N

N

Planner: Cost-efficient Execution Plans Placement for
Uniform Stream Analytics on Edge and Cloud

Laurent Prosperi, Alexandru Costan, Pedro Silva, Gabriel Antoniu

» To cite this version:

Laurent Prosperi, Alexandru Costan, Pedro Silva, Gabriel Antoniu. Planner: Cost-efficient Execution
Plans Placement for Uniform Stream Analytics on Edge and Cloud. WORKS 2018: 13th Workflows in
Support of Large-Scale Science Workshop, held in conjunction with the IEEE/ACM SC18 conference,
Nov 2018, Dallas, United States. pp.1-10, 10.1109/works.2018.00010 . hal-01892718

HAL Id: hal-01892718
https://hal.science/hal-01892718
Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01892718
https://hal.archives-ouvertes.fr

Planner: Cost-efficient Execution Plans Placement
for Uniform Stream Analytics on Edge and Cloud

Laurent Prosperi
ENS Paris-Saclay, Inria
Cachan, Rennes (France)
laurent.prosperi@ens-paris-saclay.fr

Abstract—Stream processing applications handle unbounded
and continuous flows of data items which are generated from
multiple geographically distributed sources. Two approaches are
commonly used for processing: Cloud-based analytics and Edge
analytics. The first one routes the whole data set to the Cloud,
incurring significant costs and late results from the high latency
networks that are traversed. The latter can give timely results but
forces users to manually define which part of the computation
should be executed on Edge and to interconnect it with the
remaining part executed in the Cloud, leading to sub-optimal
placements. In this paper, we introduce Planner, a middleware
for uniform and transparent stream processing across Edge and
Cloud. Planner automatically selects which parts of the execution
graph will be executed at the Edge in order to minimize the
network cost. Real-world micro-benchmarks show that Planner
reduces the network usage by 40% and the makespan (end-to-end
processing time) by 15% compared to state-of-the-art.

Index Terms—stream processing, Edge analytics, hybrid
stream processing

I. INTRODUCTION

The age of offline-only Big Data analytics is over, leaving
room to online and interactive processing. The proliferation
of small sensors and devices that are capable of generating
valuable information in the context of the Internet of Things
(IoT) has exacerbated the amount of data flowing from all
connected objects to private and public cloud infrastructures.
The applications leveraging these data (e.g. monitoring, video
streaming) raise specific challenges, as they typically have to
handle small data (in the order of bytes and kilobytes), arriving
at high rates, from many geographical distributed sources and
in heterogeneous formats, that need to be processed and acted
upon with high reactivity in near real-time.

Two axes are currently explored separately to achieve
these goals: Cloud-based analytics and Edge analytics. The
traditional approach of sending the data from (potentially
millions of) Edge devices to the Cloud for processing was
largely adopted due to simplicity of use and the perception
of unlimited resources. Here, a plethora of stream processing
engines - SPEs (like Spark [34], Flink [19], Kafka [27],
Storm [1], Samza [2], Pulsar [3]) are used for data analytics
and persistence. In this case, the Edge devices are used
just as proxies only to forward data to the Cloud. However,
pushing all the streams to the Cloud incurs significant latencies
as the wide area networks that are traversed have limited
available bandwidth. On the other hand, since Edge devices are

Alexandru Costan, Pedro Silva, Gabriel Antoniu

Univ Rennes, Inria, CNRS, IRISA
Rennes (France)

alexandru.costan@irisa.fr, pedro.silva@irisa.fr, gabriel.antoniu@inria.fr

getting more powerful and energy-efficient, another vision is
to perform an important part of the analysis at the collection
site, at the edge of the network. Such an approach allows
to take local decisions and enables the real-time promise of
the analytics, improving the reactivity and “freshness” of the
results. Several Edge analytics engines emerged lately (e.g.
Apache Edgent [4], Apache Minifi [S]) enabling basic local
stream processing on low performance IoT devices.

More recently, a new hybrid approach tries to combine both
Cloud and Edge analytics in order to offer better performance,
flexibility and monetary costs for stream processing. First,
processing live data sources can offer a potential solution
that deals with the explosion of data sizes, as the data is
filtered and aggregated locally, before it gets a chance to
accumulate. Then, partial results instead of full data are sent to
the Cloud for stream processing. Batch processing is still used
to complement this online dimension with a machine/deep
learning dimension and gain more insights based on historical
data (e.g. discover new correlations and patterns). The ultimate
goal is to have an online/real-time front-end for processing on
the Edge, close to where data streams are generated, while
the Cloud will only be used for off-line back-end processing,
mainly dealing with archival, fault tolerance and also further
processing that is not time-critical. This hybrid approach
enables edge analytics to detect what is happening with a
monitored object, while Cloud analytics allows to understand
why this is happening.

However, leveraging this dual approach in practice raises
some significant challenges mainly due to the way in which
stream processing engines organize the analytics workflow.
Both Edge and Cloud engines create a dataflow graph of
operators that are deployed on the distributed resources;
they devise an execution plan by traversing this graph. In
order to execute a request over such hybrid deployment, one
needs a specific plan for the edge engines (e.g. Edgent),
another one for the cloud SPEs (e.g. Spark) and to ensure
the right interconnection between them thanks to an ingestion
system (e.g. Kafka). Hence, with this non-uniform approach,
the burden of connecting systems together and dividing the
computation between them is left to users on a per application
basis. Moreover, manually and empirically deploying this
analytics pipeline (Edge-Ingestion-Cloud) can lead to sub-
optimal computation placement with respect to the network

cost (i.e., high latency, low throughput) between the Edge and
the Cloud.

