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Abstract—Cloud developers traditionally rely on purpose-
specific services to provide the storage model they need for an
application. In contrast, HPC developers have a much more
limited choice, typically restricted to a centralized parallel
file system for persistent storage. Unfortunately, these systems
often offer low performance when subject to highly concurrent,
conflicting I/O patterns. This makes difficult the implementation
of inherently concurrent data structures such as distributed
shared logs. Yet, this data structure is key to applications such
as computational steering, data collection from physical sensor
grids, or discrete event generators. In this paper we tackle this
issue. We present SLoG, shared log middleware providing a
shared log abstraction over a parallel file system, designed to
circumvent the aforementioned limitations. We evaluate SLoG’s
design on up to 100,000 cores of the Theta supercomputer: the
results show high append velocity at scale while also providing
substantial benefits for other persistent backend storage systems.

I. INTRODUCTION

Traditionally, cloud system designers have used purpose-
specific storage services for their data storage needs. These
include key-value stores [1]–[3], wide-column databases [4]–
[6], or streaming message brokers [7], [8]. On the contrary,
high-performance computing (HPC) platforms rest on on a
much more constrained set of storage primitives, typically
limited to parallel file systems [9], [10] or transient burst
buffers [11], [12]. The low availability of local storage on the
compute nodes of most supercomputers today and the lack of
administrative access give little opportunity for users to deploy
the storage system they need.

As the boundaries between HPC and big data analytics
(BDA) continue to blur [13], new challenges arise. A critical
objective set in this convergence context is to foster application
portability across platforms [14]. Let us consider an appli-
cation running in a cloud context, which uses a specialized
storage service such as a distributed shared log [15]. Porting
this application to HPC (e.g., to leverage specific hardware
capabilities) is challenging. Indeed, deploying cloud-oriented
shared log services on HPC is often not possible because of
the unique specificities of these platforms. While one could
consider a shared log abstraction over the available parallel
file system, providing the illusion of a storage paradigm atop
another is extremely difficult considering conflicting sets of
constraints and APIs between the two models [16], [17].

Shared log storage is indeed one of these storage models
that are both unavailable and difficult to implement on HPC
platforms using the available storage primitives. Yet, in sci-
entific applications, distributed logs could play many roles,
for example for in situ visualization of large data streams,
collection of telemetry events for computational steering, or
data aggregation from arrays of physical sensors. A shared
log enables multiple processes to append data at the end of a
single byte stream. Unfortunately, in such a case, the write
contention at the tail of the log is among the worst-case
scenarios for parallel file systems, yielding problematically
low append performance [18]. Thus, efficient streaming log
middleware is needed that can leverage the primitives available
on HPC platforms for persistence.

We present the SLoG1 shared log middleware. It pro-
vides high append velocity over distributed file systems by
leveraging I/O parallelism and proxying, circumventing the
inherent limitations of HPC file systems. It features pluggable
backends that enable it to leverage other storage models such
as object stores or to transparently forward the requests to
a shared log storage system when available (e.g., on cloud
platforms). SLoG abstracts this complexity away from the
developer, fostering application portability between platforms.
We evaluated SLoG’s performance at scale on a leadership-
class supercomputer, using up to 100,000 cores. We measured
append velocities peaking at 174 million appends per second,
far beyond the capabilities of any shared log storage imple-
mentation on HPC platforms. For these reasons, we envision
that SLoG could fuel convergence between HPC and big data.
Our contributions are as follows.

• We leverage several use cases for distributed logs, (Sec-
tion II), and present the design of SLoG and the diverse
techniques supporting its scalability (Section III).

• We evaluate SLoG on up to 100,000 cores of the Theta
supercomputer [19], exhibiting high append velocities
on HPC platforms using both file system and object
storage backends (Section IV).

We review the related work (Section V) and conclude with
a discussion of future research directions and perspectives
(Section VI).

1SLoG stands for shared log gateway



II. THE CASE FOR SHARED LOG MIDDLEWARE

Distributed logging is a simple storage model that naturally
serves a wide variety of applications. On HPC systems it
allows the collection of metadata, telemetry, or monitoring
events generated by simulation that can be used either live for
computational steering or offline for analytics or visualization.
In the case of non-bulk-synchronous applications such as
discrete event simulators, shared logging is a natural model for
storing the generated events that can arrive in no predefined
order. Shared logs also prove critical for real-world BDA use
cases, such as large-scale monitoring systems [20].

