, ri, s
′
i >i∈{1,..., Nb}∈ S× A× R × S.

The targets of theQφ neural network are computed using a TD(0)
update with a learning rate equal to 1:

∀i ∈ {1, . . . ,Nb}, yi = ri + γQφ′
(

s′i,πθ ′ (s′i)
)

. (2)

φ′ and θ ′ are the parameters of the target networks updated using
a rate parameter τ (t denotes a time-step):

φ′
t+1 = τφt + (1− τ)φ′

t , θ ′
t+1 = τθt + (1− τ)θ ′

t , (3)

The Qφ network updates its weights by minimizing the squared

error 1
2Nb

∑Nb
i= 1

(

yi − Qφ(si, ai)
)2
. Using target networks greatly

contributes to the learning stability of the neural networks and
using a memory buffer helps to satisfy the constraint of i.i.d
samples for learning with neural networks.

Using the Qφ network and the fact that the policy is
deterministic, the following policy gradient is derived:

∂Qφ

∂θ
≃

1

Nb

Nb
∑

i= 1

∂Qφ
(

si,πθ (si)
)

∂a

∂πθ (si)

∂θ
. (4)

This update makes the policy select the actions that maximize
the Q function at the batch states. In addition to this algorithm,
we use the inverting gradient procedure of Hausknecht and
Stone (2016) to bound the actions. This method downscales the
gradient when the action computed by the policy approaches its
limit. When it exceeds its limit, the gradient is inverted. This
mechanism prevents the actions from becoming too large.

2.2. Overview
We describe here the stage-wise learning process (see Figures 1, 2
for a schematic view). For our work, we use a 7 DOF arm with
a pair of cameras as shown in Figure 1. The task consists of
touching an object on a table with the end-effector palm of the
robot. In the following, we use the notations:

• I = (Ileft , Iright) represents the images from the left and right
cameras.

• q = (qcamera , qrobot) represents the 3 camera joint angles (one
common tilt angle and two independent pan angles) and 7
robot arm joint angles.

• cb is a vector composed of 8 binary values associated with 8
areas of robot fingers. The 8 areas correspond to the proximal,
medial and distal areas of the three fingers, with the exception
of the proximal area of one finger which is linked to the palm.
One binary value becomes 1 when its associated area is in
contact with the object and 0 otherwise.

Our stage-wise learning framework is inspired by one of the
human ways to locate an object: one can stare an object to locate

Frontiers in Robotics and AI | www.frontiersin.org 3 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

FIGURE 1 | Palm-touching learning process: (A) object fixation, (B) end-effector fixation and hand-eye coordination, (C) palm-touching.

FIGURE 2 | Overall scheme of the touching task learning procedure. Greek subscripts represent neural network parameters.

it. The main objective is to apply this principle with minimal
supervision. The proposed method involves three successive
tasks:

First, the robot learns from raw pixels to fixate the object
with a two-camera system. For this, we use (de La Bourdonnaye
et al., 2017) to learn to fixate an object with weak supervision.

Frontiers in Robotics and AI | www.frontiersin.org 4 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

At the end of the fixation, the camera system coordinates qcamera
fix

implicitly encode the object position in 3D space.
Second, the robot learns a hand-eye coordination function

fη which maps robot joint coordinates to virtual camera
coordinates:

qcamera
virt = fη(q

robot). (5)

These virtual camera coordinates correspond to the camera
coordinates which would make the camera system look at the
end-effector. Finally, a reward signal using qcamera

fix and qcamera
virt

to make the end-effector close to the object is computed. It is
combined with a sparse reward, indicating if the end-effector
palm touches the object or not and a term penalizing end-effector
contacts with the table (which assumes that the robot has the
touching ability to distinguish the object from the table). In the
following, we describe each of the three steps.

2.3. Learning Binocular Object Fixations
In this part we describe the object fixation learning which the first
stage of our method.

2.3.1. Task Overview
We define object fixation as bringing the object at the center
of Ileft and Iright by moving the cameras. To learn it, we build
on our prior work (de La Bourdonnaye et al., 2017), which we
summarize below for sake of clarity.

The task is learned with the DDPG algorithm (Lillicrap et al.,
2016) using I and qcamera as states, and 1qcamera as actions. The
reward function is the sum of left and right camera components:

robj = rleft
obj

+ r
right

obj
. For each camera cam = left or right,

the reward function rcam
obj

is an affine decreasing function of the

distance between the image center xc and the estimated object
position xcam

obj
:

rcamobj = 2

1
2dmax − ||xc − xcam

obj
||2

dmax
∈ [−1, 1], (6)

with dmax being the maximal distance between the image center
and the object pixellic position.

An episodic set-up is used. For each episode, a random
object is put at a random location above the table. The episode
ends when a given number of transitions (Ne = 35) has
been reached. Section 2.3.2 describes how xobj is obtained with
minimal supervision.