In this paper, we argue that a uniform approach is needed
to bridge the gap between Cloud SPEs and Edge analytics
frameworks in order to leverage a single, transparent execution
plan for stream processing in both environments. We introduce
Planner, a streaming middleware capable of finding cost-
efficient cuts of execution plans between Edge and Cloud.
Our goal is to find a distributed placement of operators on
Edge and Cloud nodes to minimize the stream processing
makespan. This uniform view of the whole streaming pipeline
is particularly novel and allows the placement to meet the
constraints of throughput capacity of the Edge and Cloud
resources as well as the bandwidth and latency limits of the
network.

The contributions of this work are summarized as follows:

o We introduce a resources model for stream processing
and a cost model for the streams flowing from an Edge
operator to a Cloud-based one (Section IV);

o We formulate the problem of operator placement for
an execution graph across distributed Edge and Cloud
resources, with the objective of minimizing the network
cost and the makespan (Section IV-A);

o« We present Planner, a streaming middleware capable
of automatically deploying fractions of the computations
across Edge and Cloud, as a proof of concept (Section
V);

e We perform comprehensive real-world micro-
benchmarks showing that Planner reduces the network
usage by 40% and the makespan by 15% compared to
state-of-the-art. (Section VI).

II. CONTEXT AND MOTIVATION

This section provides the background for our work and
introduces the problem statement.

A. Infrastructure

A common infrastructure for stream processing is split into
two layers: the Edge, hosting the devices which generate
data, and the Cloud, used for ingestion (i.e., gathering data
from devices and aggregating it into streams) and processing
(i.e., the analytics on the incoming streams). While the Edge
devices are becoming more and more resourceful and energy-
efficient, the Cloud has (order of magnitude) more computing
power. In this paper, we assume that the Cloud has enough
resources to process the whole dataset after data collection.
What remains prohibitive, however, is the high latency of
the wide area networks connecting the Edge and the Cloud,
leading to significant network usage and costs, and increased
end-to-end processing latencies.

B. Data streaming

A data stream is an unbounded collection of atomic items.
Processing operators consume streams and produce values
(e.g., reduce, aggregate) or new streams (e.g., map, filter) using
some User Defined Functions (UDFs). For instance, a map

operator can transform a stream of temperature measurements
into a stream of heat wave alerts). An operator source only
produces streams (e.g reads items from files, devices) and,
therefore, it irrigates the computation pipeline with data. An
operator data sink only consumes data (e.g, writing data in a
file).

Operators can be split into two categories: stateless and
stateful. A stateless operator (e.g., map) processes items in-
dependently, one at a time, and consequently doesn’t need
to save its ”state” in case of failures. In contrast, a stateful
operator (e.g., reduce) processes items according to its local
state (e.g., a rolling sum) or aggregates items and processes
them by bucket (e.g., windows [14]).

C. Stream processing graphs

A common abstraction for modeling stream computations
are the the stream graphs. They are directed acyclic graphs
composed of operators (the vertices) interconnected by data
streams (the edges).

We refine the notion of stream graph into a weighted DAG
in order to model the network usage induced by streams and
their sources (i.e, the average rate of events flowing through
a stream). More formally G5 = (V,,, Fst, #st) denotes a
stream graph where V, is the set of operators, Eg; is the set
of streams and #4; : Es; U Sources — RT is the network
usage. An operator o is composed of an UDF f, and of a type
T, (e.g., map, reduce) that describes an input and an output
contract [16]. An input contract describes how the input items
are organized into subsets that can be processed independently
(e.g, by parallel instances) whereas an output contract denotes
additional semantics information of the UDF (e.g, indicates
that a UDF is stateless). The output contract can also give
bounds for the selectivity s, of an operator o. The selectivity
[25] is the ratio of the output items rate over the input one of
an operator (e.g, an operator issuing two items for one input
has a selectivity of 2). For the sake of clarity, we summarize
operator characteristics in Table I.

D. Problem statement

In order to run a computation, one needs to deploy the
stream graph on the underlying infrastructure, i.e, to place
operators on nodes. This mapping is called the execution plan.
SPEs today can do such schedules either for the Cloud or for
the Edge, separately (e.g., Spark deploys its execution plan on
the Cloud, Minifi on the Edge).

In the case of complex hybrid infrastructures mixing both
Edge and Cloud, however, the burden to define the partial
computations, i.e., subgraphs, to be executed on each infras-
tructure, is delegated to the user. In many cases, this may lead
to sub-optimal performance.

III. MODELS

In this section, we present the abstractions we leverage to
model the resource graph on which the stream computation
relies, as well as the network cost model that our approach
aims to minimize. In Table II we summarize the notations
used throughout the paper.

Type Selectivy | Locally-replicable | Combination
So Ho ar,
Map 1 1 Id
FlatMap >0 1 Id
Filter <1 1 Id
Split 1 1 Id
Select 1 1 Id
Fold 1 0 Id
Reduce 1 0 Id
Union 1 1 >

Connect 1 0 min

Window | parametric® 0 Id

TABLE I: Operators overview. Map: takes one item and
produces one item. FlatMap: takes one item and produces
zero, one, or more items. Filter: takes one item and produces
zero or one items. Split: splits a stream into two or more
streams. Select: selects one or more streams from a split
stream. Fold: combines the current item with the last folded
value and emits the new value. Reduce: combines the current
item with the last reduced value and emits the new value with
an initial value. Union: union of two or more data streams.
Connect: connects two data streams retaining their types.
Windows: groups the data according to some characteristic.