In telemetry event management, the events generated by an
application carry data related to its state, its performance, or
other application-specific information. Analyzing these events
while the application is running can be useful, for instance
to verify that the application behaves as expected or to run
in situ visualization [21]. This information can also be used
for in-situ analytics [22] or computational steering [23]–[25].
The latter can in turn influence the simulation in real time,
for example increasing its resolution on a particular zone or
rerunning part of the simulation with different parameters.
We illustrate this in Figure 1. In this paper we focus on the
application of telemetry event management to computational
steering.

The case for a shared log on HPC systems. In order to
deliver its real-time promise, computational steering requires
collecting live telemetry data from all the nodes running the
simulation. In parallel, one or multiple processes retrieve,
analyze, and act on the gathered events in chronological
order. This chronological order is critical for the accuracy
of computational steering and is the key motivation for a
distributed shared log. Moreover, a distributed shared log
between the simulation and the steering helps mitigate bursting
generation rates and decouple these two components.

Why are shared logs challenging? Parallel file systems
are well known to be generally bad at handling concurrent,
conflicting writes originating from different clients [18], [26]–
[28]. Unfortunately, distributed logs are by design a highly
concurrent data structure in which multiple processes essen-
tially compete to write to the tail of a unique object. Because
distributed logging is not available on HPC platforms today,
few or no applications are actually built around this data
structure. Yet, we advocate that distributed logging could
become a relevant storage model for HPC applications in the
next years, as strong as it is today for BDA.

Hence, we posit that efficient distributed shared log mid-
dleware would foster the development of applications taking
advantage of computational steering at scale. It needs at the
same time to evade the limited write concurrency permitted by
these storage systems, while abstracting this complexity away
from the developer. Moreover, when other storage models are
available (e.g., object storage [29]), it should take advantage
of their different capabilities to further enable performance
without requiring any application modification.
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Fig. 1: Telemetry event collection. Simulation ranks push events to a log (a).
Such events are used for online tasks (e.g., in situ visualization, computational
steering) (b), or are stored for further offline processing (c). Computational
steering in turn controls the simulation (d).

III. SLOG DESIGN AND IMPLEMENTATION

In this section we describe the key principles that drive the
design and implementation of SLoG, large-scale shared log
middleware that tackles the aforementioned challenges. SLoG
adapts best practices from CORFU [15] or Kafka [7] to solve
the limitations of HPC parallel file systems.

The two key design principles behind SLoG are stream
partitioning (Section III-A) and write proxying (Section III-B).
The former reduces write contention by distributing events to
multiple partitions. The latter eliminates concurrency, channel-
ing appends through intermediate processes each mapped to
a partition. Readers are organized in groups, obtaining events
from a dedicated read proxy (Section III-C). Figure 2 shows
this architecture. SLoG also acts as a pass-through interface
on platforms where shared log implementations are available,
fueling cross-platform application portability.

A. Stream partitioning

In order to reduce write concurrency, a log is split into
multiple partitions. This concept is similar to that of Kafka.
When a writer generates an event, it is directed to one and only
one partition. Each partition hence receives only a subset of all
append operations. A partition is mapped to a single, dedicated
file on the parallel file system, providing persistence as well as
fault tolerance. The possible write throughput for a partition is
hence determined by the maximum throughput the underlying
file system can support for a single file. Increasing the number
of partitions for a log increases the total throughput supported
by the log by increasing write parallelism. The number of
partitions for each log is set by the user at the time the log is
created, and that number cannot be changed at a later time.

Multiple strategies are possible for determining to which
partition each write is directed. These include uniform dis-
tribution (e.g., round robin) or a static mapping of writers
to specific partitions. In practice, uniform distribution is the
default on most systems [7]. We adopted the same default for
SLoG, thus ensuring that with p partitions, each will receive
n/p events out of a total of n.
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Fig. 2: SLoG high-level architecture.

B. Write proxying

Unfortunately, enabling clients to append directly to the
files that back each partition of the system would yield
problematically low performance, because of the inherent
low level of concurrency permitted by parallel file systems.
Indeed, while these systems excel at dealing with intensive
loads of isolated writes, they are known to poorly handle
conflicting operations. Yet, efficient conflict management is
essential for fast file appends. The POSIX specification defines
an O_APPEND mode for this purpose, but it is inherently more
difficult to implement in a distributed environment considering
the strong consistency semantics of POSIX I/O, and hence it
has not been the focus of parallel file system optimization.

Append proxying in SLoG circumvents this issue. This
principle is inherited from best practices for HPC I/O opti-
mization. With each partition, SLoG associates a dedicated
process named append proxy. Through this process all append
operations are channeled from the writers to a specific parti-
tion. This eliminates the costly file system access concurrency
at the expense of a small increase in append latency.