2.3.2. Object Detection
The object detection mechanism involves a convolutional
autoencoder training step in which images of the environment
without object are encoded. To do this, we use two 10,000-sized
databases (one for each camera) of pictures captured without
object in the environment. The camera positions cover a regular
grid between joint limits which are set on purpose to keep the
table inside the field of view. After the image acquisition, two
autoencoders Aµleft and Aµright are trained on each database using
ADAM (Kingma and Ba, 2015). Before training, the images are
converted for computational purposes from RGB 200 × 200 to
50× 50 grayscale images.

When the robot is learning to fixate objects, we assume that
the object is in the environment. It is detected as an anomaly
and localized in the images Ileft and Iright . Indeed, we assume
objects are badly reconstructed because they are not present
in the database images for autoencoder training so that the
reconstruction error intensity is higher at the object position. The
steps of object detection are presented in Figure 3.

After grayscale conversion and downsampling steps, the
autoencoder reconstruction error images |Ileft− Îleft| and |Iright−
Îright| are computed (Îcam = Aµcam (Icam)). From these error
maps, we extract the N points

{

x(i)
}

i∈{1,...,N} which have the

highest intensity.
{

L(i)
}

i∈{1,...,N} is the set of corresponding

luminances. Then, we compute a discrete probability distribution
using a kernel density estimator with a Gaussian kernel of zero
mean and unit variance:

∀i ∈ {1, . . . ,N}, p(i) =
1

N

N
∑

j= 1

L(j)K(xi − xj), (7)

with K(xi − xj) = 1
2π exp−0.5||xi−xj||22 .

After that, the estimated object pixellic positions, respectively

xleft
obj

and x
right

obj
are at the maximal probabilities:

xcamobj = xargmax
i

(p(i)) (8)

This object detection principle only requires an autoencoder pre-
training step without object and the assumption that there is an
object in the scene subsequently. Note that the potential noise of
this object detection has been tackled using a learning method in
de La Bourdonnaye et al. (2017).

2.4. Learning a Hand-Eye Coordination
Function fη
We now describe how a similar framework can be used to learn
end-effector fixation and a robot hand-eye coordination function.

2.4.1. Task Overview
We model the hand-eye coordination function fη (see Equation
5) with a neural network. To learn it, we need to have a
database D of input-output pairs (qrobot , qcamera) where qcamera

makes the camera look at the end-effector. To produce such
samples, we learn to fixate the end-effector. For this, we use a
similar framework as the object fixation task. We use the DDPG
algorithm and a reward requiring weak supervision. The Markov
Decision Process is the same as for the object fixation with
the exception of the reward function. The latter involves the
end-effector detection xcam

eff
instead of xcam

obj
:

rcameff = 2
1
2dmax − ||xc − xcam

eff
||2

dmax
∈ [−1, 1]. (9)

The set-up is also episodic. For each episode, random arm joint
coordinates are generated using uniform distributions with fixed
limits. They are empirically set to provide a large variety of
reachable arm configurations.

Frontiers in Robotics and AI | www.frontiersin.org 5 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

FIGURE 3 | Object detection computation scheme (de La Bourdonnaye et al., 2017).

During learning, training pairs (qrobot , qcamera) are added to
D when the reward rcam

eff
is above a fixed threshold. When the

number of samples inD is higher than the batch sizeNbf, we train
fη on random batches of D each time a new sample is added to D.

2.4.2. End-Effector Detection
We describe here how we detect the end-effector in the
image. Unlike de La Bourdonnaye et al. (2017) which uses
an autoencoder to localize the object, the end-effector image
position is computed using the difference in the image before
and after pre-defined end-effector finger moves (Metta and
Fitzpatrick, 2003). The idea is that the hand is segmented from
the rest of the scene because its appearance varies according
to finger moves. Then, this end-effector detection method only
requires to specify finger moves.

Figure 4 presents the different steps of the end-effector
detection:

• The images before (Icam
before

) and after (Icam
after

) the end-effector
moves are saved.

• The difference of images is calculated and the end-effector
position xcam

eff
is computed using a kernel density estimator

the same way xcam
obj

is calculated from the autoencoder
reconstruction error image.

Note that the end-effector detection is also filtered as in section
2.3.2.

2.5. Learning to Touch
In this section, we describe how the previous learned tasks help
to learn to touch the object.

2.5.1. Task Overview
The touching task consists of reaching with the end-effector palm
the object above the table at different reachable positions from a
large set of initial arm positions (see Figure 5 for a display of 8
randomly generated initial configurations). The goal of learning
to reach both at different target positions and from a large set
of initial robot joint angles is mainly motivated by the fact it
allows to learn policies that are more robust to perturbations in
the joint space (Rajeswaran et al., 2017). In addition, reaching
from different initial joint angles allows to reach from positions

with a badly oriented end-effector which is a challenging
task.