A. Resources model

The computing and network resources used to execute a
computation can be represented as a directed graph:

Gres = (DGUiCGS ug, Er657 %es) (1)

where Devices = {d;}i<s represent the set of Edge devices
and ¢ represent the Cloud computing units. We aggregate the
Cloud nodes in one logical node ¢ since we consider the Cloud
powerful enough to run the full workflow (after collecting the
data) and because we delegate the inner placement to the SPE
(i.e., an engine like Spark or Flink will map the subgraph
identified by our approach for cloud execution on the actual
cloud nodes). E,.s denotes the physical links between Edge
devices and Cloud such as Devices x ¢ C E,.s. We do not
model other links” since we focus on the bottlenecks of the
network between Edge and Cloud. Finally, #;... : E,cs — R
represents the cost of the transmission of an item through a
link. We use a per item approach since the size of an item can
arbitrary vary according to the nature of the UDF and there is
no generic introspection mechanism to distinguish the shape
of an item (e.g, items are arbitrary Java objects in Flink).
Special care should be taken when modeling sources, as they
can produce data coming from multiple physical nodes. For
instance, let us take some workflow monitoring crops where
a data source aggregates (thanks to an ingestion queue) the
temperature coming from several connected thermometers in
order to increase reliability. We model such data dependencies
by defining for each source s € Sources the group g(s) of

bNamely, we do not assume any hypothesis for the network between edge
devices.

Symbol Description

Gt Stream graph representing the application

Ve Set of vertices (operators) of G,

va Set of vertices run by the device d € Devices

FEy Set of edges (streams) of G

Wi (i,j) Communication usage induced by the stream
(7’73) € Est

fo UDF executed by operator o € V,

To Type of operator o € V,

S0 Selectivity of 0 € V,

Gres Graph representing computing and network
resources

Devices Subset of vertices (computing Edge devices)
of Gres

FEres Set of edges (links between Edge and Cloud
nodes) of G,

Wres Transmission cost of an item through a link
le Eres

d; An Edge device d; € Devices

S Represents all the cloud nodes

g(o) Set of nodes (g(0) C Devices) that hold part
of the raw data used by o € Sources

g 1(u) Setof sources (g~ !(u) C Sources) that used
part of the raw data of u € Devices U {c}

ar Aggregation function for operator of type 7

¢’ Communication cost induced by the stream
sEg onlink | € F,.q

Cua, Placement constraint for Edge device d; €
Devices

P Operator placement

T Trace of items

Zz Local-replication indicator function

TABLE II: Main notations.

Edge devices that host the raw data used by s. Reciprocally,
we define g~!(u) the group of sources using raw data hosted
in the node u.

With this resource model, we can use different cost func-
tions depending on the metric we want to optimize (e.g, we
can use an energetic cost per item or the latency of the link).

B. Network cost model

Due to the black-box nature of UDFs, we approximate the
network usage of the streams over the links between Edge and
Cloud. The network usage of a stream (7,j) € Eg depends
on the input rate of operator ¢, the selectivity of 4 and its type
of 7;. This is formally expressed as follows:

Si* ar, (Wst(&iy), -, War(&y)) if @ & Sources
Wt (i)

Pea(is5) { otherwise

2
where (&;,,...,&;,) are the input streams of ¢ in G, ar,; :
R* — R is the weight aggregation function for an operator
of type 7; and where k is the input arity of 7. a,, describes

the combination of network usage of incoming streams (cf.

Table I). Furthermore, #;.(i) denotes the average event rate
produced by a source ¢, which should be estimated using static
analysis or by probing the source at runtime. Finally, ‘Ké =
Wres(l) * W51 (€) denotes the communication cost of a stream
¢ € E; flowing through a link [€ E,.,.

IV. UNIFORM STREAM GRAPH PLACEMENT

Our key idea for finding the ideal cut (between Cloud and
Edge) of the stream graph is to solve an optimisation problem
for placement, while trying to minimise the network cost. We
formulate this problem and its optimisations in this section.

A. The placement problem

Not all operators can be executed on Edge devices due
to their limited computing power, memory, battery life or
simply because some operators are not supported by the Edge
analytics frameworks. Therefore, for each Edge device d we
encode such a restriction in a constraint Cy. A stream graph
H can be placed to the device d if and only if it satisfies the
constraint Cyg, denoted by H = Cy.

The placement problem aims at minimizing the global
communication cost (and, consequently, the stream processing
makespan) by executing some computations on the Edge
devices instead of moving all the data to the Cloud. This is
formally expressed as follows:

>

min Z
P

(ViYeP e En(VE X (V,,\V2))

z\") (3)

subject to:
Vi b= Ca

where ¢ is a stream flowing over a link between Edge and
Cloud and & denotes the set of operators that should be
executed on each Edge device. A placement & is defined

as follows:
7=

d€Devices

(v)

where Vs(i is the subgraph of G5, mapped to the device d. The
remaining part of the workflow will be executed in the Cloud.

We can define a placement problem as a conjunction of
independent placement problems for each device by restricting
the constraint placement Cy for each device d. A local
placement problem for a device d is then formally stated as
follows:

mn 3G 5)
T EEBLN(VEX (Ve \ViY)
subject to:
Vi b= Ca
where the restricted constraint is as follows:
Cyq = Cy A Source(X) C g~ (d) (6)

Source(X) is the set of sources of the candidate subgraph
and Cy is the previous constraint for the device d.

Edge stream graph

Source

Fig. 1: Raw-data locally-aware optimization where Op is an
operator, D; denotes an edge device and RD; is the raw data
(hosted by D;) used by the source.

B. Locality-awareness optimization

We introduce a locality-aware optimization in order to
address the local placement problem. This optimization aims at
deploying operators near the raw data in the Edge by allocating
one version of the operator per device and to further collect the
results in one stream inside the ingestion system (Figure 1).

An operator o is locally-replicable (and denoted by the
indicator function % Vyy — {0,1}) if and only if the
former optimization applied to o preserves the equivalence of
computation defined using the following equivalence relation.

Computation equivalence. In order to compare computa-
tions done by two stream graphs composed of deterministic®
operators, we define a notion of equivalence based on the
outputted items. We state that two stream graphs G; and Gs
are equivalent if for any trace .7 (an ordered sequence of
input items for each input streams) G1(.7) == G2(.7), where
G1(T) denotes the content of the output streams produced by
G when applied to .7. Two streams are equal if they coincide
for any finite prefix.

