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Abstract—Malleability is the property of an application to be
dynamically rescaled at run time. It requires the possibility to
dynamically add or remove resources to the infrastructure with-
out interruption. Yet, many Big Data applications cannot benefit
from their inherent malleability, since their colocated distributed
storage system is not malleable in practice. Commissioning or
decommissioning storage nodes is generally assumed to be slow,
as such operations have typically been designed for maintenance
only. New technologies, however, enable faster data transfers.
Still, evaluating the performance of rescaling operations on a
given platform is a challenge in itself: no tool currently exists for
this purpose.

We introduce Pufferbench, a benchmark for evaluating how
fast one can scale up and down a distributed storage system
on a given infrastructure and, thereby, how viably can one
implement storage malleability on it. Besides, it can serve to
quickly prototype and evaluate mechanisms for malleability in
existing distributed storage systems. We validate Pufferbench
against theoretical lower bounds for commission and decommis-
sion: it can achieve performance within 16% of them. We use
Pufferbench to evaluate in practice these operations in HDFS:
commission in HDFS could be accelerated by as much as 14
times! Our results show that: (1) the lower bounds for commission
and decommission times we previously established are sound
and can be approached in practice; (2) HDFS could handle
these operations much more efficiently; most importantly, (3)
malleability in distributed storage systems is viable and should
be further leveraged for Big Data applications.

Index Terms—Distributed Storage System Malleability, Bench-
mark, Pufferbench.

I. INTRODUCTION

Malleable applications or services, supporting the possibility
to be dynamically rescaled at runtime, are ideal for an execu-
tion on cloud platforms. The core principle of cloud computing
is to enable users to quickly get as many resources as they need
and to release some when they are not needed. Thus, users
have the opportunity of constantly optimizing performance
and cost with respect to changing workloads. This is typically
refered to as cloud elasticity. When taking a closer look at how
it is applied in practice today, it can be noticed that in most
cases cloud users have the possibility to rent a fixed number
of resources for a certain of time specified in advance, then
they run their service or application; in practice, when they
need more resources, they often have to stop their service,
rent more resources, then redeploy the service on the new
configuration. That is, there is still a gap to fill to adequately

support malleable applications and services through dynamic
resource rescaling without service interruption.

To illustrate this limitation, let us focus on Big Data
frameworks such as Hadoop or Spark, which are malleable
by design. They often however rely on a distributed storage
system (DSS) that is not malleable. This lack of malleability
leaves the user with two options: 1) deploy the DSS in a
static set of resources that is separate from those running
the data processing tasks, which prevents the application from
performing any local data accesses; 2) deploy the DSS within
the application’s resources on a static set of resources, which
prevents any kind of malleability altogether.

The reason why malleability has not been widely adopted
for DSS is that it involves migrating large amounts of data,
which is potentially long. A DSS generally has to ensure three
properties when malleability is used: 1) no data can be lost,
2) fault tolerance must be guaranteed, and 3) the placement of
data across the storage nodes should be balanced. Thus, in gen-
eral, DSS malleability is assumed to be too slow for practical
use and is traditionally reserved for maintenance purposes.
Yet, today, thanks to many technology improvements, data
transfers are not as slow as they used to be.

To know whether DSS malleability would be useful for a
given workload or on a given platform, one should be able to
estimate the duration of both commission (adding nodes) and
decommission (releasing nodes) operations. Indeed, having
quick operations for the malleability is essential to benefit
from the malleability. Quickly decommissioning unused nodes
reduces the overall cost of running an application, while
quickly commissioning nodes allows the amount of resources
to dynamically adjust to a volatile workload.

In previous work [1], [2],1 we have provided theoretical
lower bounds for the duration of rescaling operations (the com-
mission and decommission operations). These lower bounds
are useful because they indicate whether the malleability
would be too slow on a given platform (i.e., in the case
these lower bounds are too high from a practical perspective).
However, if the lower bounds are acceptable, it is still difficult
to know in practice how fast malleability can really be

1The lower bound for the duration of the decommission has been published
and is available in [1]. A research report concerning the lower bound of
the commission is available [2]. A journal paper with all results has been
submitted and is under review.



supported on a specific platform. For this, one must deploy
an actual DSS, determine an efficient configuration for the
rescaling operations, generate data, and record the duration
of the operations. Moreover, the obtained results may not
be accurate since rescaling operations implemented in current
DSS are often not optimized for speed but to limit their impact
on application execution.

