
HAL Id: hal-01892691
https://hal.science/hal-01892691

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TýrFS: Increasing Small Files Access Performance with
Dynamic Metadata Replication

Pierre Matri, María Pérez, Alexandru Costan, Gabriel Antoniu

To cite this version:
Pierre Matri, María Pérez, Alexandru Costan, Gabriel Antoniu. TýrFS: Increasing Small Files Access
Performance with Dynamic Metadata Replication. CCGRID 2018 - 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2018, Washington, United States. pp.452-
461, �10.1109/CCGRID.2018.00072�. �hal-01892691�

https://hal.science/hal-01892691
https://hal.archives-ouvertes.fr


TýrFS: Increasing Small Files Access Performance
with Dynamic Metadata Replication

Pierre Matri∗, Marı́a S. Pérez∗, Alexandru Costan†‡, Gabriel Antoniu‡

∗Universidad Politécnica de Madrid, Madrid, Spain, {pmatri, mperez}@fi.upm.es
†IRISA / INSA Rennes, Rennes, France, alexandru.costan@irisa.fr
‡Inria, Rennes, France, {alexandru.costan, gabriel.antoniu}@inria.fr

Abstract—Small files are known to pose major performance
challenges for file systems. Yet, such workloads are increasingly
common in a number of Big Data Analytics workflows or large-
scale HPC simulations. These challenges are mainly caused by
the common architecture of most state-of-the-art file systems
needing one or multiple metadata requests before being able to
read from a file. Small input file size causes the overhead of
this metadata management to gain relative importance as the
size of each file decreases. In this paper we propose a set of
techniques leveraging consistent hashing and dynamic metadata
replication to significantly reduce this metadata overhead. We
implement such techniques inside a new file system named TýrFS,
built as a thin layer above the Týr object store. We prove that
TýrFS increases small file access performance up to one order of
magnitude compared to other state-of-the-art file systems, while
only causing a minimal impact on file write throughput.

I. INTRODUCTION

A large portion of research in data storage, management
and retrieval focuses on optimizing access performance for
large files [1]–[5]. Yet, handling a large number of small files
raises other difficult challenges, that are partly related to the
very architecture of current file systems. Such small files,
with a size inferior to a few megabytes, are very common
in large-scale facilities, as shown by multiple studies [6], [7].
They can be generated by data-intensive applications such
as CM1 [8] or HACC [9], Internet of Things or Stream
Processing applications, as well as large scale workflows such
as Montage [10], CyberShake [11] or LIGO [12]. Improving
file access performance for these applications is critical for
scalability in order to handle ever-growing data sets on large-
scale systems [13].

As the amount of data to be transferred for storage op-
erations on any single small file is intuitively small, the key
to optimizing access performance for such files lies in im-
proving the efficiency of the associated metadata management.
Actually, as the data size for each file decreases, the relative
overhead of opening a file is increasingly significant. In our
experiments, with small enough files, opening a file may take
up to an order of magnitude more time than reading the data
it contains. One key cause of this behavior is the separation
of data and metadata inherent to the architecture of current
file systems. Indeed, to read a file, a client must first retrieve
the metadata for all folders in its access path, that may be
located on one or more metadata servers, to check that the user
has the correct access rights or to pinpoint the location of the
data in the system. The high cost of network communication
significantly exceeds the cost of reading the data itself.

We advocate that a different file system architecture is
necessary to reduce the cost of metadata management for
such workloads involving many small files. While one could
think of co-locating data and metadata, a naive implementation
would pose significant performance or consistency issues [14].
For example, the metadata for a directory containing large
numbers of files would potentially be replicated to an important
number of servers, both wasting precious memory resources
and causing low metadata update performance. While others
worked on optimizing metadata management [15]–[19], their
contributions iterate on existing architectures, improving the
internal handling of operations at the metadata server by means
of caching or compression, without fixing the root cause of the
issue, that is, the metadata distribution.

In this paper we propose a completely different approach
and design a file system from the bottom up for small files
without sacrificing performance for other workloads. This
enables us to leverage some design principles that address
the metadata distribution issues: consistent hashing [20] and
dynamic data replication [21]. Consistent hashing enables a
client to locate the data it seeks without requiring access to
a metadata server, while dynamic replication adapts to the
workload and replicates the metadata on the nodes from which
the associated data is accessed. The former is often found in
key-value stores [22], [23], while the latter is mostly used in
geo-distributed systems [24]–[26].

We briefly motivate this research leveraging a short exper-
iment (Section II) and review the related work (Section III).
Our contributions are threefold:

• We propose a novel file system architecture optimized
for small files based on consistent hashing and dynamic
metadata replication while not sacrificing performance for
other workloads (Section IV).

• We detail the design and implementation of TýrFS, a file
system implementing the aforementioned principles
(Section V), built atop the Týr object storage system [27].

• After introducing our experimental platform (Section VI),
we leverage TýrFS in various applicative contexts
and factually prove its applicability to both HPC
and Big Data workloads (Section VII). We prove that
it significantly outperforms state-of-the-art file systems,
increasing throughput by up to one order of magnitude.

We finally discuss the limitations of our approach (Sec-
tion VIII) and conclude on the future work that could further
enhance our proposal (Section IX).



32 K 128 K 512 K 2 M 8 M 32 M
0

5

10

15

20

25

30

35

Individual file size (B)

A
gg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

Lustre OrangeFS

Fig. 1. Lustre and OrangeFS read throughput for a fixed-size data set when
varying the size of the individual files it is composed of.

32 K 128 K 512 K 2 M 8 M 32 M
0

20

40

60

80

100

Individual file size (B)

I/
O

tim
e

pr
op

or
tio

n
(%

) Lustre (M) Lustre (D)
OrangeFS (M) OrangeFS (D)

Fig. 2. Breakdown of reads between metadata (M) and data (D) access for
a fixed-size data set varying the size of the individual files it is composed of.

II. MOTIVATION: OVERHEAD OF READING SMALL FILES

In this section we seek to describe in more detail the issue
by studying the concrete performance effects of reducing file
size with a large data set. For that matter, we plot the time
taken and file system CPU usage when reading a constant-
size data set while decreasing the size of the files it contains.

