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Abstract 

The discrete element method (DEM) is used for continuous material modeling. The method is 

based on discretizing mass material into small elements, usually spheres, which are linked to their 

neighbours through bonds. If DEM has shown today its ability to model isotropic materials, it is 

not yet the case of anisotropic media. This study highlights the obstacles encountered when 

modeling orthotropic materials. 

In the present application, the elements used are spheres and bonds are Euler-Bernoulli beams 

developed by André et Al. [1]. Two different modeling approaches are considered: cubic regular 

arrangements, where discrete elements are placed on a regular Cartesian lattice, and random sphere 

packed arrangements, where elements are randomly packed. As the second approach is by 

definition favoring the domain’s isotropy, a new method to affect orientation-dependent Young’s 

modulus of bonds is proposed to create orthotropy. Domains created by both approaches are 

loaded in compression in-axis (along the material orthotropic directions) and off-axis to determine 

their effective Young’s modulus according to the loading direction.  

Results are compared to the Hankinson model which is especially used to represent high 

orthotropic behavior such as encountered in wood or synthetic fiber materials. For this class of 

materials, it is shown that, contrary to cubic regular arrangements, the random sphere packed 

arrangements exhibit difficulties to reach highly orthotropic behavior (in-axis tests). Conversely, 

this last arrangements display results closer to continuous orthotropic material during off-axis 

tests.   
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1. Introduction 

Modeling of continuous media using a particle approach such as DEM (Discrete 

Element Method) is recent. It started in the early 2000’s with aggregates modeling 

[2–4]. The transition from continuum towards particle models requires 

considering the interactions between particles not as simple contacts but as 

“cohesive bonds” having a more complex behavior. Two main aspects of these 

bonds have to be taken into account: their “force model” and their fracture 

conditions (if the modeled media is brittle). The force model is used to compute 

interaction forces between two elements/particles based on their relative positions. 

It can also include damping, plasticity or other physical behavior. The fracture 

condition can be either based on bond deformation, interaction forces or both. For 

each particle, resulting forces are calculated according to the boundary conditions 

of the simulated system and to other interacting elements, called its “neighbors”. 

Then Newton’s Law of Dynamic is solved with an explicit scheme leading to 

element’s acceleration. New position of the element for the next increment is 

approximated by integrating its acceleration. In the present study, the integration 

is done thank to a velocity Verlet algorithm [5]. This approach derived from 

molecular dynamics [6], was initially developed to model granular media [7]. It 

exhibits several advantages toward FEM in order to simulate cutting or fracture of 

materials. It allows indeed modeling these phenomena with high robustness and as 

meshless methods as a discrete method, does not require mesh update nor pre-

crack location. 

 

The DEM has already been applied for modeling continuous materials presenting 

an isotropic and homogeneous behavior [8,9]. It can deal efficiently with 

heterogeneity of the media and inclusions when required, both in elasticity and 

fracture mechanics [10,11]. It even allows to investigate the behavior of original 

structure composed both of granular and continuous media [12]. Nonetheless, it is 

also of high interest to deal with anisotropic materials such as fiber-reinforced 

materials, or natural composites such as wood. DEM is suited for the modeling of 

dynamic and complex loadings of these materials, for instance crash [13] or 

machining. Artificial or natural composites are highly orthotropic materials. Their 

elastic modulus in fiber direction is much higher than their moduli in transversal 
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directions, with a ratio between these moduli that can reach one hundred. 

However, the numerical modeling of these materials with particle approaches, 

such as the DEM, is more difficult compared to isotropic media. This comes from 

the difficulty to define bond behavior in order to reproduce the sought-after 

anisotropy. The modeling of orthotropic elastic behavior with the DEM 

constitutes the main objective of this paper. 

In the DEM, as previously said, the constitutive laws must be implemented in the 

bonds between discrete elements (DE) rather than in a stiffness matrix like in 

FEM. In the case of orthotropic behavior, several methods are already 

experimented in the literature for various purposes. One of the most encountered 

is the use of regular arrangement, where elements are intentionally lined up along 

the privileged directions of the material forming a regular Cartesian grid [14–16] 

or user designed regular pattern [17]. By this way, the orthotropic behavior of the 

material is rebuilt thank to the structure of the domain. A different strategy 

suggested by [18] consists in using compact domains, where elements are 

randomly placed and packed by a compacting script [19]. Then, bonds are 

generated between elements in contact except the bonds within a certain angle 

range around a given direction. Thereby, in this direction, the lack of bonds 

reduces the Young’s modulus and generates anisotropy in the domain. An 

intermediate way of proceeding is to model fibers and matrix by using either 

regular or randomly packed elements [20,21]. This last approach requires 

elements quite smaller than the fiber radius. As the amount of elements 

composing a model impacts drastically the computation time, only small domains 

can be studied with such an approach. In the literature, to the best knowledge of 

the authors, the approaches set up to obtain anisotropy are not confronted. 