In this paper, we address the problem of evaluating mal-
leability by introducing Pufferbench,2 a modular benchmark
developed to efficiently measure the duration of commission
and decommission operations on a given platform. To this
purpose, Pufferbench emulates a DSS, executing only the
inputs and outputs needed for a rescaling operation.

Pufferbench has been designed with two goals in mind:

1) Evaluate the viability of DSS malleability on a given
platform. Pufferbench provides the duration of rescaling
operations on a platform, regardless of the DSS that
would use these operations.

2) Help optimize migration mechanisms in order to im-
prove the malleability of a specific DSS. Pufferbench
is independent from any DSS and thus can be used to
quickly prototype and test custom data migration mech-
anisms (algorithms, network transfers, storage manage-
ment) on a simpler code before implementing them into
a real DSS.

In the second case, Pufferbench also verifies the correctness
of the custom migration algorithms by checking that the
postconditions (number of replicas, data distribution, etc.) are
satisfied.

First, we validate Pufferbench against the lower bounds
established in our previous works. According to our evaluation,
Pufferbench achieves performances that are on average only
16% slower than the lower bound for the decommission and
7% for the commission. From these results, we also conclude
that the previously determined lower bounds are sound.

In a second set of experiments we illustrate the usefulness
of Pufferbench by using it to measure how fast the rescaling
operations of Hadoop’s distributed storage system (HDFS)
could be if they were optimized for speed. Experiments show
that even if the performance of Pufferbench varies greatly
depending on the operation (commission or decommission)
and the type of storage (in RAM or on disk), it is always
faster than HDFS. This suggests that the algorithms used for
commission and decommission in HDFS can substantially be
improved. In particular, for the commission operation, HDFS
can be sped up by as much as a factor 7.

The remainder of this paper is organized as follows. In
Section II we introduce the context and the related work.
Pufferbench is presented in Section III and validated in Sec-
tion IV. In Section V we detail how we used Pufferbench
to measure how fast the rescaling operations of HDFS could
be, and we present the experimental results in Section VI. We
discuss the results in Section VII and conclude in Section VIII.

2Pufferbench is available at https://gitlab.inria.fr/Puffertools/Pufferbench

II. CONTEXT

Malleability has gained interest because it improves re-
source utilization on shared cluster-based platforms while
saving energy and money. Many frameworks provide support
for malleability of computing resources [3], [4], [5]. Big Data
processing frameworks such as Hadoop [6] and Spark [7] are
malleable: new computation nodes can be added and removed
without having to shut down the framework. However, the lack
of malleability of the underlying storage system greatly limits
the overall malleability of the application. In Hadoop’s case,
the underlying HDFS storage system is not malleable; thus the
malleability of Hadoop can hardly be used in practice. The
reserved cluster cannot be smaller than the size of the HDFS
cluster; thus, shrinking the Hadoop deployment less than this
size is pointless since HDFS and Hadoop are sharing the
same nodes. Conversely, the deployment cannot grow too large
without incurring a high load on HDFS and without losing
the benefits of data locality. This limitation is not specific to
HDFS. DSS need to be able scale to up and down to ensure
consistent performance especially when the applications using
them are rescaled.

A. Related Works

Most distributed and parallel file systems such as Ceph [8]
or HDFS [9] include both commission and decommission
operations, mainly for maintenance purposes. Their rescaling
operations are optimized mostly to reduce their impact on
the performance of the applications, rather than to reduce the
duration of the operation (which can be understood).

A few DSS are built around a restricted form of malleability:
they have a pool of machines available but can shut some of
them down to save energy. Three systems have been developed
with this strategy: Rabbit [10], Sierra [11], and SpringFS [12].
They have a common limitation: the shutdown nodes are not
fully released. They host data on their permanent storage drive
that will be updated when they rejoin the storage cluster, and
they must be available for fault tolerance.

The SCADS Director [13] is a resource manager designed
to ensure service-level objectives. It chooses to add or remove
nodes, where and when to move data, and the number of repli-
cas each file needs. The SCADS Director adds malleability to
the SCADS file system [14]. Its authors have focused their
evaluation on the point of view of applications that use their
storage system. They evaluate whether their system is able
to follow the workload to scale up and down and whether
performing data migration has an impact on the service-level
objectives. They do not, however, evaluate the performance of
the rescaling operations themselves. Their goal is to be the
least impactful to users, not necessarily the fastest.

Lim, Babu, and Chase [15] propose a resource manager
based on HDFS. This resource manager chooses when to
add and remove nodes and the parameters of the rebalancing
operations. However, it simply uses HDFS as it is and does
not focus on its efficiency. Both [13] and [15] focus on ways
to leverage malleability rather that on improving it. They are
therefore orthogonal and complementary to this work.