The objective of the task is defined by a sparse reward term
rsparse which indicates if there is palm-touching or not:

rsparse =

{

1, if success,

ptime ∈ R
−, otherwise.

(10)

Note that the negative term ptime ensures that the robot looks for
the quickest path to the goal. The state space S is composed of
the arm and camera joint angles q as well as eight binary tactile
sensors cb attached to the fingers of the Barrett Hand. Images are
not required here because we use a single object and consider that
the camera joint angles give sufficient information about the 3D
object position. However, they would be necessary if objects with
different shapes were used in the experiments. The actions are
variations of the robot joint angles: a = 1qrobot which are seven
real-valued scalars.

2.5.2. Reward Computation
To compute the touching reward function, we use the
object binocular fixation policy and the hand-eye coordination
function. After the execution of an object fixation step (using
the object fixation policy πψ), we get the fixation camera angles
qcamera

fix which implicitly encode the object 3D position. After that,
using Equation (5) at each time-step, the hand-eye coordination
function fη gives us qcamera

virt which implicitly encodes the end-
effector 3D position. Then, a reward shaping term rshCam can be
computed:

rshCam =

{

0, if success,

ccam||qcamera
fix − qcamera

virt ||2 − ptime, otherwise.

(11)
with ccam ∈ R

−. rshCam represents an informative term which
depends on the distance between the virtual camera coordinates
and the camera coordinates which make the camera system
fixate the object. Thus, it encourages the end-effector to be
close to the object. Note that the slope ccam is chosen to ensure
shaping rewards are small compared with the non-zero sparse
reward.

Using these sole terms yields decent performances but we
observed that the robot was badly guided when it is close

Frontiers in Robotics and AI | www.frontiersin.org 6 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

FIGURE 4 | End-effector detection computation scheme.

FIGURE 5 | Random examples of initial configurations.

to the table. Indeed, fewer moves are physically plausible and
the algorithm can take time to learn them. To accelerate this
selection, we propose a new tactile reward term rpenContact to
the reward function penalizing states where the end-effector is
in contact with the table:

rpenContact =

pcontact ∈ R
−, if contact between the

end-effector and the table,

0, otherwise.

(12)

Indeed, by applying penalties, we hope that the robot explores
areas where it is not in contact with the table, i.e., where it can
move without too many constraints to the goal. To compute this
term, we make the assumption that the robot knows from its
tactile sensors whether it is touching the table.

Finally, the reward function is built from the three previous
terms:

rproposedPen = rsparse + rpenContact + rshCam (13)

The relative effect of each of these terms is evaluated in the
experiments.

Frontiers in Robotics and AI | www.frontiersin.org 7 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

2.6. Experiments
In this section, we describe the experimental protocol. The
objective of experiments is to evaluate learning performances
using the proposed reward function and other ones because
they allow to evaluate the relative impacts of each reward term.
Besides, we wish to evaluate whether our weakly supervised
reward can reach same performances as with a supervised
counterpart.

2.6.1. Different Reward Functions
The reward functions which will be used in our experiments are
listed below:

• rsparse =

{

1, if success,

ptime, otherwise.

This reward is described by Equation (10) and rewards
the robot only when the palm touches the object. Besides,
it penalizes each unsuccessful movement to encourage the
robot to quickly touch the object. Note that using such a
sparse reward means that we only dispense with the hand-eye
coordination information. Indeed, information brought by the
object fixation (the camera joint angles) is still present in the
state space.

• rproposedPen = rsparse + rpenContact + rshCam
This is the proposed reward function (described in Equation
13).

• rproposed = rsparse + rshCam
This is the proposed reward function without the penalties for
the contact between the end-effector and the table. This is used
to show the influence of the penalty in the learning procedure.

• rsparsePen = rsparse + rpenContact
We add to rsparse a term penalizing contacts of the end-effector
with the table.

• rsupervisedPen = rsparse + rpenContact +
{

0, if success,

ccart||p− ptarget||2 + 0.0125, otherwise,

with ccart < 0. To build this reward, we give a 3-dimensional
end-effector target Cartesian pose ptarget for the shaping part
and we add a sparse reward as well as a term penalizing end-
effector contacts with the table. This reward is the closest to
the proposed rproposedPen but its shaping term requires forward
kinematics and 3D object pose information. Finally, the slope
ccart is chosen to make the shaping term take about the same
values as rshCam.

Note that we choose not to compare our reward function with a
Cartesian shaping reward without a sparse term. Indeed, for such
a reward function, a success would be to touch with the palm
from a specific orientation and position. In our case, a success
can be to touch with the palm in any position. The tasks are then
too different to be compared in terms of touching improvement.