We perform these experiments using both the Lustre [28]
(2.10.0) and OrangeFS [29] (2.9.6) distributed file systems,
that we setup on 24 nodes of the Paravance cluster in Rennes
(France) of the Grid’5000 testbed [30]. On 24 other machines
of the same cluster (384 cores) we launch a simple ad-hoc MPI
benchmark reading in parallel the contents of a pre-loaded set
of files. The set size varies between 38,400 × 32 MB files
(100 files per rank) to 3.84×107 × 32 KB files (100,000 files
per rank), for a total combined size of 1.22 TB.

In Figure 1 we plot the aggregate throughput achieved by
Lustre and OrangeFS. For both systems we note a decrease of
the read throughput as we reduce the size of the files. The
decrease is as significant as one order of magnitude when
replacing 32 MB by 32 KB files.

In Figure 2 we detail these results. We calculate the total
execution time of the benchmark with Lustre and OrangeFS.
We highlight the proportion of this time spent on the open
operation fetching the metadata (M) and on the read opera-
tion actually reading the data (D). Interestingly, with smaller
file sizes, the open operation takes a significant portion of the
total I/O time. This proportion is above 90% for 32 KB files
for both systems, while it is less than 35% for larger file sizes.

These results clearly demonstrate that reducing the size of
the files puts a very high pressure on the file system metadata.
This is caused by the very architecture of most file systems, in
which metadata and data are separated from each other. This
implies that metadata needs to be accessed before performing
any read operation. Consequently, we argue that reducing the
cost of metadata management without changing the file system
architecture cannot possibly address the root cause of the
performance drop.

These observations guide the design and implementation
of TýrFS, which we detail in Sections IV and V.

III. RELATED WORK: METADATA OPTIMISATIONS

While improving I/O performance when accessing small
files in a distributed file system is a known problem, most of
the work to date focuses on optimizing metadata management
and assumes constant file system architecture. Two main
solutions appear: reducing resource consumption required for
metadata management, or completely eluding the problem with
combining a set of small files into a smaller set of larger files.

Optimizing metadata management can be done in a number
of ways. In [16], Carns et al. study with PVFS [31] the impact
of various strategies such as metadata commit coalescing,
storing data right inside inodes or pre-creating files. While
highly effective, those optimizations are orientated towards
improving small file write performance and have little to
no effect on read operations. Creating archives from a large
number of small files is the second frequent option found in
the literature. For instance in HDFS [32], the HAR (Hadoop
Archive) format [33] is leveraged by [19], [34] to transform
an input dataset composed of many small files into a set of
large files that can be handled efficiently by the metadata node.
Building on this work, Vorapongkitipun et al. [35] propose a
new archive format for Hadoop that further improves perfor-
mance. While this approach is arguably extremely effective, it
requires a pre-processing step to transform the input data set.
Furthermore, this requires modifying the application so it is
able to take such archives as input. As such, this approach is
not applicable for workloads where small files are generated as
intermediate data between processing steps. These challenges
are partly addressed by Zhang et al. in [18], by delegating the
merge task to a middleware process. While highly interesting,
this approach retains the main drawback of archiving, that is,
complexifying operations other than simple reads.

Overall, we note that the optimizations proposed in the
literature having a significant impact on read performance
rely on archiving, and optionally indexing files. While such
approaches are indisputably effective for analyzing large sets
of data, they invariably result in relaxing or dropping part of
the POSIX I/O API. Notably, unlike this paper, no related work
considers modifying a file after it has been written. While this
may not be an issue for Big Data Analytics, this certainly is for
HPC use cases relying on I/O frameworks such as HDF5 [36].



Client Metadata node Storage nodes

s1 s2 s3

md(/foo/file)

[(id, s2)]
r(id)

(data)

Metadata

Data

Fig. 3. Typical read protocol for a small file with centralized metadata
management (e.g. Lustre or HDFS).

IV. DESIGNING A FILE SYSTEM FOR SMALL FILES

In this section we detail the main architectural and design
goals that drive the design of a file system optimized for small
files. We consider as small files those for which it does not
make sense to split them into multiple pieces (chunking). Since
this notion is variable and cannot be defined precisely, we will
consider as small - files with a size under a few megabytes.

A. Detailing the metadata distribution issue

First, let us consider the behavior of a typical distributed
file system for reading a file, whose path is /foo/file.
We consider the case of centralized metadata management,
which is the base architecture of Lustre [28] or HDFS [32]. As
shown in Figure 3, the request is performed in two steps. First,
the client interrogates the metadata server to get the layout
information of the file to read, including the actual node on
which the data is located. Only with this information can the
client access the data, in a second step. While the cost of
such metadata fetching is amortized when reading large files,
it cannot be with small ones. Should the user seek to read
many files, the cost of this communication with the metadata
node is to be paid for each file access. This largely explains
the results observed in Section II.

The previous results also noticeably show a further perfor-
mance degradation with OrangeFS [29] compared to Lustre.
This is caused by the distribution of the metadata across
the entire cluster, which brings better horizontal scalability
properties at the cost of additional metadata requests, as
illustrated in Figure 4. Note that the location of the metadata
for any given file in the cluster is independent from the location
of its data.

Intuitively, we understand that two problems are to be
tackled when dealing with small files at scale:

• First, the client should be able to locate by itself the pieces
of data to be read without requiring communication with
a dedicated metadata server.

• Second, all the metadata required to read a file should be
colocated with the file data whenever possible.

Those two steps would allow the client to bypass metadata
requests entirely, consequently offering significantly better
performance when dealing with many small files. While these
principles are seemingly easy, they are challenging to imple-
ment for distributed file systems because of the hierarchical
nature of their namespace.

Client s1 s2 s3

s1 s2 s3

md(/)

(metadata)
md(/foo)

(metadata)

md(/foo/file)

[(id, s2)]

r(id)

(data)

Metadata

Data

Fig. 4. Typical read protocol for a small file with decentralized metadata
management on three storage nodes s1, s2 and s3 (e.g. OrangeFS).