B. Challenge

The first step towards implementing real, efficient malleabil-
ity in existing or in future DSS is to demonstrate that it will
be fast enough to be used in practice. It is difficult, however,
to evaluate the performance of data migration operations on
a given platform. In our previous work [1], [2], we provided
lower bounds for the duration of these operations; however,
these lower bounds are based on strong hypotheses: uniformity
of the hardware, perfect load balancing, absence of latency,
etc. These hypotheses are rarely met in practice. To accurately
measure the duration of the rescaling operations, an evaluation
on the actual target platform is needed.

The process of evaluating the performance of malleability
with a real DSS is time consuming and not necessarily
accurate: the rescaling operations of existing DSS may not
be optimized for speed nor for the needs of the workload and
the platform.

To address these needs, we introduce Pufferbench, a bench-
mark specifically designed to improve the process of evalu-
ating storage malleability on cluster-based platforms. Puffer-
bench is not a distributed file system, nor does it rely on a
specific one.

III. PUFFERBENCH

A. Overview of Pufferbench

Pufferbench is implemented as an MPI application that
emulates the rescaling operations of a DSS by doing all I/O
operations that are needed during such a rescaling operation:
data accesses to/from a local storage device (which may be
local memory) and across the network. It is a master/workers
application with MPI rank 0 acting both as master and worker
and all other ranks acting as workers.

Its execution involves four steps.
1) Migration planning: Pufferbench’s master node applies

the migration algorithm chosen in its configuration file to
compute the sequence of I/O operations (writing/reading
to/from local device, sending/receiving to/from other
nodes) that each node needs to execute to complete the
migration. The trace of I/Os is then sent to worker nodes
to be replayed.

2) Data generation: All nodes running Pufferbench gener-
ate data on their local storage device to be able to read
from their local storage.

3) Execution: All Pufferbench nodes execute their respec-
tive sequence of I/O, recording timing and statistics. In
particular, the overall duration of the rescaling operation
is measured.

4) Statistics aggregation: Statistics collected by each node
are gathered by the master node and output to the user.

While executing the data migration, Pufferbench makes sure
that the following properties are met:

1) No data is ever lost.
2) The data replication factor is the same before and after

the migration.
3) The distribution of data across nodes remains balanced.
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Fig. 1: Components of Pufferbench and their interactions.

Hence Pufferbench not only evaluates the performance of
rescaling operations, it also assesses the correctness of the
migration algorithm.

B. Customizable Components

In order to match as many platforms and systems as
possible, Pufferbench has been designed with modularity in
mind. With a simple change in its configuration file, the main
components of the system can be switched for custom ones.

1) Master node components: Three of these components
are used exclusively by the master node (Fig. 1). In order of
action, they are the following.

1) The MetadataGenerator generates the basic metadata
of the dataset initially present on the emulated storage
system. This set of metadata takes the form of a set
of pairs (object id, size). Tuning this component en-
ables choosing between various data sizes (e.g., many
small objects, few large objects, random size uniformly
distributed across a range, gaussian). By changing this
component for a custom one, users can plug in data sizes
that best match their workload.

2) The DataDistributionGenerator takes this metadata
set as input and assigns each object to as many vir-
tual storage nodes as necessary to meet the required
replication factor. The output of this component is a
data distribution map associating each virtual node id
with the list of (object id, size) that this virtual node
manages. Two implementations of this component are
provided by default: the first one places data randomly
across the nodes, ensuring only the replication factor; the
second one balances the load across the nodes. Changing
this component enables matching a particular DSS’s
placement policy or evaluating new ones.

3) The DataTransferScheduler is the core of Pufferbench.
It takes as input the previously generated placement map
as well as the desired migration (e.g. “commissioning
3 nodes”) and produces a sequence of I/O operations
(read, write, send, receive) that each virtual node has to
replay in order to accomplish this migration. The default
DataTransferScheduler redistributes the data randomly
but maintains a level of load balancing and carefully
chooses the nodes reading and sending the data in
order to mitigate the bottlenecks of the operations:
receiving and writing the data for the decommission,
and reading the data for the commission. Customizing
the DataTransferScheduler allows the user to test new



migration algorithms and evaluate their performance
before implementing them in a real DSS.

Those components are responsible for the simulation of
various DSS. For example, one can simulate HDFS with a
MetadataGenerator that generates mostly chunks of 128 MiB
and a DataDistributionGenerator that will replicate the chunks
three times and place them onto random nodes, as HDFS does.