2.6.2. Material
We describe here the material we use for our experiments.

Figure 6 presents the chosen virtual experimental platform
which is the realistic representation of one of our real robotic
platforms. The simulations use the Gazebo simulator with the

FIGURE 6 | Scheme of the robotic platform.

ROS (Quigley et al., 2009) middleware. The robotic platform is
composed of three entities:

• A two-camera pan-tilt system attached above the platform
• Two robotic arms attached on the left and right sides of the

platform. Note that we use only one arm in our experiments.
• A Barrett hand is attached to the arm that we use in the

experiments.

A table from the Gazebo object database is placed below the
cameras and in front of the bi-arm platform. This table is not
present when we learn the hand-eye coordination function. To
learn object fixation (de La Bourdonnaye et al., 2017), we use
some objects from the gazebo object database and several hand-
made ones with various shapes and colors (see Figure 7). We use
a blue-ball for the reaching experiments though the method does
not depend on this specific model since the robot learns to look
at any object.

2.6.3. Experimental Protocol
We describe how we compare the policies learned with different
reward signals for the touching task. The protocol contains a
training and a test phase.

2.6.3.1. Training phase
For training, we use the DDPG algorithm (Lillicrap et al., 2016)
and the previously defined reward functions. Learning happens
on Ntot bounded-length episodes of maximal size Nmax. Each
episode has an initial arm position and an object position. The
object position is uniformly chosen from a rectangular area of
reachable object positions on the table. The initial robot joint
angles are sampled from a set of uniform distributions (each one
corresponding to a robot joint angle). When an initial position

Frontiers in Robotics and AI | www.frontiersin.org 8 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

FIGURE 7 | Training set for the object fixation task (de La Bourdonnaye et al., 2017).

leads to a collision between the arm and its environment, the
initial position is re-set until a collision-free position is sampled.

For the exploration, we use the Ornstein-Uhlenbeck process.
This correlates the noise ǫj(t) for a joint at time t with the noise
ǫj(t − 1) of the same joint at time t − 1 with the equation:

ǫj(t) = θjµj + (1− θj)ǫj(t − 1)+
(

ξj(t) ∼ N
(

0, σj
))

. (14)

θj is a factor trading-off the correlation with the previous noise
and the correlation with the equilibrium value µj and σj is
the standard deviation of the used Gaussian distribution. This
exploration procedure is particularly interesting in problems in
which the same action applied during several time-steps can be
the optimal behavior.

As the task requires a precise orientation of the end-effector,
the robot frequently blocks itself close to a reaching position. For
instance, the robot can touch the object with its fingers without
touching it with the palm. And, if the actions computed by the
policy make the end-effector move downward, the robot can be
blocked by the table despite exploration. Thus, to avoid these
situations, we handle the times when the robot is blocked without
succeeding in reaching.More precisely, when the robot is blocked
a backward action is taken, i.e., the robot goes back to a previous
contact-less position. This allows to more correctly discriminate
actions in the contact areas in the sense the robot is provided with
other chances of success.

Through the training experiments, we wish to compare
our reward requiring little supervision with other ones.
Consequently, for all the reward signals, in order to monitor
the learning progress, we specifically plot the reaching frequency
νreward over the episodes, reward referring to a specific reward
function. We average six experiments per setting and provide
confidence interval plots [mreward,Mreward] for each computed
average. mreward and Mreward are computed according to the
equations below:

mreward = νreward −
1.96σ reward

√
Nrun

, (15)

Mreward = νreward +
1.96σ reward

√
Nrun

, (16)

with Nrun being the number of runs per reward function and
σ reward the standard deviation of the reaching frequency for each
reward function.

Furthermore, we record N1 the number of episodes it took to
reach a first reaching success, N90 the number of RL iterations it

took to reach and remain above reaching performance of 90 % as
well as associated confidence intervals and standard deviations.
These variables are used to evaluate the learning velocity with
different reward functions.

2.6.3.2. Test phase
To evaluate the learned policies, we apply them without any
exploration noise on Ntot random episodes and we compute the
touching frequency νrewardtest . Moreover, for each reward signal, we
provide a confidence interval for the average touching frequency

and the standard deviation of the touching frequency σ νrewardtest .
Note that we do not apply the systematic backward motion used
in the training phase to deal with blocked situations. Instead,
when the robot is blocked, it just follows the learned policy.
Like in the training phase, the results are averaged over six
experiments per setting.

2.6.4. Implementation Details
For all the neural network algorithms, we use the caffe library (Jia
et al., 2014). A GPU (nvidia GeForce GTX Titan X) is used for
the experiments.

We use the same neural network architectures as in
de La Bourdonnaye et al. (2017) for the end-effector and object
fixation tasks. The hyperparameter values are also the same with
the exception of the number of iterations: 200, 000. The hand-eye
coordination function is a neural network with 2 fully connected
hidden layers of 10 and 5 neurons and a batch size Nbf of 32 is
used to learn it. For the episode initialization of the end-effector
fixation task, the seven arm joint angle distribution amplitudes
are 11, 46, 69, 92, 92, 86, and 0◦ if we consider the ascending order
in the kinematic chain i.e., from the base link to the end-effector.