B. Predictably distributing data across the cluster

In typical file systems, the data is distributed across the
cluster in a non-predictable fashion. A metadata process is
responsible for assigning a set of nodes to each file based on
some system-specific constraints [37]. This location is saved in
the file metadata, which therefore needs to be queried in order
to later pinpoint the location of the data in the cluster. While
this allows a great latitude in finely tweaking data location, it
inherently imposes at least two successive requests in order to
retrieve data in the cluster. As the data is small, this request
cost is non-amortizable in the case of small files.

This challenge has long been solved for state-of-the-art
distributed object stores such as Dynamo [23] or Riak [38].
Indeed, instead of relying on metadata to locate information
in a cluster, these systems distribute the data in a predictable
fashion, using a common algorithm shared across the cluster
and the clients. This effectively allows the clients to infer
the location of any data they want to access without prior
communication with any metadata node.

Such predictable data distribution is however challenging
for file systems due to their hierarchical nature. For accessing
any single file, a client needs to read the metadata of all the
folder hierarchy for this file in order to check, for example,
that the user has the correct permissions for reading it. Let
us illustrate this with a simple example. A folder at /foo
contains many files to be processed by a data analytics tool. To
distribute the load across the storage nodes, these files should
arguably be spread across the cluster. As such, while clients
would be able to locate each file in the cluster because of the
predictable location algorithm, they would still need to access
the metadata for /, /foo and for the file to be read. All these
metadata pieces are potentially located on a different set of
servers, and would hence require additional communication
that we are precisely seeking to eliminate.

Although such predictably data distribution is a step to-
wards the solution, it cannot be considered independently of
metadata management. Some file systems such as Ceph [39]
partially leverage predictable distribution for reducing the
metadata size without addressing the issue of its distribution.



C. Towards data and metadata colocation

To significantly reduce the overhead of metadata fetching
we propose to collocate it with the data it concerns. Let us keep
our example of the /foo folder containing many files. This
implies that the node storing the data for the file /foo/a.txt
would also hold the metadata for /, /foo and /foo/a.txt.
We do so by leveraging an architecture roughly similar to that
of OrangeFS. Each node composing the file system cluster
integrates two services. First, a metadata service manages
meta-information relative to folders and files. Second, a data
service persists the data relative to the objects (files or folders)
stored on this node.

As a first principle, we propose to always store the metadata
for any given file on the same nodes the first chunk of
the file is stored. As small files are by definition composed
of a single chunk, this effectively eliminates the need for
remotely fetching the file metadata before accessing its data.
This contrasts with the design of OrangeFS, which does not
guarantee such collocation. Such design is conceptually similar
to the decision of embedding the contents of small-enough file
right inside inodes on the Ext4 local file system.

Collocating the file data with the metadata of its folder
hierarchy is a significantly harder problem. Indeed, a folder
may contain many other folders and files potentially stored
on different nodes. Specifically, the root folder itself is by
definition ancestor of all folders and files. One could think
of statically replicating this data to every relevant node. Yet,
this solution would have huge implications in terms of storage
overhead because of the potentially large amount of metadata
replicated, and in terms of write performance because of the
need to maintain consistency across all metadata replicas.

To alleviate this overhead, we replicate the metadata dy-
namically. The metadata agent on each node determines which
of the metadata to replicate locally based on the current work-
load it serves. This solution is largely tackled in geo-distributed
storage systems, in which dynamic replication is used to
selectively replicate data objects to various discrete regions
while minimizing write and storage overhead by adapting this
replication based on user requests [24]–[26]. Our solution is
largely inspired by their proved design and best practices.

We further reduce the storage overhead by replicating
the metadata that is strictly necessary for accessing a file.
Indeed, only a tiny subset of the whole metadata for the
folder hierarchy of a file has to be accessed before reading
it: permissions. In addition, we argue that permission changes
are a very infrequent operation that is performed either when a
folder is first created or as a manual management task which is
unlikely to be time-sensitive ; we could not find any application
in which permission change is in the critical path. As such,
replicating the permissions is unlikely to have a significant
negative effect on the performance of real-world applications.
Intuitively, this solution implies that the closer a folder is to
the root of the hierarchy, the more likely its permissions are to
be replicated to a large number of nodes. As an extreme case,
the permissions for the root folder itself would be replicated
to every node in the cluster.

In Figure 5 we show a high-level overview of the proposed
architecture, highlighting the different modules on each node
composing the file system cluster.

Store

Replication

Metadata service

Data service

Node N1

Store

Replication

Metadata service

Data service

Node N2

Store

Replication

Metadata service

Data service

Node Nn

Client

...

Fig. 5. High-level overview of the proposed architecture. Each node integrates
both a data and a metadata service. The metadata service itself is composed
of a local metadata store and the dynamic metadata replication service.

V. TÝRFS: A FILE SYSTEM OPTIMIZED FOR SMALL FILES

In this section we detail the implementation of the above
principles in a prototype file system optimized for small files,
that we name TýrFS. We implement it as a thin layer atop
the Týr transactional, distributed object storage system [27].
The system is composed of a data service described in
Section V-A, directly mapped to Týr native semantics. A
lightweight metadata management module runs on each server
node. We describe in detail its implementation in Section V-B.
Finally, a client library exposes both a mountable and a native
interface optimized for TýrFS. We detail it in Section V-C.

A. Implementation of the data service

The data service directly leverages the capabilities natively
offered by Týr to efficiently distribute and store data in the
cluster. A file in TýrFS is directly mapped to a blob in Týr,
with the blob key being the absolute file path.

The predictable distribution of the data across the cluster
that we describe in Section IV-B is inherited from Týr. The
base system leverages consistent hashing of an object absolute
path to distribute data across the cluster. Such method has
been demonstrated to fairly distribute the load across the whole
cluster in distributed systems, and to be applicable to local file
systems [40]. The stored data can thus be located and accessed
by TýrFS clients directly. Read and write operations as per the
POSIX I/O standard are mapped directly to the blob read and
write operations offered by Týr. Folders are also stored as a
blob holding a list of all objects contained in it. A folder list
operation only requires reading the blob ; adding a file to a
folder is implemented as a blob append. A background process
compacts the file list when objects are deleted from a folder.