In addition to these three components, the master node
includes a DataDistributionValidator component that can-
not be customized. This component takes as input a data
distribution map that represents the placement of objects on
the nodes. From this map, it checks that the data migration
is valid, that is, that it respects the requirements listed in
Section III-A. This validation is done twice in order to control
the data distribution maps: before and after the execution of the
DataTransferScheduler. Running the DataDistributionValidator
twice ensures that the customized DataDistributionGenerator
and DataTransferScheduler are both satisfying their require-
ments.

To evaluate the validity of a particular migration algorithm,
Pufferbench can be executed on a single node and stop at
the validation step instead of effectively replaying the I/O
operations.

2) Worker nodes components: Three components are used
by all nodes (including the master) to replay the I/Os.

1) The Storage component makes the interface with the
local backend storage device by providing the read
and write functions from/to the storage device. By
default we provide a Storage component that stores its
data in memory, a Storage component that stores its
data in a local disk drive, and a Storage component
that also stores its data in a local disk drive but ignores
the file system cache. Users can plug their own Storage
component to, for example, use the custom interface of
a particular backend device.

2) The Network component provides the send and
receive methods used to transfer object between
nodes. Pufferbench’s default Network component re-
lies on MPI’s nonblocking send and receive functions
(MPI_Isend and MPI_Irecv) so that these opera-
tions can complete in parallel with other operations. By
default, up to 500 send/receive can proceed concurrently,
each of them transferring at most 8 MiB, although these
figures can be configured. Once again, users can plug
their own Network component, for example to use other
network interfaces, or RDMA.

3) The IODisptacher component takes as input the se-
quence of I/O operations received from the master’s
DataTransferScheduler component and dispatches the
operations to the Storage and Network components for
execution.

C. Using Pufferbench to Evaluate a Platform

Pufferbench can be used with its default components to
evaluate the potential for storage malleability on a given
platform. This can be done with a simple default configuration,

which uses the migration algorithms described in Section IV.
Pufferbench replays all I/Os needed to commission or decom-
mission nodes on the target platform. The duration of each
operation is recorded along with various other metrics.

Since the measurements are done on a real platform, the
recorded performance is reachable by any DSS available on
that platform, provided that DSS is optimized for the rescaling
operations.

Some platforms feature heterogeneous hardware. While the
current version of Pufferbench does not handle such a case,
we plan to add it in the future.

D. Using Pufferbench to Evaluate Data Migration Algorithms

The modularity of Pufferbench allows any user to evaluate
and optimize the algorithms used for the rescaling operations
(commission and decommission). Thus, Pufferbench can easily
be used to optimize and evaluate data migration mechanisms
in an existing DSS without modifying it.

Users can plug in custom algorithms for data migration,
which can replace the default ones provided by Pufferbench.
To this purpose, Pufferbench embeds a component that checks
that the plugged-in algorithm yield a valid migration plan.
In particular, it checks the replication factor of all objects
and evaluates the load balancing of the final distribution by
computing the average, minimum, maximum, median, and
standard deviation of the amount of data held by each node
and the same set of statistics of their number of objects.
These statistics enable the user to check whether the final data
distribution is more, less, or equally load balanced than the
original one.

Moreover, writing commission and decommission algo-
rithms can be done in significantly fewer lines of codes than
in an actual DSS because of the abstraction. For instance,
the commission and decommission algorithms used in the
following section are written in 350 lines of C++ overall.

IV. VALIDATION AGAINST THE LOWER BOUNDS

In this section, we evaluate the performance of Pufferbench
against the lower bounds established for the rescaling opera-
tions in previous works [1], [2].

A. Experimental Setup

All measurements were done on the French Grid’5000 [16]
experimental testbed. Experiments on decommission were
done on the paravance cluster in Rennes, while experiments
on commission were done on the grisou cluster in Nancy. Both
clusters feature the same type of node: Dell PowerEdge R630
with Intel Xeon E5-2630 v3 Haswell 2.40 GHz (2 CPUs/node,
8 cores/CPU), 128 GiB of RAM, and two 558 GiB HDD.
They are all connected with a 10 Gb/s Ethernet network to a
common Cisco Nexus 6000 switch (for paravance) or a Cisco
Nexus 9508 (for grisou).

Pufferbench emulates a DSS that initially hosts 50 GiB
per node. Ten measurements per configuration of Pufferbench
were done. The results are represented by box plots showing
the minimum, the first quartile, the median, the third quartile,
and the maximum duration of the rescaling operation.