For the touching task, the Q network has 3 fully connected
layers with 250, 200, and 1 neural units. The policy network
involves 3 fully connected layers with 200, 150, and 7 neural units.
The weights are updated using the Adam solver (Kingma and Ba,
2015). Tables 1, 2 provide values for the parameters used in the
experiments. For the Q update, the discount factor γ is equal to
0.99. For the episode initialization, the distribution limits are 23,
57, 80, 91, 103, 80, and 11◦.

3. RESULTS

Table 3 presents the final performances of the different policies
as well as the number of episodes it takes to get a first reaching
success and the number of RL iterations it takes to reach (and
remain above) an average reaching performance of 90 %. The
average reaching performance is obtained using exponential

Frontiers in Robotics and AI | www.frontiersin.org 9 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

TABLE 1 | Parameter values.

Parameters Nmax Nb ccam ccart Ntrans Ntot (training) Ntot (test) pcontact ptime

Values 100 256 − 1
30 − 1

40 60,000 40,000 1,000 −0.01 −0.0125

TABLE 2 | Ornstein-Uhlenbeck process parameters.

Parameters θj , j ∈ {1, . . . , 7} µj , j ∈ {1, . . . , 7} σj , j ∈ {1, . . . , 4} σj , j ∈ {5, . . . , 7}

Values 0.8 0 0.01 0.04

TABLE 3 | Values featuring learning velocity (N1 and N90), final reaching frequency (νrewardtest) and associated standard deviations.

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse

N1 95 ± 16 110 ± 19 105 ± 29 7505 ± 6918 8214 ± 4145

N90 (1.73 ± 0.25) × 106 (2.35 ± 0.17) × 106 (1.55 ± 0.13) × 106 N/A N/A

νrewardtest (%) 94.9 ± 1.3 90.7± 2.83 97.2 ± 0.67 59.9 ± 37.6 81.9 ± 17.3

σN1 20 23 36 8646 5180

σN90 312,911 172,129 165,160 N/A N/A

σ
νrewardtest (%) 1.64 3.53 0.84 47 21.6

smoothing: νreward
f

= (1 − ω)νreward
f

+ ωνrewardr , with νrewardr

and νreward
f

being the raw and smoothed frequencies and ω

the smoothing factor being equal to 0.003. Figure 8 shows the
experimental training curves as well as associated confidence
intervals. Note that this figure use exponential smoothing for
visualization purposes. We can notice several important facts:

• Learning the reaching task can work very well because
the robot reaches 90% of touching performances with the
reward functions using shaping terms (Videos of the policy
learned with our reward function can be consulted in the
Supplementary Material). This shows that the camera joint
angles integrated in the state space encode sufficiently well the
object position, which confirms the rationale of our method.

• With the use of sparse-only rewards, the probability of getting
the first success is low. It takes a lot of episodes to reach a first
success (from 7,505 episodes for the N1 values). Furthermore,
we cannot have a precise idea about the time when the first
success occurs because the standard deviations are very high.
Moreover, N90 values are not available for these two reward
settings because some of the runs were not successful at all.
Finally, as shown by Figure 8, the confidence intervals for
the average reaching frequency are very large, which means
that the average estimation is not precise at all for the sparse
reward settings. The only fact we can notice for these settings
is that it can work for a run and totally fails for another
one. Then, these reward functions do not ensure a reliable
learning.

• With a shaping term, the probability of having first successes
is much higher. The different N1 values for rproposedPen,
rproposed, rsupervisedPen are of the same order of magnitude,
are small, and exhibit low standard deviations. And our
weakly-supervised setting allows to approach similar reaching

FIGURE 8 | Evolution of the average reaching frequency during training for the

different reward functions.

performances compared with its supervised counterpart even
if the final reaching frequency is slightly lower. In addition,
Figure 8 shows that the confidence intervals of νsupervisedPen

and νproposedPen intertwine even if the bounds of νsupervisedPen

are generally higher. This shows that even if νsupervisedPen is
higher than νproposedPen most of the time, results are close.
Furthermore, we notice that three phases can be distinguished.
From 0 to about 5,000 episodes, the reward curves increase
with the same velocity. It corresponds to a phase in
which some initial positions are mastered without substantial
end-effector orientation changes. Indeed, for some initial

Frontiers in Robotics and AI | www.frontiersin.org 10 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

positions, the robot has to change only a little its end-effector
orientation to reach a grasping posture. After 5,000 episodes,
there is a period of slow increase for the three settings and
from about 7,000 episodes, “harder” initial positions are more
and more mastered. We observe that the three settings start to
distinguish from each other and the term penalizing contacts
seems to be a decisive factor.