 

In this paper, the elements are spheres, and the bonds behave as Euler-Bernoulli 

beams [1]. Two different arrangements are compared in order to reach an 

orthotropic elastic behavior: regular cubic arrangement for its popularity in the 

literature, and a new method, based on packed arrangement, where beams 

Young’s Moduli depend on bonds orientation. In comparison with the methods of 

the literature this method avoids to simply delete bonds and lower their quantity. 

The ability of these two arrangements to match the expected material elastic 

orthotropic properties is compared along their three main directions of orthotropy, 
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and also under off axis loading. The Hankinson’s equation [22] is used to define 

the direction dependent reference value of Young’s modulus. Simulations were 

run under quasi-static loading with GranOO workbench (1.0) [1] with the only 

addition of a developed plugin to affect the bonds elastic properties. The 

orthotropic dynamic behavior as well as fracture and anelastic behaviors are not 

discussed in this study.  

2. Material and method 

2.1. DEM Models 

As described in the introduction, DEM requires the use of bonds to bear the 

material behavior. The bonds model chosen is Euler Bernoulli cylindrical beam 

[1]. The beams elastic behavior depends on four parameters: Young modulus 

(𝐸𝑏), radius ratio (�̃�𝑏), length ( 𝑙𝑏), and Poisson ratio (𝜈𝑏). The radius ratio equals 

to the beam cross-section area divided by the mean radius of the two interacting 

elements (spheres). Euler-Bernoulli beams have three modes of deflection: 

compression/tension, flexion and torsion. The Poisson ratio allows computing the 

shear modulus in torsion. The radius ratio brings scalability of the model 

regarding the discrete element dimensions. If the size of elements is modified, the 

section and the length of beams will change accordingly resulting in an equivalent 

behavior of the built domain. In the study conducted in this article, the radius ratio 

is maintained equals to unity to focus only on the beam Young’s moduli impact 

on the global domain properties. In depth properties of those bonds are explained 

by [1]. In addition, numerical damping (𝜂) is added in the beams behavior in order 

to avoid endless oscillations around equilibrium state during simulations. The use 

of Euler-Bernoulli beams allows a fine tuning of the material behavior with a 

small number of parameter compared to commonly used spring/damper models, at 

the expense of the understanding of each parameter impacts due to their inter-

dependency. Both the stiffness in compression and the stiffness in bending of the 

bond depend on the same parameters: its Young’s modulus and its cross-section. 

Regular arrangement 

In cubic regular arrangements, also called simply “regular” arrangements in the 

following, spherical elements are regularly spaced along edges of a cubic frame 
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(see Fig. 1). The directions of edges correspond to the material principal 

directions (𝑖, ⃗  𝑗 , �⃗� ). Elements have all the same shape and properties. Their two 

parameters are their radius and their density (ρ). The density depends on the 

volume fraction of the model (ratio between the volume occupied by the elements 

and the whole represented volume). This parameter only impacts the dynamic 

behavior of the domain and not the static response, so its impact is not 

investigated in this article. The beams binding elements together are only lined up 

with the three main directions of the arrangement. They present three different 

sets of parameters depending on their direction: (𝐸𝑏𝑖, �̃�𝑏𝑖, 𝜈𝑏𝑖, 𝑙𝑏) along 𝑖, ⃗ (𝐸𝑏𝑗, �̃�𝑏𝑗, 

𝜈𝑏𝑗, 𝑙𝑏) along 𝑗,⃗⃗  (𝐸𝑏𝑘, �̃�𝑏𝑘, 𝜈𝑏𝑘, 𝑙𝑏) along 𝑘 ⃗⃗⃗  . Only the initial length 𝑙𝑏 remains 

mandatorily identical from one beam to another, whatever its direction is, since 

the initial length is the distance between two regularly spaced interacting elements 

centers. 