B. Evaluation of Pufferbench against the Lower Bounds

The lower bounds [1], [2] for the duration of the rescaling
operations have been built on strong hypotheses, such as an
all-to-all network topology and the absence of latency in disk
accesses. In practice, these hypotheses are not met. The fol-
lowing sections describe to what extent our experimental setup
respects the hypotheses. In order to safely evaluate any result
against theoretical lower bounds, the experimental conditions
should be such that practical constraints only increase (and
never decrease) the duration of the rescaling operations.

1) Hypotheses on the hardware:
• Cluster homogeneity: The cluster should be composed

of identical nodes. In practice, although the clusters
we used are homogeneous, performance variations can
be observed across nodes. For instance, the maximum
bandwidth of the drives while reading varies between
195 MiB/s and 207 MiB/s on the cluster used for the
experiments. The parameters of the lower bound (max-
imum disk read speed, maximum disk write speed, and
maximum network bandwidth) have been set with the
maximum measured values prior to the experiments.

• Ideal network: The theoretical lower bounds ignore the
network latency and the potential interference that can
happen. An all-to-all topology is assumed, with identical
bandwidth between any two nodes. In practice, all the
nodes of our clusters are connected to a common switch
through a 10 Gb/s Ethernet link. Hence this switch may
become a bottleneck.

• Ideal storage backend: The theoretical lower bounds
ignore the latency (seek times of the drives) and assume
that the drives always read and write at their maximum
speed. In practice, seek times and read/write contention
add to the duration of the execution.

Although the theoretical hypotheses are not met, the differ-
ences between the experimental setup and the hypotheses only
increase the duration of the commission and decommission
operations. This ensures that the lower bounds keep their
property of lower bounds even with the relaxed hypotheses.

2) Hypotheses on the components: With the components,
we can make sure that the other hypotheses and objectives of
the lower bounds are met.

The DataDistributionGenerator ensures the other three hy-
potheses of the lower bounds:

• Load balancing: The nodes host the same (or similar)
amount of data.

• Data replication: Each object stored in the cluster is
replicated r times.

• Uniform data distributions: Each set of r distinct nodes
has some data that is replicated only on these r nodes.
The amount of such data should be the same for every
such set.

The DataTransferScheduler, which implements the migra-
tion algorithms, ensures that the following objectives are met
at the end of the rescaling operation:

• No data loss: No data is lost during the operations.
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• Maintained data replication: The replication factor is the
same as the initial one.

• Load balancing: The nodes host the same amount of data.

The last objective, which is to have uniform data distribu-
tion at the end of the rescaling operation, is relaxed since
it is achieved with random data placement. This does not
impact the lower bound in most cases except when, during
the commission, reading from disk becomes the bottleneck
(commission of more than 22 nodes in the following mea-
surements). However, the randomness ensures that the data
distribution generated is close to the objective.

Overall, the experimental setup is such that the lower
bounds are valid for the average duration of the commission
and decommission. The lower bounds can safely be used to
evaluate the performance of Pufferbench configured as detailed
in this section.

C. Results

Figure 2 shows the performance of Pufferbench against the
lower bounds when decommissioning nodes from a cluster of
20 nodes. Each node initially hosts 50 GiB of data in memory.
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On average, the decommission times of Pufferbench are 16%
longer than the lower bound.

Figure 3 presents the decommission with storage on disk.
On average, Pufferbench is 11% slower than the lower bounds.

In both cases, the difference between the lower bounds
and Pufferbench is due to the fact that Pufferbench runs on
real hardware. The lower bounds consider only the maximum
bandwidth of the network and the storage. They ignore the
latency and any interference. Pufferbench takes all this into
account as it replays all I/Os needed to decommission nodes.

Figure 4 shows the performance of Pufferbench when
commissioning nodes into a cluster of initially 10 nodes with
storage in memory. On average, Pufferbench is 7% slower than
the lower bounds.

Figure 5 presents the results of the commission when the
storage is on disk. In this case, Pufferbench is 16% slower
than the lower bounds.

The main reason for the difference in performance between
the storage in memory and the storage on disk drives is
the latency to access data on disks, as well as the disks
not exhibiting uniform performance across nodes and across
requests (peak read speed varied between 195 MiB/s and

207 MiB/s across nodes).
In both cases, we observe that when 20 nodes are added,

the difference between the lower bound and the results of
Pufferbench is the largest. This is due to the fact that stragglers
appear. In this case, the effect of the stragglers is clear because
all the nodes become bottlenecks: the 20 new nodes must finish
writing their data in about 15 s, but the old nodes must also
finish reading and sending their data in 15 s. Thus, any node
straggling has an impact on the overall performance. Stragglers
appear because of the variability of hardware performance.