A side effect of using consistent hashing for data distri-
bution is the need to move the physical location of the data
when a file is moved in the folder hierarchy. This operation is
implemented by writing “staple” records at the new location
of the object and of its descendents, referencing their previous
location. The data transfer occurs in the background. Moving
a folder containing many descendents is consequently a costly
operation. We argue that this trade-off is justified by the
scarcity of such operations compared to the shorter critical
path and thus higher performance of file reads and writes.



B. Popularity-based metadata service

The metadata service is implemented as a lightweight plu-
gin running inside each Týr server process. Its responsibilities
are threefold. First, it serves as a persistence layer for the files
whose first chunk of data is stored on this process. Second,
it integrates a dynamic replication agent, which analyzes the
received requests to determine for which folders to replicate
and store the metadata information locally. Finally, it serves as
a resolver agent for the metadata requests, dispatching the re-
quested information directly if available locally, or forwarding
the request to the appropriate node determined using consistent
hashing if not. The most interesting part of this metadata
service is arguably the dynamic replication agent, which is
the focus of this section.

We use popularity as the main metric for dynamic replica-
tion to determine which folders to locally replicate metadata
for. We define popularity as the number of metadata requests
for any given folder in a defined time period. These pop-
ularity measurements are performed independently for each
node. Consequently, on any given node, the more frequently
metadata for a specific folder is requested the more likely
it is to be considered for dynamic replication to that node.
This metric is particularly suited for workloads accessing vast
numbers of small files. Considering that at least a metadata
request is needed for reading each file, a data set composed
of many files will be significantly more likely to have the
metadata for its ancestor folders replicated locally than a data
set composed of a single large file.

To measure the popularity for each folder, we record the
number of times its metadata is requested to the local resolver
agent. Keeping exact counters for each possible folder is
memory-intensive, so we only focus on the k most frequently
requested folders, k being user-configurable. This problem
is known as top-k counting. A variety of memory-efficient,
approximate solutions to this problem exist in the literature.
For this use-case, such an approximate algorithm is tolerable as
popularity estimation errors cannot jeopardize the correctness
of the system. Our implementation uses Space-Saving [41]
as top-k estimator. It guarantees strict error bounds for ap-
proximate request counts, while exhibiting a small, predictable
memory complexity of O(k). The output of the algorithm is
an approximate list of the k folders for which the metadata
is the most frequently requested since the data structure has
first been initialized. We perform these measurements over a
sliding time window in order to favor immediate popularity
over historical measurements.

Whenever a metadata request arrives at the metadata re-
solver for a folder whose metadata is not locally replicated,
the resolver agent determines whether or not it should be
replicated. It does so by adding the requested folder path in
the current time window for the top-k estimator. If the folder
path is present in the output of the estimator, this path should
be considered as popular and the associated metadata should
be replicated locally. The agent determines which node holds
the metadata for this folder, and remotely fetches the metadata
from this node. Should the metadata be kept locally, it is stored
in a temporary local store. In any case, the fetched metadata
is returned to the client. This process is highlighted by the
pseudo-code of Algorithm 1.

Algorithm 1 High-level algorithm of the metadata resolver.
function RESOLVEFOLDERMETADATA(path)

let current window be the current top-k window
INSERT(path, current window)
if path is available locally then

return the locally-available metadata for path
end if
md ← REMOTEFETCHMETADATA(path)
if path in output of current window then

SUBSCRIBEMETADATAUPDATES(path)
keep md in the local metadata store

end if
return md

end function

Although folder permission modifications are a very rare
occurrence in real-world applications, such metadata updates
should nonetheless be consistently forwarded to metadata
replicas. We integrate inside the TýrFS metadata agent a syn-
chronous metadata notification service. When the permissions
for any given folder are modified, this service synchronously
notifies all nodes locally storing a dynamic replica of this
metadata. Subscription to updates is performed atomically by
a remote metadata agent during the metadata fetch if the
remote agent has determined that this metadata should be
dynamically replicated to it. Acknowledgement is sent to the
client requesting the metadata change only after the update has
been applied to all dynamic replicas.

A background bookkeeping service monitors changes in
the current time window for the top-k estimator in order to
identify the metadata for previously-popular objects that are
not popular anymore. The locally available metadata is marked
for deletion. It will be kept locally as long as the locally
available storage permits. When space needs to be reclaimed,
the node deletes the locally-replicated metadata marked for
deletion. It also synchronously cancels its subscription for
metadata update notifications.

C. TýrFS client

The TýrFS client provides two different interfaces. A native
interface exposes all POSIX I/O functions. In addition, a
mountable interface, itself based on the native library, allows
TýrFS to be mounted as any other file system. The mountable
interface leverages the FUSE library. The native interface
is implemented as a thin wrapper around the Týr native
client library, which handles all the message serialization and
communication with the storage cluster.

As an optimization for the TýrFS design, the native in-
terface adds a function to those of the POSIX I/O standard.
In common file systems, reading a file is split between the
metadata fetching (open) and the data read operation (read).
Withi the design of TýrFS embracing collocation of data and
metadata, this can be further optimized by combining the two
operations into a single one. Doing so saves the cost of an
additional client request to the file system cluster, therefore
reducing read latency and increasing throughput. The TýrFS
client proposes a native method exposing such behavior, named
fetch, which functionally opens and reads a file given by its
absolute path.



32 K 128 K 512 K 2 M 8 M 32 M
0

10

20

30

40

Individual file size (B)

A
gg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

TýrFS TýrFS (NoRep)
Lustre OrangeFS

Fig. 6. TýrFS, Lustre and OrangeFS read throughput for a fixed-size data
set, varying the size of the individual files it is composed of.

32 K 128 K 512 K 2 M 8 M 32 M
0

20

40

60

80

100

Individual file size (B)

I/
O

tim
e

pr
op

or
tio

n
(%

) TýrFS (M) TýrFS (D)
TýrFS (NoRep M) TýrFS (NoRep D)

Fig. 7. Breakdown of reads between metadata (M) and data (D) access for
a fixed-size data set varying the size of the individual files it is composed of.