 

In regular arrangements, beams properties can be analytically calibrated to obtain 

desired structure in-axis properties, for instance Young’s modulus Ei, Ej and Ek, in 

the material principal directions: 

𝐸𝑖 ∙ 𝑆𝑖  =  𝐸𝑏𝑖 ∙ ∑𝑆𝑏𝑖,  𝐸𝑗 ∙ 𝑆𝑗  =  𝐸𝑏𝑗 ∙ ∑𝑆𝑏𝑗,  𝐸𝑘 ∙ 𝑆𝑘  =  𝐸𝑏𝑘 ∙ ∑𝑆𝑏𝑘 (1) 

where 𝑆𝑖, 𝑆𝑗, and 𝑆𝑘 are the cross-section of the domain with respectively 𝑖, ⃗  𝑗 , �⃗�  as 

a normal, and ∑𝑆𝑏𝑖, ∑𝑆𝑏𝑗, ∑𝑆𝑏𝑘, the area occupied by beams section in this 

domain cross-section. 

As previously said the radius is equal to 1 and thus, as all elements have the same 

radius, all the bonds have the same radius and section 𝑆𝑒 =  𝑆𝑏𝑖 =  𝑆𝑏𝑗 = 𝑆𝑏𝑘. 

Then equation (1) becomes, by isolating Eb and writing respectively 𝑛𝑖, 𝑛𝑗 , 𝑛𝑘 the 

amount of elements in the planes (𝑗,⃗⃗  �⃗� ), (𝑖, ⃗  �⃗� ), and (𝑖, ⃗  𝑗 ), 

𝐸𝑏𝑖 = 𝐸𝑖 ∙
𝑆𝑖

𝑛𝑗 × 𝑛𝑘 × 𝑆𝑒
, 𝐸𝑏𝑗 = 𝐸𝑗 ∙

𝑆𝑗

𝑛𝑖 × 𝑛𝑘 × 𝑆𝑒
, 𝐸𝑏𝑘 = 𝐸𝑘 ∙

𝑆𝑘

𝑛𝑖 × 𝑛𝑗 × 𝑆𝑒
. (2) 

Packed arrangement 

An example of random sphere packing arrangement, which will be named packed 

arrangement for readability, is given on Fig. 2. An important difference between 

regular and random sphere packing arrangement is the absence of bonds 

predefined orientation which is, for the most of them, not close to the material 
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principal directions (𝑖, ⃗  𝑗 , �⃗� ). It is thus not as simple as for the regular arrangement 

to define the Young modulus of each beam. The proposed method is to deduce 

beams’ Young’s modulus from an interpolation between Ebi, Ebj and Ebk. This 

interpolation depends on beam’s spatial orientation, which is defined by the 

spherical coordinates 𝜃 and φ, respectively the polar angle and the complimentary 

angle of the azimuthal angle (see Fig. 3). In DEM, the orientation of the bond 

linking two elements is defined by its branch vector: vector starting on one 

element center O1 and pointing out the second element center O2. Note that 𝑝  is 

the projection of the branch vector 𝑂1𝑂2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗onto the plane (O1, 𝑗,⃗⃗  �⃗� ). 

 

Four laws to set Young’s modulus 𝐸12 of the bonds of packed domains between 

two given discrete elements “1” and “2” are investigated in this article: 

On-Off: 

𝐸12  =  𝐸𝑏𝑖 𝑜𝑟 𝐸𝑏𝑗  𝑜𝑟 𝐸𝑏𝑘 (3) 

 if 𝑖, ⃗  𝑗  or �⃗�  is the closest direction. 

Hankinson’s equation:  

𝐸12  =
𝐸𝑏𝑖∙𝐸�⃗⃗� 

𝐸𝑏𝑖∙sin
2 𝜃+𝐸�⃗⃗� ∙cos2 𝜃

 (4) 

with 

 𝐸𝑝  =
𝐸𝑏𝑗∙𝐸𝑏𝑘

𝐸𝑏𝑗∙sin
2 𝜑+𝐸𝑏𝑘∙cos2 𝜑

  (5) 

the modulus in 𝑝   direction. 