Theorem 1. A stateless deterministic operator is locally-
replicable.

The idea of the proof for operator o is as follows. Let us
split the trace in sub-traces: .7 = |J.7; (one for each device

involved). Now, by combining the local results with the same
interleaving |Jo(.7;) we obtain o(.7) since the output of o

only dependslof the current input item (because o is stateless
and deterministic). An overview of locally-replicable operators
is available in Table I.

Nothing can be said for stateful operators due to the un-
known behaviour of the UDFs. Indeed, a stateful operator can
be locally-replicable (e.g, the identity map can be simulated
with a reduce operator by ignoring its state). In turn, we can
exhibit the following situation where an operator is not locally-
replicable. Let us take two devices one providing the odd
numbers and the other the even ones, and a source which
outputs the data for both devices. Eventually, the produced
stream is consumed by a reduce operator computing a rolling
sum (i.e, the sum of the current item with the last reduced
value). If we take a trace that alternates even and odd value,

“The notion of equivalence is not defined in the non-deterministic case.
Some weak-equivalence can be defined by defining G1(.7) as the set of
possible output traces.

))
[

SPE__~Cloud

connector

[Planner }

ﬂ
@@

Edge

connector

e

Fig. 2: A hybrid infrastructure where Planner is used to deploy
parts of the computation on edge devices. The connectors are
small pieces of software used to plug Planner with other cloud-
based analytics systems (e.g., Apache Flink).

then before the optimization the output stream is composed of
odd numbers and after it is composed of even numbers.

V. PLANNER OVERVIEW

We implement this approach into a proof of concept, called
Planner - a streaming middleware unifying Edge and Cloud
analytics. Planner automatically and transparently delegates a
light part of the computation to Edge devices (e.g., running
embedded edge processing engines) in order to minimize the
network cost and the end-to-end processing time of the Cloud
based stream processing. It does so as a thin extension of a
traditional cloud-based SPE (e.g., Apache Flink in our case)
to support hybrid deployments, as shown in Figure 2.

In this section, we first introduce the design principles
backing such an approach, then we provide an architectural
overview of Planner. We particularly zoom on its scheduler,
which is responsible for finding cost-efficient cuts of execution
plans between Edge and Cloud.

A. Design principles

Planner has been designed according to the following three
principles:

1) A transparent top-down approach: Streaming applica-
tions are submitted by users unchanged to the SPEs. The
latter translate them into streaming graphs (execution plans)
that Planner intercepts and divides between Cloud and Edge.
Therefore, Planner is fully transparent for users. As a side
effect, this top-down approach is well suited especially for
Cloud plans, which tend to be more expressive and complex
than the Edge ones, as they leverage many global stateful
operators (e.g., window based operators).

2) Support for semantic homogeneity: Edge devices are
considered to be homogeneous in terms of semantics of the
computation, i.e., each device provides data to the same group
of sources (A C Sources,¥d € Devices,g~1(d) = A).
This restriction is a drawback of the transparency. Indeed, the

&

Cloud network layer

Cost estimator ‘

SPE Plugins | Flink Plugin 4>{

Abstraction layer ‘

Scheduler

|

Fig. 3: The Planner architecture.

Edge network layer

\

graphs submitted to Planner are limited by the expressivity
of the SPE. And most SPEs are not designed to track the
provenance of the data produced by sources. However, this
limitation does not apply to the former resource model which
supports heterogeneous types of devices.

3) Support for interaction with SPEs: Planner is system
agnostic: the core of the middleware is not aware of the
details of the cloud or edge SPE but only of some abstract
representation. This allows any backend to be easily plugged
to Planner thanks to specific external connectors. A connector
is responsible of the deep interaction with external systems
(e.g exporting plans to Planner and importing and executing
instructions from Planner). Additionally, the richer model of
Planner can be used to improve the computation made by the
SPE by permuting operators in order to reduce the overall
network usage.

B. Architecture overview

Planner takes as input a stream graph expressed in the
“dialect” of an SPE and outputs multiple stream graphs: one
for the Cloud SPE and one per (groups of) Edge device(s).
To enable this behavior, Planner is structured in three layers
(Figure 3): an Abstraction Layer, a Cost Estimator, and a
Scheduler.

1) The Abstraction Layer: translates input stream graph
(coming from the cloud SPE connectors) to an abstract graph
which is an instance of the one presented in Section II-C. How-
ever, some relevant information usually lacks from the cloud
SPE streaming plan (e.g. operator selectivity is not present in
Apache Flink plan). In such a case, we provide default values
based on the operator type (using Table I). Conversely, this
layer also translate an inner abstract representation to cloud
or edge SPE “dialects”.

2) The Cost Estimator: enhances the abstract stream graph
with the network usage of the streams. This is computed
by applying the model represented in the Equation 2 in a
topological order starting from the sources. It is also in charge
of maintaining the transmission costs of the links between
Edge and Cloud (in the current implementation we assume a
constant transmission cost).

3) The Scheduler: selects which part of the stream graph
should be deployed to the Edge in order to minimize the

overall cost of the placement by applying the optimization
presented in Section IV-B. Moreover, it restricts the placement
constraints (see Equation 5) in order to process each Edge
device independently.