VI. EXPERIMENTAL CONFIGURATION

We execute all following experiments on the Grid’5000
testbed we introduced in Section II. The machines we use are
part of the Paravance cluster [30], located in Rennes. Each
node embeds 16 cores (2 x 8-core Intel Xeon E5-2630v3
processor) as well as 128 GB RAM. Connectivity between
nodes is done using low-latency 10 Gigabit ethernet. All
nodes are connected to the same switch. Node-local storage
is provided by two 600 GB spinning drives.

We compare the performance of TýrFS with that of mul-
tiple file systems, from both the HPC and the Big Data
communities. Lustre 2.10.0 [28] and OrangeFS 2.9.6 [28] are
deployed according to best practices. With Lustre we dedicate
one node for metadata. For Big Data applications we compare
TýrFS with Ceph 12.2.0 [39] and HDFS 2.8.0 [32]. All systems
are configured not to replicate data, consequently not providing
fault-tolerance which is beyond the scope of this paper. We
discuss fault tolerance in Section VIII-C.

We benchmark the performance of the file system using
two different application profiles. For HPC file systems we
leverage the same benchmark as in Section II, which accesses
the file system through the TýrFS native client and leverages
the fetch operation it provides. The benchmark reads through
the whole pre-loaded random dataset from all ranks, evenly
distributing the last across all ranks. No actual computation
is performed on the data. Big Data Analytics applications
are running atop Spark 2.2.0 [42] and are extracted from
SparkBench [43]. All these applications have the common
characteristic to be mostly read-intensive. We connect Spark
applications to Ceph by modifying Hadoop to use the POSIX
I/O interface and to TýrFS using the native interface. We
expose to Spark the data layout of both systems to ensure data
locality. TýrFS is configured with a measurement time window
of 1 minute and a k of 20 that we determined to be optimal
for our configuration. We discuss this setup in Section VIII-D.

Unless specified otherwise, for Lustre and OrangeFS we
use 24 machines to deploy the storage systems, plus 8 ma-
chines to deploy the client applications. With Lustre we dedi-
cate one node for metadata management. Big Data applications
are deployed alongside storage on the whole 48 nodes of the
cluster. All results are the average of 50 experimental runs.

VII. EXPERIMENTAL VALIDATION

In this section we prove that TýrFS delivers its promise
of drastically improving read performance for small files. We
also demonstrate that this benefit applies to applicative contexts
as diverse as HPC frameworks and Big Data applications
compared to state-of-the-art, industry standard file systems.

A. Drawing the baseline performance in HPC contexts

We first compare the performance results obtained with
TýrFS to those of Lustre and OrangeFS in the exact same
conditions as in Section II. The curves for Lustre and GPFS
are reproduced for reference. The size of the input data set is
constant. We vary the number of input files between 3,840 ×
32 MB files (1 file / rank) to 3.84×106 × 32 KB files (10.000
files / rank). The data is generated randomly.

In Figure 6 we plot the total execution time of the
benchmark for TýrFS, Lustre and OrangeFS. To evaluate the
baseline performance of the metadata replication system, we
also plot the performance achieved by TýrFS with dynamic
replication disabled. The performance for large files is on
par with that of Lustre or OrangeFS due to the possible
amortization of the metadata requests. However, TýrFS shows
a significant performance improvement over those two systems
for small files. Disabling metadata replication causes TýrFS
performance to drop at the level of other distributed file
systems. The similarity of the performance of TýrFS without
metadata replication with that of OrangeFS is due to the
fact that both embrace akin distributed metadata management
principles. This unequivocally demonstrates the effectiveness
of dynamic metadata replication with small files.

Figure 7 shows the relative breakdown of the I/O time
between the metadata (M) and data (D) access inside the
fetch operation. We note that the relative time spent on
metadata access as the data file increases tends to decrease with
TýrFS. This clearly contrasts with other file systems, in which
the throughput drop is mainly due to the high cost of metadata
management. In TýrFS, the main factor impacting read time
is the added cost of issuing additional read requests. The
efficiency of the dynamic metadata replication is highlighted
by the performance of TýrFS with this service disabled, which
here also is smilar to that of other file systems.



32 K 128 K 512 K 2 M 8 M 32 M
0

5

10

15

20

Individual file size (B)

A
gg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

TýrFS TýrFS (NoRep)
Lustre OrangeFS

Fig. 8. Shared TýrFS, Lustre and OrangeFS read throughput for a fixed-size
data set, varying the size of the individual files is is composed of.

2 18 34 49 64
0

10

20

30

40

50

Number of nodes

A
gg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

64 clients 384 clients
768 clients 1,152 clients
1,536 clients

Fig. 9. TýrFS horizontal scalability, varying the number of clients and the
number of cluster nodes with 32 KB input files.

B. Evaluating performance in a multi-user, shared context

In the previous experiment we did simulate a single-user
use-case, where a single application is free to use all system
resources. Accessing the file system in these conditions is
especially favorable to TýrFS, as the metadata replication
is dedicated to a single user and is able to quickly adapt
to this application. Yet, it is typical for HPC platforms to
offer a single, centralized file system in which all users share
a common pool of resources. This is a significantly more
complex problem.

We simulate a multi-user setup by replaying on the file
system real-world I/O traces from the Second Animation
Dataset [44], representative of a data-intensive I/O workload
from multiple clients. We dedicate 24 more clients to this task,
each replaying a share of the 3.2 TB trace file at maximum
rate. We concurrently execute on 24 other nodes the same
benchmark as in the previous experiment, and measure the
achieved throughput across all systems varying the size of the
input files between 32 KB and 32 MB each. We limit the
dynamic replication storage on each node to a low number:
20 replication slots shared across all concurrent users.

In Figure 8 we plot the achieved throughput of our
benchmark in these conditions. Similarly to what we observe
with single-user experiments, TýrFS significantly outperforms
Lustre and OrangeFS as the size of the input files is reduced.
Compared to the previous experiment, the shared nature of
the file system results in a lower achieved throughput across
all systems. TýrFS in particular shows a higher performance
reduction at smallest file sizes due to the saturation of the file
system nodes. Interestingly, we see that reducing the file size
of the input data set from 32 MB to 8 MB in Týr causes a
noticeable 8% throughput increase. This is because smaller
file sizes involve a higher number of metadata requests for
the input file set, which in turn increase the likelihood of
the metadata for the data set access path to be dynamically
replicated across the whole cluster. This effect is amplified by
the low limit we put on the replication store size for each
node. These results demonstrate the applicability of TýrFS
for shared, highly-concurrent file systems, while additionally
confirming that the dynamic metadata replication we propose
especially benefits small files use-cases.