Linear:  

𝐸12 = 𝐸𝑏𝑖 + (𝐸𝑏𝑗 − 𝐸𝑏𝑖) ∙
𝜃
𝜋

2

+ (𝐸𝑏𝑘 − 𝐸𝑏𝑗) ∙
𝜃∙𝜑

(
𝜋

2
)
2. (6) 

Spherical: 

 𝐸12  = cos(𝜑) ∙ 𝐸𝑏𝑖 + 𝑐𝑜𝑠(𝜃) ∙ sin(𝜑) ∙ 𝐸𝑏𝑗 + sin(𝜃) ∙ 𝑠𝑖𝑛(𝜑) ∙ 𝐸𝑏𝑘. (7) 

Fig. 4 shows the aspect of these four laws for 𝜃 = 0.  

Hankinson’s equation [22] is a very common approximation of off-axes properties 

in composites or wood and already used in FEM or analytical model to predict 

Young’s moduli according to fiber angle [23]. Spherical, On-Off and linear 

interpolations are not physics-based laws but their very simple implementation 
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justifies their trial. Except linear interpolation, all chosen laws offer the advantage 

to commute: Eb depends on the values of Ebi, Ebj and Ebk but not on the order they 

are taken for its calculation. 

2.2. Simulation process 

To obtain the mechanical properties of the structure, an unidirectional 

compression test has been modeled (see Fig. 5 and Fig. 6). The loading direction 

is denoted 𝑋 ⃗⃗  ⃗ and can be different from material’s principal directions. Four 

parameters are recorded during the simulation: reaction force F on the plates 

according to the loading direction, strain 𝜀𝑥, of the domain in the 𝑋 ⃗⃗  ⃗direction, 

kinetic energy and potential elastic energy of the system. Forces and strains are 

then post-treated in order to calculate the global Young modulus Ex in the 

𝑋 ⃗⃗  ⃗direction from equation (8). 

𝐸𝑥 =
𝐹

𝑆𝑥∙𝜀𝑥
 (8) 

𝑆𝑥 is the area of the domain section which is measured prior to the simulation. 𝜀𝑥 

computation is explained in section 2.5. 

Data is recorded every increment. The optimal time step of one increment is 

automatically computed by an inbuilt Granoo algorithm according to the beams 

stiffness. As computations are done in dynamics, it is also verified that when 

modulus is calculated, kinetic energy of the domain is negligible toward its elastic 

deformation energy (more than four decades of difference). 

2.3. In-axis loading 

For in-axis loading the simulations are conducted on discretized 10-mm cubes 

whose frame (𝑋 ⃗⃗  ⃗, �⃗� , 𝑍 ) and material principal directions frame (𝑖, ⃗  𝑗 , �⃗� ) 

correspond. They are successively loaded along 𝑋 ,  �⃗�  then 𝑍  by a mobile plate 

compressing the domain against a fixed one, without friction, until they reach 5% 

deformation in the loading direction. The setup is presented in Fig. 5.  

2.4. Off-axis loading 

Eight supplementary regular domains are designed to present a α-rotated frame 

(𝑖, ⃗  𝑗 , �⃗� ) from 10° to 80° by 10°-steps around 𝑍  to highlight mechanical behavior 
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when load is off-axis. The loading direction is 𝑋 ⃗⃗  ⃗. For example, Fig. 6 displays a 

20°-rotated regular cubic domain under off-axis loading. On the contrary to 

regular arrangements, the packed arrangement remains the same. However, bond 

properties are recalculated toward the new material frame orientation for every 

interpolation law given in 2.1. The packed model is also loaded in the height new 

cases. 

2.5. Strain measurement 

In order to compute 𝜀𝑥 it is necessary, in the DEM model, to calculate an average 

of the relative displacements between elements. For this average, elements 

interacting with the compression plates are not taken into account. This choice is 

justified by the specimen’s geometry. Indeed, rotated domains faces are “stair” 

shaped (see Fig. 6 above), thus, only some elements are in contact with the two 

plates and strains are not homogeneous when too close to the plates.  

Under the hypothesis of a homogeneous strain field in the remaining portion of 

the domains, the displacement 𝑈𝑥
𝑒 of one discrete element 𝑒 in the direction 𝑋  

with respect to the fixed compression plate depends linearly on the deformation  

𝜀𝑥 and can be written as: 

𝑈𝑥
𝑒  = 𝑋0

𝑒 ∙ 𝜀𝑥 + 𝐶𝑠𝑡, (9) 

where 𝑋0
𝑒 is the initial position of one element along 𝑋 ⃗⃗  ⃗and 𝐶𝑠𝑡 is a constant 

whose value depends only of the position of the frame origin. 