Algorithm 1 Placement algorithm for an Edge device d
Require: S =g 1(d)

1. Current < S

2: Opened < |J {x € Succ(s) | Pred(x) C Current}

seS
3: Closed < S
4: while Opened # @ do
5: Pick u in Opened
6: Let H the subgraph of G induced by CurrentU {u}
7
8
9

if H}=C, then
Current < Current U {u}

Applicants < {x € Succ(u) | Pred(z) C
Current} \ Sinks

10: Opened <+ Opened U Applicants \ Closed

11: end if

122 Opened < Opened \ {u}

13: Closed < Closed U {u}

14: end while

15: Border <— N(Current) \ Current

16: F' is the subgraph of G induced by Border U Current

return a minimum (S, Border)-cut in F

We use a two-phase approach, as shown in Algorithm 1.
Firstly (lines 4-14), we do a traversal of the graph and extract
the maximal subgraph that can be placed on an Edge device
with respect to the constraint satisfaction. C'urrent denotes
the set of operators that will be moved to the device d. Note
that if a data source has no successor in Current, then it will
remain in the Cloud. Moreover, Current verifies:

Pred(Current) C CurrentAH |= CyACurrentnSinks = @

(N
where Pred(o) is the set of the predecessors of 0 in G5 and H
is the subgraph of G, induced by Current. Opened denotes
the operators to process such that Vo € Opened, Pred(z) C
Current. Closed denotes the operators that have been pro-
cessed.

Secondly, we compute a minimum (S, Border)-cut (using
the StoerWagner algorithm [32]) where Border denotes the
external neighbours of C'urrent operators. In the implemen-
tation (unlike the model) we do not limit the computing power
of an edge device ¢ since refining the resources needed to run
an operator would require to analyze arbitrary UDFs using
static analysis or online profiling.

Let us discuss the optimality of the previous algorithm
with respect to the local placement problem (see Equation 5),
depending on the nature of the constraint. If C, does not
encode any notion of capacity of the Edge devices (for instance
the constraint could be: ”the operator is locally-replicable” or

dWe assume that an edge device can compute the subgraph of operators that
Planner sends to it; in practice this graph is small without complex operators.

Fig. 4: The source produces taxi ride items then they are
filtered in order to get statistics on the rides in New York
city (e.g., rides that have not started, rides taking too much
time) and eventually stored in a Kafka topic.

“the Edge SPE cannot run this kind of computation”) then
this algorithm gives an optimal placement by definition of
min-cut. Otherwise, if some capacity constraint is encoded
in the constraint (e.g., maximun memory consumption), there
is an underlying knapsack problem. One way to improve this
algorithm is to refine the selection of w (line 4).

The complexity 7'(n) of the algorithm does not depend on
the number of Edge devices and it is defined as O(n?logn +
na(n) + nm) where n is the number of operators, m is the
number of streams and «(n) denotes the complexity of the
constraint satisfaction®. In practice, the number of operators
is small (from tens to a few hundreds) and stream graphs are
commonly sparse because most of the operators have an input
(and output) arity of one or two.

In order to process all the devices, we simply apply the
former algorithm for each device. This naive approach leads
to a complexity of O (|Devices|* T (n)). Therefore, it is
linear on the number of devices (which can reach several
millions). However, we can refine the previous algorithm, in
order to scale more, by grouping devices and by applying
the Algorithm 1 for each group. Grouping should be done
according to device nature, i.e, a group of connected cars
and a group of connected thermometers. More formally, a
group is the set of devices that share the same g~!(d)).
Finally, if the characteristics (e.g., computer power) of the
devices in the same group are not close enough, we can use
a hierarchical structure. We thus create subgroups based on
characteristic similarities; the input graph of a subgroup is the
output stream graph of its parent group. Eventually, Planner
can be decentralized by spanning an instance of Planner per
bunch of (groups of) devices and each of this instance have a
copy of the full stream graph. This can be done since Planner
takes advantage of the local placement problem (Eq. 5) where
(group of) devices can be processed independently.

VI. VALIDATION

A. Experimental setup

We emulate a hybrid Cloud and Edge platform on the
Grid’5000 testbed. Cloud nodes are located on the paravance
cluster in Rennes and Edge devices on the graphene cluster
in Nancy. Cloud nodes are composed of 2 x E5-2630v3 (8
cores/CPU) with 128 GB of memory and they are connected
to the network by 2 x 10 Gbps links. Edge devices run on
one core of an Intel Xeon X3440 with 16 GB of memory and

“We can obtain a(n) = O(n) with simple constraints expressing comput-
ing power or memory limitations.

Fig. 5: The source 1 produces
taxi ride items and the source
5 taxi fare ones. This workflow
computes the set of well-formed
night rides in NY city and each
ride is joined with its fare (by
operator 8).

Fig. 6: This benchmark
calculates every 5 min-
utes popular areas where
many taxis arrived or de-
parted in the last 15 min-
utes.

connected to network by 1 Gbps links. For our experiments
we have used up to 10 nodes and a total of 80 cores.

To emulate the high latency WANSs connecting Edge and
Clouds we use fc [6] to vary latency (with nefem) and the
available bandwidth (with #bf) until reaching the desired qual-
ity of service. Edge nodes on steroids (i.e., the least powerful
nodes in the Grid’5000, yet quite powerful for an average Edge
device) should not impact the validation since the network is
constrained with 7c and we ignore performance capacity during
placement (we only target expressiveness constraints).

For the validation we use Apache Flink as the Cloud SPE
and Apache Edgent as the Edge SPE. We have chosen this
Edgent-Flink duo for simplicity of integration since both are
written in Java and are based on arbitrary UDF-operators.
We use one cloud node for Flink (with one jobmanager
and one taskmanager), one cloud node for the ingestion
system (one Apache Kafka broker). We deploy five Edgent
devices on distinct Edge nodes and we collocate Planner with
the jobmanager. Interconnection with Planner is done via a
dedicated Flink connector collocated with the jobmanager and
five Edgent connectors hosted in each Edge node.