We show that Pufferbench is able to emulate rescaling
operations that are close to the theoretical lower bounds
(at most 16% of difference on average). Such a difference
with the theoretical lower bounds can be attributed to
the fact that the hardware does not match the hypotheses
of the model. Moreover, these results also show that the
lower bounds themselves are realistic and that the optimal
duration of the rescaling operations are within 16% of the
lower bounds.

V. USE CASE: HDFS

In the following subsections we evaluate the performance of
commission and decommission operations in HDFS and com-
pare the results with Pufferbench in order to assess whether
HDFS’s rescaling algorithms could be optimized.

A. Goals

We focus on HDFS [9] because it is a DSS that is widely
used and that has both the commission and decommission
operations already implemented. These operations are used
in practice mainly for maintenance. In our previous works,
we showed that the rescaling operations of HDFS could be
greatly accelerated, provided that the estimated lower bound
is correct. For example, in the case of decommission, with
the storage done on disk, HDFS is three times slower than
the lower bound. With Pufferbench, we now have a tool to
confirm this in practice.

In this section and the following, our goal is to evaluate
how fast rescaling operations could be under the constraints
of HDFS. In particular we show that, with a different migration
mechanism (algorithms, data transfers, and disk management),
HDFS could be much faster at commissioning and decommis-
sioning nodes. Thus, we implement in Pufferbench rescaling
mechanisms moving the same objects (chunks of 128 MiB)
and aiming for the same final data distribution. Doing so, we
can compare the performance of the rescaling operations of
HDFS and those of Pufferbench as they produce the same
results from the same initial situation.

Note that we did not recreate the commission and decom-
mission mechanisms of HDFS in Pufferbench for a simple
reason: the algorithms used by HDFS are dynamic. Data
transfers are rescheduled every few seconds to match the
actual progress, while Pufferbench assumes that all transfers
are scheduled at the beginning of the rescaling operation.



B. How Pufferbench Emulates HDFS

Because we want to create a data distribution similar to that
of HDFS, the MetadataGenerator and DataDistributionGener-
ator components in Pufferbench are configured to generate
128 MiB chunks of data that are replicated three times across
randomly selected nodes.

1) New decommission algorithm: Since the data migration
mechanism used by HDFS is not optimized for speed, we
implemented our own DataTransferScheduler in Pufferbench
to try to achieve the best performance rather than imitating
HDFS’s algorithm.

As shown in [1], the bottleneck in the decommission is
receiving and writing the data to storage. Indeed, thanks to
data replication, not only do the nodes being decommissioned
have the data, some other nodes have them as well.

The amount of data written on each new node is determined
by the data placement, which is random but with some
load balancing. Nodes are classified as either overloaded or
underloaded. Nodes being decommissioned are overloaded
since they should host no data. Replicas are randomly moved
from overloaded nodes to underloaded ones, provided that no
two replicas of the same chunk end up on a same node.

When using in-memory storage, no optimization can be
made: each node has data to write and can read data simulta-
neously without interference. In the case of on-drive storage,
each replica must be read once and then forwarded to nodes
on which it should be written. The replica can be read from
any node hosting it, not only in-decommission nodes. Thus,
some drive load-balancing is done to choose which node has to
read data: all nodes should have balanced amounts of disk I/Os
(taking into account the fact that disks from in-decommission
nodes will only read, while others can read and write).

2) New commission algorithm: As shown in [2], two bot-
tlenecks arise during the commission operation: reading the
data from the old nodes and writing it to the new nodes.

The data placement is the same as for the decommission.
The main bottleneck that can be mitigated during the

commission is when reading data from the nodes initially
present. Since existing nodes initially have all the data, each
replica to be moved is read once from an existing node and
then exclusively forwarded between new nodes.

3) Replay components: The Storage and Network compo-
nents are the ones provided by default in Pufferbench (in-
memory and disk-based for Storage, MPI-based for Network).
We disabled caching in the underlying local file system in
order to match the configuration used by HDFS.

Compared with HDFS, there is a large improvement in the
disk I/Os done by the Storage component. HDFS reads and
writes data onto the drives by blocks of 4 KiB and lets the file
system cache optimize the operations. The Storage component
in Pufferbench buffers the data until the data for the whole
object is receive and then writes it. Overall, Pufferbench’s
storage component writes and reads larger chunks to/from the
drives, optimizing the drive bandwidth usage.
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Fig. 6: Time needed to decommission nodes, with a storage
in memory. Nodes initially host 50 GiB of data on average.