C. Ensuring horizontal scalability

Horizontal scalability is a critical feature of large-scale
systems targeted at data-intensive applications. It allows the
system to scale out, increasing its total performance by adding
commodity machines to the cluster. Týr, the base building
block of TýrFS, has a demonstrated near-linear horizontal
scalability that makes it particularly suitable for large-scale
use-cases. TýrFS does not introduce any centralization that
could jeopardize these features. In particular, it inherits from
OrangeFS the distributed metadata management principles,
which support the horizontal scalability of this system. As
such, we argue that TýrFS should be able to inherit this
desirable feature.

In this section we formally demonstrate the horizontal scal-
ability of TýrFS. We adopt the same setup as in Section VII-A.
We vary the number of storage nodes from 2 to 64 on the
Paravance cluster. We setup clients on up to 24 nodes of
a second Grid’5000 cluster: Parasilo. Both clusters are co-
located in the same facility, and are interconnected with low-
latency 2 x 40G Ethernet links aggregated using the Link
Aggregaton Control Protocol (LACP). Each client node runs
64 ranks of the MPI read benchmark that concurrently reads
files from our random, pre-loaded 1.22 TB data set. We run
the benchmark for 5 minutes, reading the dataset from within
an endless loop. The dataset we use in this experiment is
composed of 3.84× 107× 32 KB files.

In Figure 9 we plot the measured aggregated throughput of
TýrFS across all clients, varying the number of nodes from 2 to
64 and the number of concurrent clients from 64 to 1,536. The
results demonstrate that TýrFS shows a near-linear horizontal
scalability when adding nodes to the storage cluster, being
able to serve more clients with higher aggregate throughput.
The decrease in throughput observed with the smallest cluster
sizes when increasing the number of clients is due to the
saturation of the storage servers. In this configuration, and
despite working on a data set composed of very small files,
we measured the throughput of TýrFS as high as 36 GB / s
across all clients with 64 storage servers and 1,536 concurrent
client ranks.



32 K 128 K 512 K 2 M 8 M 32 M
0

10

20

30

40

50

Individual file size (B)

A
gg

.r
ea

d
th

ro
ug

hp
ut

(G
B

/
s)

TýrFS Ceph HDFS

Fig. 10. TýrFS, Ceph and HDFS read throughput for a fixed-size data set,
varying the size of the individual files it is composed of.

SO TZ
0

5

10

15

20

Application

A
gg

.w
ri

te
th

ro
ug

hp
ut

(G
B

/
s)

TýrFS Ceph HDFS

Fig. 11. TýrFS, Ceph and HDFS write throughput with Sort (balanced I/O)
and Tokenizer (write-intensive) applications.

D. Experimenting with Big Data applications

For these experiments we setup a configuration according
to the best practices for Big Data Analytics. We deploy both
the storage system and the computation on all 48 nodes of the
cluster. We compare the performance of Týr with that of Ceph
and HDFS. The experiments are based on a series of different
Spark applications.

We leverage SparkBench [43] to confirm that the design of
TýrFS yields significant performance improvements with small
files for applications showing a wide range of I/O profiles.
We use exactly the same setup as in the previous experiment,
and execute three read-intensive benchmarks extracted from
the benchmark suite: Connected Component (CC), Grep (GR)
and Decision Tree (DT). These benchmarks are intended to
evaluate the I/O performance of TýrFS when faced with
different workloads types, respectively graph processing, text
processing and machine learning. In Figure 10 we plot the
aggregate throughput obtained across all nodes when varying
the size of the input data set files. Overall, the results are
very similar to those obtained with Lustre and OrangeFS.
This is not surprising, and is mostly due to the very similar
architecture of all these file systems, in which the relative cost
of metadata management increases as the file size decreases.
For these experiments as well, the throughput drop we observe
with TýrFS when using 32 KB files instead of 32 MB files is
only of about 25%. In similar conditions, other systems show
a much more significant throughput drop of more than 90%.
This results in a 3.8× increase of total computation time with
OrangeFS, wasting computing resources.

Not all applications are read-intensive. Although write
performance is not a main target of this paper, it is critical to
understand precisely the impact of dynamic metadata replica-
tion for balanced and write-intensive workloads as well. To do
so, we add two more applications to the experiment: Sort (SO)
from SparkBench, which illustrates a balanced I/O workload,
and Tokenizer (TZ), which provides a write-intensive one.
Tokenizer reads a text file, tokenizes each line into words, and
calculates the NGrams=2 for each line. Ngrams are saved as
text. This is a common preprocessing step in topic modeling
for documents where word patterns are extracted for feeding
a machine learning model.

GR DT CC SO TZ
0

20

40

60

80

100

Application

A
vg

.r
el

.c
om

pl
et

io
n

tim
e

(%
)

TýrFS Ceph HDFS

Fig. 12. Application completion time difference with 32 MB input files
relative to that obtained with 32 KB input files, with TýrFS, Ceph and HDFS.
100% represents the baseline performance for 32 MB files.

In Figure 11 we plot the measured write throughput for Sort
and Tokenizer with TýrFS, Ceph and HDFS. The performance
of the write operations are similar across the two experi-
ments. In terms of write performance, TýrFS exhibits a write
performance consistent with that of Ceph. Ceph outperforms
both TýrFS and HDFS for write throughput by a margin or
respectively 8% and 35%.