B. Experimental protocol

We ran two real-life application dataflows presented in
Figure 4 and Figure 5 where the red arrows represent the cut
found by applying Algorithm 1. They rely on the / of the
New York City Taxi dataset [21] composed of data containing
fares (1.5M entries) and rides (3M entries) description for
15K distinct taxis, with a total size of about 10GB. The rides
dataset contains especially the start location, the stop location,
the start time, the end time and the fares dataset contains in
particular the tip, the toll and the total fare of a ride. For
each dataflow, we compare two deployment scenarios where

Ihttp://training.data- artisans.com/exercises/taxiData.html

B Flink only
=3 Planner

400

300

200

Network usage (MB)

100

wl w2 w3

Fig. 7: Network usage over links between Edge and Cloud
induced by application execution where w1 denotes the work-
flow in Figure 4, w2 denotes the workflow in Figure 5 and
w3 the one of Figure 6. The red bar corresponds to the whole
computation in Cloud and the tan one corresponds to the usage
of Planner.

raw data are hosted in the Edge devices. For the first one, the
whole computation is processed on Cloud with Flink (with
data served from the Edge using Kafka). For the other one,
Planner is used to deploy part of the computation to the Edge
devices.

C. Results

In our first series of experiments, we measured the reduction
in terms of transferred data with our approach. As seen in
Figure 7, Planner is able to reduce the network usage over links
by 51% for the workflow w1l (Figure 4) and by 43% for the
workflow w2 (Figure 5). Our Cost Estimator is mainly based
on the selectivity and filter operators have the lowest selectivity
(sinks excepted). Therefore, the scheduler will place as much
filter operators as possible on the Edge. However, even for one
of the worst cases for Planner (the workflow w3 in Figure 6,
where there is global stateful operator - here a time window -
near the sources and a very light preprocessing - here a light
clean of data), our approach is still able to reduce the network
usage compared to vanilla Flink.

In the second series of experiments, we measured the reduc-
tion of the end-to-end processing latency (Figure 8) and of the
makespan (Figure 9) with our approach when the bandwidth
between Edge devices and Cloud varies. As seen in both plots,
Planner gains over vanilla Flink (all execution in the Cloud)
is smaller than for the network usage because of the lack of
inner optimizations in Edgent. For instance in Flink, operators
are grouped in the same logical operator (and then in the same
thread) in order to optimize computation. Moreover, we can
observe that the gain brought by Planner is better for w2 than
w1 for the latency and, inversely, better for w1 than w2 for the
makespan. This is due the fact that there is a connect operator
linking fares and rides according to the faxi id furthermore
it also explains the outlying results (standard deviation) in
Fig. 8. Minimizing the network usage between Edge and Cloud

100

w2-flink
—— wl-flink
5 80 —+— w2-planner
E’ —<— wl-planner
& 60
©
°
&
P 40
o
&
20
0

200 400 600 800
Edge-Cloud bandwidth(kbit/s)

1000

Fig. 8: End-to-end processing latency: the green and red lines
correspond to the whole computation in the Cloud and the
blue one corresponds to the Planner approach.

reduces the congestion of this operator and, consequently,
single rides (or fare) stalls less and eventually the latency gain
is greater. Conversely, Planner performs better on wl than
w2 for the makespan because the network usage decreases
more for the first one. Overall, we notice an average of 15%
improvement for the makespan and the latency, proportional
with the bandwidth between the Edge and Cloud.

VII. DISCUSSION
A. Assumptions

1) Communication bottleneck: We focus on the network as
the main bottleneck of stream processing over Edge and Cloud
systems, starting from the time skew between the generation
time and the processing time of events [14]. Nevertheless, we
also consider other limitations of the overall performance (e.g.,
power, memory, computing of an Edge device). This is the role
of the constraints introduced in Section IV-A.

2) Cloud power: We consider that systems deployed on the
Cloud are able to run the whole computation. For common
use cases, this assumption holds. However, there are some
situations where one datacenter can not run the whole process
(e.g. more than 80 datacenters are involved in the processing
of the data produced by MonALISA [28] monitoring ALICE
[12] one of the four experiments of the LHC). In this case,
one can use a geo-distributed cloud middleware for stream
processing (like SpanEdge [30]) as a cloud SPE for Planner.

3) Additional metrics: Planner has been tailored to focus
on the optimization of network usage and, thus contributing to
the makespan reduction.. However, it can also optimize other
metrics (e.g. the throughput of the application) by careful
selection of a convenient definition of the transmission cost
Wres (defined in Section III-A) for an item.

B. How to overcome limitations

1) Homogeneity of IoT devices: Each IoT device, indepen-
dently of its intrinsic characteristics, will run the same sub-
graph - with distinct datasets) due to the semantic homogeneity
(see Section V-A2). This can be mitigated by letting the user

160
w2-flink
140 —— wi-flink
120 —— w2-planner
—<— w1l-planner
w100
c
©
2 80
[]
©
T 60
40
20
0

200 400 600 800
Edge-Cloud bandwidth(kbit/s)

1000

Fig. 9: Makespan: the green and red line correspond to the
whole computation in the Cloud and the blue one corresponds
to the Planner approach.

add optional annotations to the cloud SPE workflow in order
to specify which group (i.e., g(0)) of devices provides raw
data to a source operator. Moreover, annotations can also be
used to distinguish non Edge sources (e.g., a DB connector).
Finally, the transparency can be preserved with some SPEs by
encoding annotations in operator names or uids (if available).

2) Graph optimization: Planner does not do any execution
plan optimization (e.g. [26] [25]), contrary to Apache Flink
for instance. A plan optimization is a rewriting of the stream
graph in order to improve its shape for further processing
(for instance, by pushing filter operators near the sources).
Moreover, stream graph rewriting is mainly a matter of finding
operators that commute using static analysis (distinct for each
SPE). Therefore, the static analysis should be done before the
Abstraction Layer and the rewriting should be combined with
the Cost Estimator.