VI. EXPERIMENTAL RESULTS

In this section, we compare the performance of HDFS and
Pufferbench emulating an optimized HDFS during rescaling
operations as presented in Section V.

A. Experimental Setup

The experimental platform is the same as the one presented
in Section IV-A.

HDFS and Hadoop 2.7.3 were deployed on the nodes. The
replication factor is left unchanged to 3. The configuration
of HDFS was adjusted in order to remove the limits on the
bandwidth usage of the rescaling operations. The commission
is divided in two steps. First, new HDFS workers join the
cluster; then a rebalancing operation is started. For the de-
commission, the built-in mechanism is used. The initial size
of the cluster is 20 for the decommission operations and 10
for the commission operation. All nodes in the initial clusters
host 50 GiB of data before each rescaling operation.

The lower bounds are different depending on whether the
network or the storage is the bottleneck for the data transfers.
In order to create a situation in which HDFS has a storage
bottleneck, the data is simply stored on the disks with the file
system’s cache limited to 64 MiB. For the situation in which
the network is the bottleneck, the data of HDFS was stored
on a RAMDisk, effectively storing all the data in memory.

Each measurement was repeated 10 times except for the
commission with storage on drive, for which time constraints
limited the number of repetitions to 5.

B. Potential Speed of Decommission in HDFS

Figure 6 presents the results of the decommission when the
data is stored in memory. Pufferbench is faster than HDFS.
HDFS is on average 23% slower than Pufferbench and up
to 40% slower in some cases. The difference with the lower
bound is due mainly to the initial load-balancing hypothesis
(the nodes should all host exactly 50 GiB) not being met.
Because HDFS and Pufferbench randomly distribute the data
on the nodes, initial load balancing is indeed not guaranteed.
Thus, some nodes receive more data than determined by the
lower bound. For instance, a node can initially host 45 GiB of
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Fig. 7: Time needed to decommission nodes, with storage on disk. Nodes initially host 50 GiB of data on average.
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Fig. 8: Time needed to commission nodes, with storage in memory. Nodes initially host 50 GiB of data on average.
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Fig. 9: Time needed to commission nodes, with storage on disk. Nodes initially host 50 GiB of data on average.



data instead of 50 GiB and have to host 60 GiB at the end of
the decommission. Because of the initial load imbalance, this
node will have to receive 15 GiB instead of 10 GiB, and the
decommission will take longer.

In the case where data is stored on drive, Pufferbench is
able to decommission nodes faster than can HDFS (Fig. 7). On
average, HDFS decommissions nodes 2.8 times more slowly
than does Pufferbench. The problem of initial load imbalance
observed in Figure 6 is still present, but the migration sched-
uler of Pufferbench configured for these experiments mitigates
it when balancing the read load across drives. The drives that
have more data to write will spend less time reading.

C. Potential Speed of Commission in HDFS

In the case of the commission with storage in memory (Fig.
8), Pufferbench is on average 8 times faster than HDFS and
up to 14 times when a large number of nodes are added at the
same time.

Note that the commission mechanism in HDFS is not
optimized for speed but is made to minimize the impact of
the commission on the overall cluster.

Pufferbench also exhibits good performance when commis-
sioning nodes with storage on drive (Fig. 9). On average,
Pufferbench is 2.79% faster than HDFS.

D. Low overhead of Pufferbench

Experiments with both HDFS and Pufferbench highlight an-
other aspect about Pufferbench: it provides results quickly. Its
speed is related not only to the improved rescaling operations
but also to the reduced overhead.

To measure the duration of the commission with storage in
memory in HDFS, one has to start HDFS, start Hadoop, gen-
erate enough data, start the commission, and stop the system.
The whole operation took 39 h for the results presented in
Fig. 8, with only 13 h spent commissioning nodes; it is an
overhead of 26 h.

In contrast, the measurements with Pufferbench lasted for
2 h and 53 min with 2 h commissioning nodes. The overhead
of Pufferbench was only 53 min, about 30 times lower than the
overhead of HDFS. Indeed, Pufferbench only has to allocate
some memory in order to be able to replay a commission, and
it is able to quickly switch between measurements.

With the help of Pufferbench, we showed that the
rescaling operations of HDFS could realistically be sped
up by 23% on average in the case of the decommission
with in-memory storage and by up to 8 times on average
and up to 14 times in the case of in-memory commission.

VII. DISCUSSION

In this section, we discuss various points about Pufferbench
and its usage.