Considering the application as a whole, Figure 12 sum-
marizes our results for Big Data applications. We measure the
application completion time difference for 32 MB files relative
to that obtained with 32 KB files. The throughput advantage of
TýrFS over Ceph and HDFS with small files is clearly visible
on the application completion time, allowing it to retain at
least 73% of its performance when using 32KB instead of
32MB files. Ceph and HDFS in similar conditions retain less
than 5% of their performance, hence wasting costly resources.
Overall, the impact of small input files is significantly lower
for all three systems with Sort and Tokenizer applications
because of the higer influence on writes, for which all three
systems show comparable performance. The write-intensive
Tokenizer application gives a 4% advantage to Ceph because
of its slightly higher write throughput compared to TýrFS.



VIII. DISCUSSION

In this section we discuss the main features and design
choices of TýrFS. We detail which parts of its design impose
limitations that makes it unfit for several use cases.

A. Is TýrFS also suitable for large files?

TýrFS design is specifically designed to benefit use cases
involving large numbers of small files. Yet, while not the
scope of this paper, no fundamental part of its design make
TýrFS unfit for large files. It inherits from Týr the ability to
handle very large files efficiently, by leveraging chunking. The
metadata distribution in TýrFS will however be less effective
with large files. The main reason is that the metadata for any
given file is co-located only with the first chunk of the file.
Reading a different chunk will trigger a remote metadata fetch
for the file, which is unnecessary for small files.

B. Which use-cases is TýrFS unfit for?

Centralized metadata management offers many possibilities
for managing the data saved in the system. For example, data
reduction using deduplication is a well known technique to
reduce storage resources. Efficient file copy at the metadata
level is another technique often used to substantially increase
performance of copy-on-write data sets compared to traditional
file systems. Automatic data tiering could allow to balance
data over multiple storage mediums depending on a given set
of rules. The predictable data distribution based on consistent
hashing makes all these techniques significantly more chal-
lenging to implement in TýrFS compared to other file systems,
in which the metadata fetch happens prior to the data fetch.

C. What about fault tolerance?

None of the experiments presented in this paper did
leverage fault-tolerance, which is outside the scope of this
paper. TýrFS has been designed with this requirement in
mind. In particular, data is fault-tolerant natively thanks to the
data replication built inside Týr. Although not implemented
in our prototype, the replication of the file metadata could
be performed easily. In that context, we would replicate the
metadata for any given file on all nodes storing a replica of
the first chunk for that file. The replicated metadata do not
need to be fault-tolerant.

D. How does one configure TýrFS?

The two configuration parameters specific to TýrFS are
relative to the metadata replication module.

The size of the measurement sliding window needs to be
carefully chosen. Indeed, it poses a tradeoff between respon-
siveness and accuracy of the measurement system. Setting this
value too high would cause a relatively high replication latency
because of the higher number of requests needed for a value
to be part of the top-k values on each node. Setting it too
low causes the popularity estimation to be performed on little
data, hence reducing accuracy of the measurement. In practice,
this value should be low compared to the average lifetime of
applications, but high enough to capture a sufficient amount of
requests. In our experiments, we measured 1 minute to provide
a correct balance.

The second important parameter is the size of the output
top-k estimator. Specifically, a larger k will enable more values
to be monitored at the cost of memory. A smaller k would
reduce the amount of monitored values at the expense of
accuracy. In our experiments and in all traces we could study,
most of the I/O is concentrated on a very small portion of a file
system at a time. This benefits the metadata replication system,
which is able to provide high metadata replication efficiency
with relatively low values of k. In all our experiments, a value
superior to 20 did never yield significant performance improve-
ments. For larger deployments shared between many users,
setting a higher k value could lead to increased efficiency of the
metadata replication. This should be determined empirically
based on the specifics and estimated load of each deployment.

IX. CONCLUSION

Small files are known to be a significant challenge for
most distributed file systems. Indeed, the hierarchical nature
of this storage model often commands separating the metadata
from data in the cluster. With small files, the cost of fetching
metadata easily dominates the cost of actually fetching the
data. This is especially problematic when dealing with very
large amounts of small files, in which over 90% of the I/O time
can be dedicated to fetching metadata. For use-cases reading
many small files at large scale, it is critical to ensure efficient
metadata management. In this paper we argue that this cannot
be done without rethinking data and metadata management in
a distributed file system.

We propose TýrFS as a solution to the problem. TýrFS
enables clients to locate any piece of data in the cluster
independently of any metadata server. A dynamic metadata
replication module adapts to the workload to efficiently repli-
cate the necessary metadata on nodes from which the as-
sociated data is frequently accessed. Clients can then read
frequently accessed data directly, without involving additional
servers. We did implement a prototype of TýrFS over the
Týr storage system. Experiments on the Grid’5000 testbed
showed a performance improvement of more than an order
of magnitude with smaller file sizes compared to state-of-the-
art storage systems. These improvements are applicable both
to HPC and Big Data Analytics use cases.

Future work includes further improving the design of
TýrFS for enabling writes to small files at high speed to
provide a complete solution for managing small files at scale.
We plan to evaluate TýrFS on large-scale platforms, facing
real-world users and applications.

ACKNOWLEDGEMENTS

This work is part of the “BigStorage: Storage-based Con-
vergence between HPC and Cloud to handle Big Data”
project (H2020-MSCA-ITN-2014-642963), funded by the Eu-
ropean Commission within the Marie Skłodowska-Curie Ac-
tions framework. It is also supported by the ANR OverFlow
project (ANR-15-CE25-0003). The experiments presented in
this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and
including CNRS, RENATER, several universities as well as
other organizations. The authors would like to thank Álvaro
Brandon (Universidad Politécnica de Madrid) for his precious
expertise with Spark experiments.



REFERENCES

[1] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE transactions on knowledge and data engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[2] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proceedings of the ACM Symposium on Cloud Computing. ACM,
2014, pp. 1–15.

[3] A. Moniruzzaman and S. A. Hossain, “NoSQL database: New era
of databases for big data analytics-classification, characteristics and
comparison,” arXiv preprint arXiv:1307.0191, 2013.

[4] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Transactions on
Information Theory, vol. 62, no. 8, pp. 4481–4493, 2016.

[5] D. R. Cutting, D. R. Karger et al., “Scatter/Gather: A cluster-based
approach to browsing large document collections,” in ACM SIGIR
Forum, vol. 51, no. 2. ACM, 2017, pp. 148–159.