3) Increased model accuracy: One point of improvement is
the accuracy of the cost model and particularly the measure of
operators metrics (e.g., selectivity or record rate of sources).
This is due to the unknown behaviour of operators. However,
we can enhance the accuracy of the record rate of a source
by refining the measurements at runtime with an embedded
probe. The same approach can be applied in order to improve
the accuracy of the selectivity of operators.

C. Take-aways

1) What Planner is: Planner is a streaming middleware ca-
pable of automatically and transparently deploying parts of the
computation across Edge and Cloud resources. Furthermore,
it is modular enough to be plugged with any combination of
Cloud and Edge SPEs via external connectors.

2) On the generality of the Planner approach: The com-
bination of Cloud and Edge SPEs on which Planner works is
only limited by their expressiveness. For instance, an UDF-
based Cloud SPE cannot be plugged with a non UDF Edge
SPE since the framework will not be able to run the exported
operators. But slight discrepancy of expressiveness (e.g., some
small subset of non-supported operators) can be tolerated
thanks to the constraints introduced in Section IV-A.

3) What Planner is not: Planner does not deploy streaming
systems on Edge device or in the Cloud (as it expects the SPEs
to be already deployed) and it is neither intended to place
operators at the granularity of physical nodes (this is delegated
to the SPEs, which schedule the received sub-graphs). Besides,
Planner is not yet preserving consistency. However, with the
right combination of Cloud SPEs, Edge SPEs and ingestion
systems, some levels of consistency could be guaranteed (for
instance, exactly once using Kafka and Flink). Also, Planner
does not ensure any data persistence. Indeed, by moving
computation to Edge devices parts of the data will never reach
the ingestion system and therefore will not be persistently
stored.

VIII. RELATED WORK

We divide the state-of-the-art into three categories: 1) classi-
cal stream processing systems, 2) systems for hybrid process-
ing and 3) works on general stream processing optimizations.

A. Stream Processing Engines

1) Edge analytics frameworks: Edge analytics frameworks,
like Apache Edgent [4], Apache MiNiFi [5], are used to
execute a data stream application on an Edge device. They
are optimized to do local light-weight stream processing. Such
frameworks commonly export results to an ingestion system,
like Apache Kafka [27] or RabbitMQ [33].

2) Cloud SPEs: A common approach to execute a stream
graph is to use SPEs that will take care of the deployment of
the computation to many physical nodes, their management
and their fault-tolerance. Several SPEs exists (e.g, Apache
Flink [19], Apache Spark [34], Amazon Kinesis [7], Google
Dataflow [8]). They are mainly designed and optimized in
order to run in the Cloud and particularly in a single data-
center [30].

B. Hybrid approaches

A new paradigm has emerged which combines Cloud-based
and Edge analytics in order to do real-time processing at
the Edge (for some timely but inaccurate results) and offline
processing in Cloud (for late but accurate results) inside the
same application.

Several companies are providing solutions (e.g, Azure
Stream [9], IBM Watson IoT [10], Cisco Kinetic [11]) that
should ease the deployment of the stream processing on Edge
devices and to interconnect with their own Cloud-oriented
SPEs. However, they are provided “as a-service” and the user
is dependent of the companies’ platforms.

SpanEdge [30] focuses on unifying stream processing over
geo-distributed data-centers (between a main datacenter and
several near-the-edge ones) in order to take advantage of
user and data locality to reduce the network cost and the
latency. They are placing computations on distinct data-centers
whereas we are targeting locality-aware placement on edge
devices.

The authors of [23] also use a weighted stream graph but
they try to find the optimal solution whereas Planner uses an
heuristic placement that can be efficiently done (see V-B3).

Echo [31] generalizes data stream processing on top of
an Edge environment. It maps operators onto Cloud nodes
and Edge devices in order to take advantage of the unused
computing power available in the Edge. Unlike Echo, we
are using a locality-aware placement approach in order to
minimize communication cost. Furthermore, the placement of
Echo works at the granularity of nodes (e.g., it bypasses the
placement strategies of the SPEs and their potential optimisa-
tions) whereas Planner places stream sub-graphs to systems,
(leveraging the SPEs strategies to place operators onto nodes
and benefit of their inner optimizations).

C. Optimizing stream processing

There are two orthogonal approaches (commonly applied in
sequence [15]) that try to optimize the processing of a stream
graph: graph rewriting and graph scheduling.

1) Graph rewriting: rewrites the input plan in an equivalent
one that should improve the performance of the computation
(e.g. [26], [25]). This job is mainly done by permuting
operators and by replicating them in order to improve the
parallelism.

2) Placement optimization: This focuses on the mapping
of the operators to physical nodes. A lot of modeling and
algorithmic work has been accomplished in the context of [29]
[23] [20] [17]. This kind of optimizations are not performed
(and neither intended to be) by Planner, which in turn delegates
fine grained placement to other systems.

IX. CONCLUSION

In this paper, we address a challenging problem for hybrid
stream processing on infrastructures combining Cloud and
Edge components in a shared system. With this paradigm,
computation placement is usually done manually. Besides be-
ing a burden for users this can lead to sub-optimal computation
placement with respect to network cost between the Edge and
the Cloud.

We argue for a uniform approach in order to leverage a
single, transparent and automatic execution plan on such a
hybrid platform. We provide a model of a hybrid infrastructure
and a generic model of the network cost over Edge and Cloud
links. From them, we define a plan placement problem in
order to minimize the makespan and the network cost. We
restrict this placement into a local one which processes (groups
of) agents independently in order to improve scalability.
Then we introduce a new raw-data locality-aware optimization
which preserves the semantics of the computation and we
derive a scheduler. As a proof of concept we implement
Planner, a streaming middleware that automatically partitions
the execution plans across Edge and Cloud. We evaluate
our work by setting up an hybrid architecture on Grid’5000,
where we deploy Planner with Apache Flink and Apache
Edgent. By running real-world micro-benchmarks, we show
that Planner reduces the network usage by more than 40%
and the makespan by 15%

As future work, we plan to add optional workflow anno-
tations and then enable support for heterogeneous sources.