 

The strain 𝜀𝑥, which is minimizing the ordinary squared difference [24] between 

the approximation 𝑈𝑥
𝑒 and the measured displacement 𝑈𝑥 of one element is 

calculated as stated in (10): 

𝜀𝑥 =
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋,𝑈)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋)
=

∑ (𝑋0−𝑋0
𝑚𝑒𝑎𝑛)∙(𝑈𝑥−𝑈𝑥

𝑚𝑒𝑎𝑛) 𝑁𝑏𝑒

∑ (𝑋0−𝑋0
𝑚𝑒𝑎𝑛)²

𝑁𝑏𝑒

, (10) 

with, 𝑋0 the initial position of an element, 𝑋0
𝑚𝑒𝑎𝑛 the average position of the 

whole element set, 𝑈𝑥
𝑚𝑒𝑎𝑛 the mean displacement of the elements in the set and 

𝑁𝑏𝑒 the number of element constituting it.  
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2.6. Model size 

Regular domains are at maximum 9261 element-large (see Table 1). This number 

of elements guaranties at minimum 21 (√9261
3

) elements per direction. This is the 

minimum amount required to ensure the global properties to remain constant with 

changes in the number of elements [1]. To build rotated domains, a larger regular 

cube is generated, then rotated from the desired angle and every element out of a 

given 10 mm-sided box is removed. The number of elements fitting the box 

depends on the angle of rotation of the domain. For this reason, rotated domains 

minimum element amount is 9401 (in the 40° rotated domain). Packed domains 

are generated with the standard GranOO compaction method. As this method uses 

random-based algorithm, two domains consecutively built on the same criterions 

with the same inputs parameters are different. Thus 10 domains were generated to 

evaluate the variability of the results. Since the number of elements differs 

between packed domains, the mean element amount and its standard deviation are 

calculated and presented in Table 2 below. To obtain a good compactness, the 

radius of each element composing the packed domain also varies within a 10% 

range. The distribution is uniform and the variation is centered on the mean radius 

which is equal to the radius of the elements of the cubic regular arrangement. 

Elements and bonds properties are gathered in Table 3. 

 

Table 1 

Regular domain global characteristics 

Parameter Value 

Amount of elements 9261 

Amount of bonds 26420 

Volume fraction 0.523 (π/6) 

 

Table 2 

Packed domains global characteristics 

Parameter Value 

Amount of elements (mean) 11,670.7 

Amount of elements (standard deviation) 63.75 
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Amount of bonds (mean) 26,420 

Amount of bonds (standard deviation) 439.01 

Volume fraction (mean) 0.654 

Volume (standard deviation) 0.0044 
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Table 3 

Simulation micro parameters: Elements and bonds properties. In the case of packed domains, the 

element and beam radius indicated are their mean value.   

Parameter Value 

Elements (type) spheres 

Radius (10−3 ∙ 𝑚) 0.2381 

Density (𝑘𝑔 ∙ 𝑚−3) 1000 

Bonds (type) Euler-Bernoulli beams 

Ebi (MPa) 100 

Ebj (MPa) 5 

Ebk (MPa) 1 

Radius (10−3 ∙ 𝑚) 0.2381 

Damping factor 0.2 

Poisson ratio 0.3 

Length (10−3 ∙ 𝑚) 0.4762 

3. Results 

3.1. Anisotropy degrees 

The results gathered using equation (7) and the simulations described in the 

previous chapter are displayed in the Table 4. The focus is drawn on the two 

anisotropy degrees between the three main axes defined as the ratio between the 

Young modulus observed in two main axes: Ei/Ej and Ei/Ek. These two quantities, 

named the degrees of anisotropy of the domain, are the main targets to reach when 

modeling an orthotropic media. If the ratios are respected but all modulus are 

lower or higher than expected, they can be post-corrected or the calibration 

process must be reworked. Both solutions do not present technical issues with 

current algorithms. Fig. 7 displays the ratio Ei/Ej and Ei/Ek ( mean value in the 

case of packed domains). Notice that the y-axis is in log scale for readability. 
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Table 4 

Degrees of anisotropy measured according to the method of orthotropic generation, with 

Ebi = 100 MPa, Ebj  = 5 MPa and Ebk = 1 MPa 

Law 
Ei/Ej Ei/Ek 

Regular arrangement 20 100 

On-off 3.56 7.03 

Hank 1.55 3.27 

Linear 2.18 2.39 

Spherical 2.02 2.17 

As anticipated, for regular domains, the exact ratios are found in the three main 

directions of orthotropy, that is Ei/Ej = 20 and Ei/Ek = 100. At the contrary, for 

packed models the ratios between output degrees of anisotropy of the structure 

and input degrees of anisotropy in the bond Young’s moduli are lower and change 

depending on the interpolation law chosen. The on-off law is guarantying the 

highest degree of anisotropy but the output ratio is still lower than the input ratio. 