• Indeed, with a term penalizing contacts between the end-
effector and the table, learning becomes faster. To show this,
we can compare rproposedPen and rproposed: N90 is lower for

rproposedPen, ν
proposedPen
test is higher than ν

proposed
test , and Figure 8

shows that νproposedPen is always superior to νproposed after
10,000 episodes. Furthermore, in Figure 8 we notice that the
upper boundMproposed is generally inferior to the lower bound
mproposedPen. All of these observations show the supremacy of
rproposedPen over rproposed. It shows that penalizing contacts
between the end-effector and the table has an important
influence on learning performances. The reason is that it
is easier to experiment “good” moves in contact-less areas
given the robot can easily be blocked when it touches the
table.

4. DISCUSSION

4.1. Contributions
Our first contribution is the design of a stage-wise learning
framework to learn a complex reaching task. This framework
involves the DDPG algorithm though any deep RL algorithm
suitable to continuous action spaces could be used. Interestingly
the first two tasks are largely similar in their modeling: we use the
same MDPs with the exception of the reward function, the same
kernel density estimator for localizing the point of interest in the
image and the same filtering method to remove the detection
noise. The knowledge of the two tasks are then combined to
compute an informative shaping reward efficiently guiding the
robot toward reaching postures.

Our second contribution is to learn the task with only
weak supervision, i.e., without kinematics, calibration or pre-
processing blocks and to exhibit similar performances compared
with a fully supervised reward function. Furthermore, our
framework is applied on a challenging task with a large set of
initial configurations: several initial arm positions and several
object positions as shown in Figure 5.

4.2. Related Work
Our approach resembles some developmental robotics methods
which learn to reach using a hand-eye coordination function
and object fixation. However, they are usually paired with
supervision for the object and/or end-effector fixations (Nori
et al., 2007; Chinellato et al., 2011; Jamone et al., 2012; Law
et al., 2014) or computation of action primitives (Hoffmann
et al., 2005). In other terms, object or end-effector detection
use markers or simple blob-detection algorithms which would
not be valid for any kind of object. The contributions brought
by these papers are more related to the learning architecture
which is close to the one of infants whereas our work focuses

on reducing the amount of external information used for
learning.

The multi-target-position multi-initial-arm-position setting
has also been implemented on a simulated reaching task using
a 7 DOF manipulator (Lillicrap et al., 2016). However, there
were neither collision aspects nor orientation constraints for
the end-effector and a supervised shaping reward was used.
Lampe and Riedmiller (2013) learns an object grasping policy but
integrates the object position in a camera image in a relatively
low-dimensional state space, which requires a supervised visual
module. Popov et al. (2017) learns a brick grasping task from
several initial arm positions at several target positions. However,
for the arm initialization, the end-effector is always made
close to the object and its orientation adapted to a grasping
action.

4.3. Limitations
Our approach has certain limitations mainly related to the first
stages of the stage-wise framework. In the object fixation step,
even though learning is weakly-supervised, if the environment
varies, the approach in its current form needs the intervention
of a human user to learn again to encode the environment.
Besides, our approach constrains objects not to be present
in the scene when the environment is encoded. And finally,
the fixation cannot be applied on the object when the arm
is above the table. Concerning the hand-eye coordination
learning stage, the method implemented here requires an
immobile background tomake the end-effector detectionmethod
work. Note that this problem is solved in the literature by
correlating finger moves with detection changes in the image
Metta and Fitzpatrick (2003).

5. FURTHER RESEARCH

As further research, we wish to make the first and the second
stages of our framework robust respectively to environment
variations and moves in the background and also to be able to
fixate the object when the arm is above the table. A good hint for
this would be to achieve an open-ended learning framework in
which the learnings of the tasks presented in the paper overlap
and drive each other. For example, learning to reach an object
with the end-effector may first help the robot to acquire the
knowledge of what is an object and would consequently drive
the learning of object fixation. Second, it may help the robot to
acquire hand-eye coordination.

Furthermore, it would be interesting to learn other kinds of
manipulation tasks including complex ones such as inserting
a key in a lock with our framework. In principle, switching
from a task to another one would just require to switch from
a sparse reward to another one. However, some sparse rewards
are less likely to be reached that other ones, e.g., grasping
is less likely than palm-reaching. Consequently, our learning
frameworkmight not be directly applicable for too complex tasks,
and learning them with our framework would be achieved by
learning a curriculum of tasks, from the simplest to the most
complicated. Finally, we wish to adapt the framework to a real
robotic setting.

Frontiers in Robotics and AI | www.frontiersin.org 11 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

AUTHOR CONTRIBUTIONS

FdLB implemented the code and wrote the original version of the
paper. JT, TC, and CT gave advice on the work itself and reviewed
the paper.