A. Ideal Setup for the Validation of Pufferbench

The experimental setup used to validate Pufferbench is
favorable to fast rescaling operations. In particular, all objects
had a size of 128 MiB in order to read, send, receive, and
write large sequential chunks of data. This optimized the I/Os
for both the network and the local storage.

Thus, the performance should degrade with smaller objects,
and Pufferbench should then be used to optimize algorithms,
storage, and network transfers to efficiently migrate small
objects.

B. HDFS’s Case

In the case of HDFS, we observe that the optimized algo-
rithms for the migration are not the only factor of improve-
ment. Pufferbench’s network usage is better than HDFS, but
the most important part is the backend drive usage: Puffer-
bench reads and writes full chunks (128 MiB) sequentially, and
this approach improves the read and write bandwidth during
the decommission operations by at least a factor of 2 compared
to HDFS.

Moreover, we show that HDFS’s migration mechanism can
be sped up by a factor of as much as 14, in particular when
commissioning many nodes at once.

The drive management of HDFS can be improved by taking
advantage of the amount of memory available on the nodes.
HDFS writes and reads data by chunks of 4 KiB. Using larger
values (e.g, 128 MiB in the case of Pufferbench) is enough to
greatly speed up the decommission of nodes.

Two main aspects of the commission could be improved.
First, the algorithm used by HDFS easily accumulates delays:
the rebalancing is scheduled by waves of data transfers, and
each wave must be completed before the next one starts. This
should be replaced with an algorithm that maintains a constant
transfer of data between nodes. Second, some buffering should
be used in order to read only once each chunk of data from
the drives when sending the data to multiple destinations.

The modularity of Pufferbench allows users to test and
improve easily all the relevant components used during the
rescaling operations: scheduler, network, and storage.

C. Pufferbench and Lower Bounds

Compared against the lower bounds, the results obtained
with Pufferbench have the advantage of providing more ac-
curate commission and decommission times. First, it actually
replays I/Os so the characteristics of the hardware (network la-
tency, network interferences, disk seek times, disk throughput)
are taken into account, but it also evaluates an implementation
of the operations.

The lower bounds have the advantage of fixing what is
theoretically possible: provided that the hypotheses are met
(in particular the initial load balancing), the operations cannot
be faster than the lower bound. The lower bound can be a good
comparison point when the platform is not available, whereas
Pufferbench gives more accurate results when the platform is
available.



However, the results show that the lower bounds previously
determined are realistic and that performance close to these
lower bounds can be reached.

D. Limiting the Impact of Rescaling Operations on Applica-
tion Performance

The rescaling operations of DSS are used primarily as
maintenance operations: permanently increasing the size of a
cluster and safely removing faulty nodes. Thus, the rescaling
operations are rarely optimized for speed.

In HDFS, for example, both the rebalancing (for the com-
mission) and decommission operations have options in the
configuration to limit the bandwidth they can use in order
to reduce their impact on concurrently running applications.

One can implement such a limitation in Pufferbench simply
by implementing a custom Network component that limits the
bandwidth usage. The modularity of Pufferbench allows ex-
perimenting with multiple limitations (global disk bandwidth,
disk read and/or write bandwidth, network bandwidth, network
send and/or receive bandwidth, etc.).

Thus, Pufferbench can also be used to optimize other aspects
of the rescaling operations.

VIII. CONCLUSION

Efficient rescaling operations are needed in order to use the
malleability of distributed storage systems. Thus, in this work,
we introduced Pufferbench, a modular benchmark with two
goals. First, it can measure how fast the rescaling operations
can be done in practice on a given platform. With this, the
administrators of the platform can decide whether using DSS
malleability worth it. Second, it can be used to fine-tune all
components involved in data migration (scheduler, storage,
and network). Modifying an existing DSS is a strenuous task.
Pufferbench enables an easy prototyping and testing of the
data migration mechanisms before implementing them in any
DSS.

By validating Pufferbench against the lower bounds, we
show that one can implement rescaling operations with perfor-
mance within 16% of the lower bound, in practice. Moreover,
this result highlights the fact that the lower bounds are realistic
and that the optimal duration for rescaling operations is within
16% of the lower bound.

With Pufferbench, we show that the rescaling operations of
HDFS can be greatly sped up, by as much as a factor 14 in
some cases.

These results strengthen the idea that malleability in dis-
tributed storage systems is viable and should further be studied
in order to benefit data-intensive applications.

Implementing efficient commission and decommission into
a real distributed storage system and using the prototype to
evaluate the benefits of malleability with real use cases is a
challenge left for future work.
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