For the linear, spherical and Hankinson laws the results are far from the expected 

ratios since the degrees of anisotropy recorded are less than 15% as large as the 

input in every case. It is also noticeable that the relation between the ratios Ei/Ej 

and Ei/Ek depends on the interpolation method. Thus, the impact of the input 

parameters on the output degree of anisotropy is investigated in the following.  

The same simulations as described previously were run again with 5 different 

degrees of anisotropy. Simulation parameters used and corresponding results are 

shown in Table 5. Ebj and Ebk are maintained constant, respectively equal to 5 

MPa and 1 MPa while Ebi varies between 5 MPa and 125 MPa in order to increase 

the input degrees of anisotropy of the model. As a consequence, both input ratios 

Ebi/Ebj and Ebi/Ebk are affected. The first ratio varies between 1 and 25 while the 

second varies from 5 to 125.  Fig. 8a displays the evolution of the degree of 

anisotropy of the modelled domain Ei/Ej according to the input ratio of stiffness in 

its beams Ebi/Ebj and Fig. 8b displays the evolution of the degree of anisotropy of 

the modelled domain Ei/Ek according to the input ratio of stiffness in its beams 

Ebi/Ebk. Fig. 8c presents the evolution of the third degree of anisotropy Ej/Ek 

according to Ebi. 
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Table 5 

Input degree of anisotropy applied to the beams and output degree of anisotropy of the domain 

measured according to the method of orthotropic generation 

Ebi/Ebj 1 5 10 15 20 25 

Ei/Ej (Regular arrangement) 1.00 5.00 10.00 15.00 20.00 25.00 

Ei/Ej (On-Off) 1.00 2.07 2.75 3.21 3.56 3.85 

Ei/Ej (Hankinson) 1.00 1.38 1.49 1.53 1.55 1.57 

Ei/Ej (Linear) 1.01 1.69 1.97 2.10 2.18 2.24 

Ei/Ej (Spherical) 1.00 1.60 1.84 1.95 2.02 2.06 

Ebi/Ebk 5 25 50 75 100 125 

Ei/Ek (Regular arrangement) 5 25 50 75 100 125 

Ei/Ek (On-Off) 2.22 4.46 5.69 6.49 7.03 7.51 

Ei/Ek (Hankinson) 1.96 2.82 3.10 3.21 3.27 3.31 

Ei/Ek (Linear) 1.47 2.05 2.25 2.34 2.39 2.42 

Ei/Ek (Spherical) 1.38 1.89 2.05 2.13 2.17 2.20 

For every law, as the input degree of anisotropy is higher, the output degree of 

anisotropy of the domain increases, but as it grows slower than the input.  

3.2. Off-axis behavior 

Domain’s effective Young’s modulus is measured every 10°-step and the results 

are plotted on Fig. 9 from Ej to Ei. Each law displays a different evolution. In the 

following, ΔE is defined as the amplitude between E(0°) and E(90°): ΔE = E(0°)  - 

E(90°). The effective Young’s modulus of an α-rotated domain E(α) decreases 

very fast in the case of regular domains. E(α) has already decreased of 93% of ΔE 

when α reaches 40°. Afterwards, the effective Young modulus slowly decreases 

until E(90°). At the contrary, using either on-off, Hankinson’s, linear and 

spherical laws, the switch between E(0°) and E(90°) is smoother. 

 

Results obtain with the 4 different laws are compared with results obtain with the 

Hankinson’s equation as reference. The use of Hankinson’s equation was proven 

efficient to represent mechanical properties evolution along fiber angle in strongly 

anisotropic material, including Young modulus [25, 26]. 