ACKNOWLEDGMENTS

This work is sponsored by the French government research
program Investissements d’avenir through the IMobS3
Laboratory of Excellence (ANR-10-LABX-16-01), by the
European Union through the program Regional competitiveness
and employment (ERDF Auvergne region), and by the

Auvergne region. JT acknowledges support from the Quandt
foundation and the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement no. 713010
(GOAL-Robots Goal-based Open-ended Autonomous Learning
Robots).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2018.00110/full#supplementary-material

Video S1 | Video showing the different learned behaviors from object fixation to

reaching.

REFERENCES

Asada,M., Noda, S., Tawaratsumida, S., andHosoda, K. (1996). Purposive behavior

acquisition for a real robot by vision-based reinforcement learning. Machine

Learn. 22, 279–303.

Batista, A. P., Buneo, C. A., and Andersen, R. A. (1999). Reach lans in eye-centered

coordinates. Science. 285, 257–260.

Bellman, R. E. (1961).Adaptive Control Processes: A Guided Tour. Cambridge, MA:

MIT Press.

Carey, D. P., Coleman, R. J., and Della Salla, S. (1997). Magnetic misreaching.

Cortex 33, 639–652.

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G. S., Schaal, S., and Levine, S.

(2017). “Combiningmodel-based andmodel-free updates for trajectory-centric

reinforcement learning,” in ICML (Sydney, NSW).

Chinellato, E., Antonelli, M., Grzyb, B. J., and del Pobil, A. P. (2011). Implicit

sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE

Trans. Auton. Ment. Dev. 3, 43–53.

de La Bourdonnaye, F., Teulière, C., Triesch, J., and Chateau, T. (2017). “Learning

of binocular fixations using anomaly detection with deep reinforcement

learning,” in IJCNN (Anchorage, AK).

de La Bourdonnaye, F., Teulière, C., Triesch, J., and Chateau, T. (2018). “Learning

to touch objects through stage-wise deep reinforcement learning,” in IROS

(Madrid).

Deisenroth, M. P., Rasmussen, C. E., and Fox, D. (2011). “Learning to control a

low-cost manipulator using data-efficient reinforcement learning,” in Robotics:

Science and Systems (Sydney, NSW).

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. (2016). “Deep

spatial autoencoders for visuomotor learning,” in ICRA (Stockholm).

Fischer, K. (1980). A theory of cognitive development: the control and construction

of hierarchies of skills. Psychol. Rev. 87, 477–531.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and Abbeel, P. (2017). “Reverse

curriculum generation for reinforcement learning,” in CoRL (Moutain View,

CA).

Ghadirzadeh, A., Maki, A., Kragic, D., and Björkman, M. (2017).

“Deep predictive policy training using reinforcement learning,” in

IROS (Vancouver, BC).

Gu, S., Holly, E., Lillicrap, T. P., and Levine, S. (2017). “Deep reinforcement

learning for robotic manipulation with asynchronous off-policy updates,” in

ICRA (Singapore).

Gudimella, A., Story, R., Shaker, M., Kong, R., Brown, M., Shnayder, V., and

Campos, M. (2017). Deep reinforcement learning for dexterous manipulation

with concept networks. CoRR. Available online at: https://arxiv.org/abs/1709.

06977 (Accessed Jun 25, 2018).

Hausknecht, M. J., and Stone, P. (2016). “Deep reinforcement learning in

parameterized action space,” in ICLR (San Juan).

Hoffmann, H., Schenck, W., and Möller, R. (2005). Learning visuomotor

transformations for gaze-control and grasping. Biol. Cybern. 93, 119–130.

doi: 10.1007/s00422-005-0575-x

Huys, R., and Beek, P. J. (2002). The coupling between point-of-gaze and

ballmovements in three-ball cascade juggling: the effects of expertise,

pattern and tempo. J. Sports Sci. 20, 171-186. doi: 10.1080/026404102317

284745

Jamone, L., Natale, L., Nori, F., Metta, G., and Sandini, G. (2012). Autonomous

online learning of reaching behavior in a humanoid Robot. I. J. Humanoid

Robot. 9:1250017. doi: 10.1142/S021984361250017X

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al.

(2014). “Caffe: convolutional architecture for fast feature embedding,” in ACM

(Orlando, FL).

Kingma, D., and Ba, J. (2015). “Adam: a method for stochastic optimization,” in

ICLR (San Diego, CA).

Kober, J., and Peters, J. R. (2009). “Policy search for motor primitives in robotics,”

in Advances in Neural Information Processing Systems 21 (Vancouver, BC).

Lampe, T., and Riedmiller, M. (2013). “Acquiring visual servoing reaching and

grasping skills using neural reinforcement learning,” in The 2013 International

Joint Conference on Neural Networks (IJCNN) (Dallas, TX).