Moreover, we plan to introduce a new optimization (based
on a weak equivalence of computation that guarantees not to
introduce new behaviours) in order to export some stateful
operators (e.g. reduce). Finally, we plan to switch from static
placement to an adaptive one where metrics about operators
(e.g. selectivity) and infrastructure (e.g. average throughput)
are refined at runtime in order to increase the accuracy of
the cost model and to periodically trigger the plan placement
computation.

X. ACKNOWLEDGEMENTS

This work is supported by the ANR OverFlow project
(ANR-15-CE25-0003).

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.1r).

REFERENCES

[1] http://storm.apache.org/. [Online; accessed 9-August-2018].

[2] http://samza.apache.org/. [Online; accessed 9-August-2018].

[3] https://pulsar.incubator.apache.org/. [Online; accessed 9-August-2018].

[4] http://edgent.apache.org/. [Online; accessed 13-July-2018].

[5] https://nifi.apache.org/minifi/. [Online; accessed 13-July-2018].

[6] https://github.com/shemminger/iproute2. [Online; accessed 9-August-
2018].

[7] https://aws.amazon.com/kinesis/. [Online; accessed 13-July-2018].

[8] https://cloud.google.com/dataflow/. [Online; accessed 13-July-2018].

[9] https://azure.microsoft.com/en-us/services/stream-analytics/. ~ [Online;

accessed 13-July-2018].

https://www.ibm.com/internet-of- things.

2018].

https://www.cisco.com/c/fr_fr/solutions/internet- of-things/iot-kinetic.

html. [Online; accessed 13-July-2018].

Kenneth Aamodt, A Abrahantes Quintana, R Achenbach, S Acounis,

D Adamova, C Adler, M Aggarwal, F Agnese, G Aglieri Rinella,

Z Ahammed, et al. The alice experiment at the cern lhc. Journal of

Instrumentation, 3(08):S08002, 2008.

Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Chris-

tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and

Stan Zdonik. Aurora: a new model and architecture for data stream

management. the VLDB Journal, 12(2):120-139, 2003.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel

Mills, Frances Perry, Eric Schmidt, et al. The dataflow model: a practical

approach to balancing correctness, latency, and cost in massive-scale,

unbounded, out-of-order data processing. Proceedings of the VLDB

Endowment, 8(12):1792-1803, 2015.

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-

Christoph Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus

Leich, Ulf Leser, Volker Markl, et al. The stratosphere platform for

big data analytics. The VLDB JournalThe International Journal on Very

Large Data Bases, 23(6):939-964, 2014.

Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl,

and Daniel Warneke. Nephele/pacts: a programming model and execu-

tion framework for web-scale analytical processing. In Proceedings of

the 1st ACM symposium on Cloud computing, pages 119-130. ACM,

2010.

[10] [Online; accessed 13-July-

[11]

[12]

[13]

[14]

[15]

[16]

[17] Benjamin Billet and Valérie Issarny. From task graphs to concrete
actions: a new task mapping algorithm for the future internet of things.
In MASS-11th IEEE International Conference on Mobile Ad hoc and
Sensor Systems, 2014.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13-16. ACM, 2012.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015.

Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo
Nardelli. Optimal operator replication and placement for distributed
stream processing systems. ACM SIGMETRICS Performance Evaluation
Review, 44(4):11-22, 2017.

B Donovan and DB Work. New york city taxi trip data (2010-2013),
2014.

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber,
and Etienne Riviere. Edge-centric computing: Vision and challenges.
ACM SIGCOMM Computer Communication Review, 45(5):37-42, 2015.
Rajrup Ghosh and Yogesh Simmhan. Distributed scheduling of event
analytics across edge and cloud. arXiv preprint arXiv:1608.01537, 2016.
Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni, and Pras-
ant Misra. Event processing across edge and the cloud for internet of
things applications. In Proceedings of the 20th International Conference
on Management of Data, pages 101-104. Computer Society of India,
2014.

Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert
Grimm. A catalog of stream processing optimizations. ACM Computing
Surveys (CSUR), 46(4):46, 2014.

Fabian Hueske, Mathias Peters, Matthias J Sax, Astrid Rheinlénder, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. Opening the black
boxes in data flow optimization. Proceedings of the VLDB Endowment,
5(11):1256-1267, 2012.

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB,
pages 1-7, 2011.

JTosif Legrand, C Cirstoiu, C Grigoras, R Voicu, M Toarta, C Dobre,
and H Newman. Monalisa: An agent based, dynamic service system to
monitor, control and optimize grid based applications. 2005.

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopou-
los, Matt Welsh, and Margo Seltzer. Network-aware operator placement
for stream-processing systems. In Data Engineering, 2006. ICDE’06.
Proceedings of the 22nd International Conference on, pages 49-49.
IEEE, 2006.

Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and
Vladimir Vlassov. Spanedge: Towards unifying stream processing over
central and near-the-edge data centers. In Edge Computing (SEC),
IEEE/ACM Symposium on, pages 168—178. IEEE, 2016.

Sarthak Sharma, Prateeksha Varshney, and Yogesh Simmhan. Echo: An
adaptive orchestration platform for hybrid dataflows across cloud and
edge. In Service-Oriented Computing: 15th International Conference,
ICSOC 2017, Malaga, Spain, November 13—16, 2017, Proceedings,
volume 10601, page 395. Springer, 2017.

Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal
of the ACM (JACM), 44(4):585-591, 1997.

Alvaro Videla and Jason JW Williams. RabbitMQ in action: distributed
messaging for everyone. Manning, 2012.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J Franklin, et al. Apache spark: a unified engine
for big data processing. Communications of the ACM, 59(11):56-65,
2016.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]
[33]

[34]