Considering measured E(0°) and E(90°) are corrects, theoretical  𝐸𝑡ℎ(10°) to 

 𝐸𝑡ℎ(80°) are calculated with Hankinson’s equation from E(0°) and E(90°): 
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Eth(α) =
 E(0°)∙ E(90°)

 E(0°)∙sin2 α+ E(90°)∙cos2 α
. (11) 

Theoretical and mean measured effective Young’s Modulus are then compared. 

The indicator used to evaluate methods efficiency toward continuum mechanics is 

the Normalized Root Mean Squared Error (12):  

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝐸(α)−𝐸𝑡ℎ(α))

280°
10°

𝑛∙(max(𝐸(α))−min(𝐸(α)))
, (12) 

where n is the number of summed quantities (8 for 10 °-steps). The NRMSE 

allows to compute a mean error between the measured and the estimated off-axis 

Young’s moduli normalized by the range of the measured Young’s moduli. The 

lower the NRMSE, the more accurate the chosen law. The resulting NRMSE for 

the 5 studied cases are displayed in Table 6. 

Table 6 

NRMSE values calculated for the different method of orthotropic generation 

Law NRMSE calculated 

Regular arrangement 0.579 

On-off 0.164 

Hank 0.288 

Linear 0.326 

Spherical 0.390 

The lowest NRMSE is shown by the On-off interpolation method: 0.164. 

Hankinson’s law comes second. Linear and spherical law’s NRMSE is higher and 

regular arrangement NRMSE is the highest and equals 0.579. 

 

To allow more detailed analysis, the relative error (13) evolution toward every 

10°-steps rotation angle is also calculated: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑒𝑟𝑟𝑜𝑟(𝛼) =
𝐸(𝛼)−𝐸𝑡ℎ(𝛼)

𝐸𝑡ℎ(𝛼)
. (13) 

The results according to the law chosen are displayed Fig. 10. 

The relative error between effective Young’s modulus of the regular domain and 

Hankinson’s equation increases with specimen angle (α) until it reaches its 

maximum between 0° and 20° rotation (the measurement resolution is not small 

enough to give more precision in the estimation). Once this maximum is reached, 

the error seems to decrease linearly until a 90° rotation. As hinted by NRMSE, 

relative errors are lower in the case of packed domains, whatever the rotation 
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angle and the law chosen is. However, unlike NRMSE suggested, On-Off 

interpolation errors are higher than Hankinson’s interpolation relative errors, 

unless for 30°. For 20° and 40°, On-Off error is as low as Hankinson’s error, but 

the low 30° “On-off” errors compensate 10° and larger angle than 50° error. 

Indeed, for larger angles, the Young’s Modulus decreased enough for the squared 

error to be also very small once normalized. Linear and Spherical laws errors 

increases with α until it reaches a maximum of between 50° (approximately 

5.33%) and 60° (approximately 5.28%). Then it decreases when α tends to 90°. 

4. Discussion 

4.1 Degrees of anisotropy 

 

When focusing on two main directions of the considered orthotropic material, 

degrees of anisotropy of the global domain obtained using regular cubic domains 

equal to the input anisotropy ratio of the beam Young’s Moduli. However, for 

packed domains, the global domain degree of anisotropy measured is always 

lower than the input. Moreover the output degree of anisotropy tends to reach an 

asymptote. Increasing significantly the input ratio does not affect significantly the 

domain anisotropy anymore. The value of the asymptotes varies depending on the 

Young’s Modulus computation law chosen. This value is also affected by the 

stiffness of the bond in the third main direction (see Fig. 8c). Because of the 

previous phenomenon, it is impossible to obtain a high degree of anisotropy if the 

domain is packed with the Young’s moduli calculation strategy tested. 

 

Having very large differences between beams elastic properties to obtain a given 

global structure degree of anisotropy leads to two consequences. On one hand it 

increases the computational time as the time constant between two computational 

increments is directly related to the highest beam stiffness of the domain. Thus, to 

simulate a phenomenon lasting a given time, a simulation using packed domain 

instead of regular domain will last longer. On the other hand it can also lead to 

unphysical local effects leading to easy buckling of the structure because beams 

with extremely different Young’s Modulus interact with each other. 
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4.2 Off-axis effective Young’s moduli 