Lange, S., and Riedmiller, M. (2010). Deep auto-encoder neural networks in

reinforcement learning,” in IJCNN (Barcelona), 1–8.

Law, J., Shaw, P., Lee, M., and Sheldon, M. (2014). From saccades to

grasping: a model of coordinated reaching through simulated development

on a humanoid robot. IEEE Trans. Auton. Mental Dev. 6, 93–109.

doi: 10.1109/TAMD.2014.2301934

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep

visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373. Available online at:

http://dl.acm.org/citation.cfm?id=2946645.2946684

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2017). Learning

hand-eye coordination for robotic grasping with deep learning and large-

scale data collection. Int. J. Rob. Res. 37, 421–436. doi: 10.1177/02783649177

10318

Levine, S., Wagener, N., and Abbeel, P. (2015). “Learning contact-rich

manipulation skills with guided policy search,” in ICRA (Seattle, WA).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in ICLR (San Juan).

Metta, G., and Fitzpatrick, P. (2003). “Early integration of vision and

manipulation,” in Adaptive Behavior special issue on Epigenetic Robotics

(Portland).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning. Nature.

518, 529–533. doi: 10.1038/nature14236

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2017).

Overcoming exploration in reinforcement learning with demonstrations.

CoRR. Available online at: https://arxiv.org/abs/1709.10089 (Accessed Jun 06,

2018).

Nori, F., Natale, L., Sandini, G., and Metta, G. (2007). “Autonomous learning of

3D reaching in a humanoid robot,” in IROS (San Diego, CA).

Popov, I., Heess, N., Lillicrap, T. P., Hafner, R., Barth-Maron, G., Vecerik,

M., et al. (2017). Data-efficient Deep Reinforcement Learning for Dexterous

Frontiers in Robotics and AI | www.frontiersin.org 12 October 2018 | Volume 5 | Article 110

https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full#supplementary-material
https://arxiv.org/abs/1709.06977
https://arxiv.org/abs/1709.06977
https://doi.org/10.1007/s00422-005-0575-x
https://doi.org/10.1080/026404102317284745
https://doi.org/10.1142/S021984361250017X
https://doi.org/10.1109/TAMD.2014.2301934
http://dl.acm.org/citation.cfm?id=2946645.2946684
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1709.10089
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

de La Bourdonnaye et al. Stage-Wise Learning of Reaching?

Manipulation. CoRR. Available online at: https://arxiv.org/abs/1704.03073

(Accessed Jun 06, 2018).

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).

“ROS: an open-source Robot Operating System,” in ICRA Workshop on Open

Source Software (Kobe).

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017).

“Towards generalization and simplicity in continuous control,” in Advances in

NIPS (Long Beach, CA).

Riedmiller, M. A., Hafner, R., Lampe, T., Neunert, M., Degrave, J., de Wiele, T. V.,

et al. (2018). Learning by playing-solving sparse reward tasks from scratch.

CoRR. Available online at: https://arxiv.org/abs/1802.10567 (Accessed Jun 06,

2018).

Sermanet, P., Xu, K., and Levine, S. (2017). “Unsupervised perceptual rewards for

imitation learning,” in Robotics: Science and Systems (Cambridge, MA).

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

“Deterministic policy gradient algorithms,” in ICML (Beijing).

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves

master-level play. Neural Comput. 6, 215–219. doi: 10.1162/neco.1994.6.2.215

Tsurumine, Y., Cui, Y., Uchibe, E., andMatsubara, T. (2017). “Deep dynamic policy

programming for robot control with raw images,” in IROS (Vancouver, BC).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 de La Bourdonnaye, Teulière, Triesch and Chateau. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 13 October 2018 | Volume 5 | Article 110

https://arxiv.org/abs/1704.03073
https://arxiv.org/abs/1802.10567
https://doi.org/10.1162/neco.1994.6.2.215
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Stage-Wise Learning of Reaching Using Little Prior Knowledge
	1. Introduction
	2. Methods and materials
	2.1. Background
	2.1.1. Reinforcement Learning
	2.1.2. Deep Reinforcement Learning

	2.2. Overview
	2.3. Learning Binocular Object Fixations
	2.3.1. Task Overview
	2.3.2. Object Detection

	2.4. Learning a Hand-Eye Coordination Function fη
	2.4.1. Task Overview
	2.4.2. End-Effector Detection

	2.5. Learning to Touch
	2.5.1. Task Overview
	2.5.2. Reward Computation

	2.6. Experiments
	2.6.1. Different Reward Functions
	2.6.2. Material
	2.6.3. Experimental Protocol
	2.6.3.1. Training phase
	2.6.3.2. Test phase

	2.6.4. Implementation Details

	3. Results
	4. Discussion
	4.1. Contributions
	4.2. Related Work
	4.3. Limitations

	5. Further research
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