[6] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[7] “NERSC storage trends and summaries,” Accessed on, 2017.

[8] G. H. Bryan and J. M. Fritsch, “A benchmark simulation for moist
nonhydrostatic numerical models,” Monthly Weather Review, vol. 130,
no. 12, pp. 2917–2928, 2002.

[9] S. Habib, V. Morozov, H. Finkel et al., “The universe at extreme scale:
multi-petaflop sky simulation on the BG/Q,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 4.

[10] G. Berriman, J. Good, D. Curkendall et al., “Montage: An on-demand
image mosaic service for the nvo,” in Astronomical Data Analysis
Software and Systems XII, vol. 295, 2003, p. 343.

[11] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman et al., “CyberShake:
A physics-based seismic hazard model for southern california,” Pure
and Applied Geophysics, vol. 168, no. 3-4, pp. 367–381, 2011.

[12] A. Abramovici, W. E. Althouse et al., “LIGO: The laser interferometer
gravitational-wave observatory,” science, pp. 325–333, 1992.

[13] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris: How
to efficiently leverage multicore parallelism to achieve scalable, jitter-
free I/O,” in Cluster Computing (CLUSTER), 2012 IEEE International
Conference on. IEEE, 2012, pp. 155–163.

[14] L. Pineda-Morales, A. Costan, and G. Antoniu, “Towards multi-site
metadata management for geographically distributed cloud workflows,”
in Cluster Computing (CLUSTER), 2015 IEEE International Conference
on. IEEE, 2015, pp. 294–303.

[15] B. Dong, Q. Zheng et al., “An optimized approach for storing and ac-
cessing small files on cloud storage,” Journal of Network and Computer
Applications, vol. 35, no. 6, pp. 1847–1862, 2012.

[16] P. Carns, S. Lang, R. Ross et al., “Small-file access in parallel file
systems,” in Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on. IEEE, 2009, pp. 1–11.

[17] T. White, “The small files problem,” Cloudera Blog, http://blog.
cloudera.com/blog/2009/02/ the-small-filesproblem, 2009.

[18] Y. Zhang and D. Liu, “Improving the efficiency of storing for small
files in HDFS,” in Computer Science & Service System (CSSS), 2012
International Conference on. IEEE, 2012, pp. 2239–2242.

[19] G. Mackey et al., “Improving metadata management for small files
in HDFS,” in Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE International Conference on. IEEE, 2009, pp. 1–4.

[20] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 1997, pp. 654–663.

[21] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, “Simulation
of dynamic data replication strategies in data grids,” in Parallel and
Distributed Processing Symposium, 2003. Proceedings. International.
IEEE, 2003, pp. 10–pp.

[22] I. Stoica, R. Morris et al., “Chord: A scalable peer-to-peer lookup
service for internet applications,” ACM SIGCOMM Computer Commu-
nication Review, vol. 31, no. 4, pp. 149–160, 2001.

[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati et al., “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[24] P. Matri, A. Costan, G. Antoniu, J. Montes, and M. S. Pérez, “Towards
efficient location and placement of dynamic replicas for geo-distributed
data stores,” in Proceedings of the ACM 7th Workshop on Scientific
Cloud Computing. ACM, 2016, pp. 3–9.

[25] P. Matri, M. S. Pérez, A. Costan, L. Bougé, and G. Antoniu, “Keeping
up with storage: decentralized, write-enabled dynamic geo-replication,”
Future Generation Computer Systems, 2017.

[26] D. Jayalakshmi, T. R. Ranjana, and S. Ramaswamy, “Dynamic data
replication across geo-distributed cloud data centres,” in Interna-
tional Conference on Distributed Computing and Internet Technology.
Springer, 2016, pp. 182–187.

[27] P. Matri, A. Costan, G. Antoniu, J. Montes, and M. S. Pérez, “Týr: blob
storage meets built-in transactions,” in High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for.
IEEE, 2016, pp. 573–584.

[28] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux symposium, vol. 2003, 2003, pp. 380–
386.

[29] M. Moore, D. Bonnie et al., “OrangeFS: Advancing PVFS,” FAST
poster session, 2011.

[30] “Grid’5000 – Rennes Hardware (Paravance),” Accessed on, 2017.
[31] R. B. Ross, R. Thakur et al., “PVFS: A parallel file system for

linux clusters,” in Proceedings of the 4th annual Linux showcase and
conference, 2000, pp. 391–430.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. IEEE, 2010, pp. 1–10.

[33] “Hadoop Documentation – Archives,” Accessed on, 2017.
[34] V. G. Korat and K. S. Pamu, “Reduction of data at namenode in

HDFS using harballing technique,” International Journal of Advanced
Research in Computer Engineering & Technology (IJARCET), vol. 1,
no. 4, pp. pp–635, 2012.

[35] C. Vorapongkitipun and N. Nupairoj, “Improving performance of small-
file accessing in Hadoop,” in Computer Science and Software Engineer-
ing (JCSSE), 2014 11th International Joint Conference on. IEEE, 2014,
pp. 200–205.

[36] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and I/O
library for high performance computing applications,” in Proceedings
of Supercomputing, vol. 99, 1999, pp. 5–33.

[37] J. Laitala, “Metadata management in distributed file systems,” 2017.
[38] R. Klophaus, “Riak core: Building distributed applications without

shared state,” in ACM SIGPLAN Commercial Users of Functional
Programming. ACM, 2010, p. 14.

[39] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[40] P. H. Lensing, T. Cortes, and A. Brinkmann, “Direct lookup and hash-
based metadata placement for local file systems,” in Proceedings of the
6th International Systems and Storage Conference. ACM, 2013, p. 5.

[41] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in International
Conference on Database Theory. Springer, 2005, pp. 398–412.

[42] M. Zaharia, M. Chowdhury et al., “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[43] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “SparkBench: a
comprehensive benchmarking suite for in memory data analytic plat-
form spark,” in Proceedings of the 12th ACM International Conference
on Computing Frontiers. ACM, 2015, p. 53.

[44] E. Anderson, “Capture, conversion, and analysis of an intense NFS
workload.” in FAST, vol. 9, 2009, pp. 139–152.