Cubic regular arrangement present the exact degrees of anisotropy in the main 

directions of orthotropy but the effective modulus of the structure when loaded off 

the main directions is inaccurate compared to packed domains. Indeed, the relative 

error varies between 6% and 24% depending on the angle formed by the load and 

the main direction of orthotropy in the case of regular domains. The effective 

Young’s modulus is over-estimated by this law. For a small angle, the relative 

error between the effective modulus and the theoretical modulus calculated can be 

ten times smaller for packed domains. In those last types of domains, the relative 

error, whatever the chosen law is, between effective modulus and its theoretical 

value is always lower than 5.4%. The most consistent law is Hankinson’s 

equation, while on-off law displays very good results as well. Linear and spherical 

laws present slightly larger relative errors and tend to under-estimate the effective 

Young’s modulus, especially around 50° to 70° rotation toward one main 

direction. Thus, as soon as the model is used for complex geometry, load state, 

displacement or strain fields, this last strategy of model arrangement becomes way 

more relevant than regular arrangement-based models (in the case of low degree 

of anisotropy). 

5. Conclusions 

To model orthotropic media at mesoscopic or macroscopic scale, with DEM, by 

the way of Euler-Bernoulli beams, the two proposed approaches led to two 

different behaviors. Regular cubic arrangement displays perfect stiffness in its 

main directions of orthotropy, but its response is not as good when loaded off-

axis. It suffered up to 24% relative error with Hankinson’s equation. In the case of 

packed domains, four laws to establish beams Young’s modulus were evaluated. 

Unlike cubic regular arrangements, it was not possible to reach a significantly 

high degree of orthotropy with any of these four laws. However, in every case 

their off-axis behavior was very good leading only to 7% relative error in the 

worst tested scenario. On-off law, even if very simple, seemed to present a good 

compromise between reachable anisotropy which was the highest of the four laws 

and off axis behavior which was the second best fitting with Hankinson’s 

equation. Thus, the applications of the two approaches are distinct. Regular 

domains are mandatory when modeling materials with anisotropy degree is high 



17 

(starting approximately from 10); but, in the case of low anisotropy, packed 

domains are preferable due to their advantage in off-axis behavior. For very small 

degrees of anisotropy (approximately up to 2) Hankinson’s law would be the 

privileged choice. For higher anisotropy (between 2 and 8), On-off law becomes 

the optimized alternative. Linear and Spherical does not bring competitive 

benefits towards the two previous laws. 

 

This last approach might be improved in order to increase their reachable 

orthotropy degree. For instance, the use of Timoshenko beams instead of Euler-

Bernoulli model, adding shear deflection to the bonds would be an interesting 

possibility to investigate. Exploring new laws to determine beams Young’s 

Modulus might also be a path to follow in order to both reach larger degrees of 

anisotropy and better off-axis behavior. Every tested law but “On-off” was 

monotonic, to go further, experimenting nonmonotonic laws may perhaps be a 

solution to rise up the asymptotic anisotropy degree reachable. In the case of 

either Euler-Bernoulli or Timoshenko beams, adapting the beams section could be 

one more solution to increase the domains anisotropy as it would change the ratio 

between tensile and bending potential energy of the system. In this last case, extra 

attention should be focused on the interaction between beam Young’s moduli and 

sections since both those variables impact the structure global stiffness. 
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Figures 

 

Fig. 1. Regular arrangement whose principal directions are 𝑖, ⃗  𝑗  and �⃗�  

 

 

Fig. 2. Packed domain whose principal directions are 𝑖, ⃗  𝑗  and �⃗�  
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Fig. 3. Scheme of the angles used in off-axis Young’s modulus computation. θ is the polar angle 

and φ is the complementary azimuthal angle in the frame (𝑗,⃗⃗⃗⃗  �⃗� , 𝑖)⃗⃗  

 

 

Fig. 4. Interpolation laws aspect between two Young’s moduli (here 𝐸𝑝 and 𝐸𝑏𝑖) 
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Fig. 5. Left: regular cubic arrangement between numerical compression plates – Right: random 

sphere packing arrangement in the same configuration 

 

 

Fig. 6. Left: regular domain rotated by 20° between compression plates, right: packed domain in 

the same configuration 

 

 

Fig. 7. Degrees of anisotropy measured according to the method of orthotropy generation and 

input degree of anisotropy 
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Fig. 8. Domain anisotropy degrees evolution according to input ratio between longitudinal and 

transversal beams stiffnesses  

 

 

Fig. 9. Off-axis effective Young’s modulus measured by numerical compression experiments for 

the different approaches 
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Fig. 10. Relative Error between the effective Young’s modulus ratio measure and estimated for 

tested laws and each rotation of the domain 

 

 