The proxy process receives append operations from the
writers. It maintains internally an exclusive cursor on the
file that hosts the partition it is associated with, as well as
an offset counter. For each append operation, it generates
a write to the file at the next free offset, along with the
current timestamp, and increments the counter by the size of
the event. For optimization, incoming requests can be batched
and written in bulk to the file system. Also, the proxy can be
used to transparently apply further data transformations (e.g.,
data compression).
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Fig. 3: SLoG reader grouping strategies.

C. Read proxying

SLoG distributes clients in reader groups. For each reader
group, a dedicated read proxy process distributes the events to
the readers of this group while ensuring a total delivery order
between events within a group.

Reader groups serve the principal purpose of increasing
the read parallelism permitted by the system. A number of
partitions are associated with each reader group. The events
from these partitions are distributed to all the readers the group
contains. This distribution is performed observing the order of
the timestamp associated with each event in the log.

Such an approach permits great flexibility in terms of
grouping strategies. For example, read parallelism can be
increased by mapping distinct groups to disjoint sets of log
partitions. With this configuration, a partial order of the
messages is guaranteed inside a reader group. It is illustrated
by Figure 3a. Mapping different groups to a common set of
partitions enables multiple readers to access the same events in
parallel. This is the case when multiple applications access the
same log simultaneously (e.g., computational steering and in
situ visualization). It is illustrated by Figure 3b. Combinations
of these strategies are possible in order to increase parallelism
while using multiple applications.

Read proxies serve a purpose symmetric to that of write
proxies. With each reader group a single read proxy process.
Its role is twofold: (1) coordinate reads from the file system
for all the partitions the group is mapped to and (2) distribute
the events to the readers of the group. It does so guaranteeing
partial delivery ordering of the events.

A read proxy holds a cursor to all files that hold each of
the partitions the group is associated with. Read requests from
the clients are served in timestamp order, advancing all the file
cursors in parallel. As an optimization to significantly reduce
read latency, the proxy reads from the file system in chunks
that are cached in its memory.

If the write proxy is configured to apply data transfor-
mations such as compression, the read proxy is responsible
for applying the reverse operation, hence rendering these
transformations completely transparent to the client.



IV. EVALUATING SLOG AT SCALE

In this section we discuss early experiments proving the
relevance of the design of SLoG. We focus on append through-
put, which is harder to scale than read throughput.

A. Leveraging a high-end experimental platform

All experiments carried out in this paper are based on the
Theta supercomputer [19], hosted at the Argonne Leadership
Computing Facility (ALCF) of Argonne National Laboratory.
Theta is a 9.63 petaflops system, ranked 16 in the TOP500 as
of June 2017. It is composed of 3,624 nodes, each containing
a 64-core Knights Landing Xeon Phi CPU with 16 GB of
high-bandwidth in-package memory (MCDRAM), 192 GB of
DDR4 RAM, and a 128 GB SSD. Networking leverages a
Cray Aries interconnect with Dragonfly configuration.

The Theta storage system is based on Lustre. Its 10 TB
parallel file system spans 170 storage servers. Theta is also
connected to the GPFS file system of the Mira supercomputer
colocated in the same facility using high-speed interconnects.
This configuration allows for experiments on both Lustre and
GPFS from the same experimental platform.

The minimal API required for computational steering is
straightforward to benchmark. Indeed a single operation,
append, is performed by all event generator ranks. We
develop a simple MPI-based benchmark that sequentially
generates events at maximum rate from a number of generator
ranks. These 1 KB events are appended to the log using that
operation. The computational steering process is simulated
by a single dedicated rank that reads the logs concurrently,
repeatedly reading events from the log. Since we focus only on
storage I/O, the data is discarded immediately by this process.
We advocate that this benchmark, although simple, is well
suited for evaluating the maximum performance achievable by
the system. The append operation causes a very high write
contention in distributed logging systems, a large number of
processes concurrently push data at maximum rate to a single
log puts a very high pressure on the storage system.

B. Evaluated persistence backends

Besides the Lustre and GPFS file systems, we experimented
using SLoG with two additional backends:

Zlog [30], which implements the CORFU [15] log design
over the Ceph file system [31]. At its core lies a network
sequencer, an atomic counter initialized with the size of the
file and incremented by the size of each write.

Týr [32], which is an object store targeted at coping with
highly concurrent I/O patterns. It features a lightweight trans-
action protocol that natively enables atomic operations such
as appends to be performed at high speed.

These two systems provide a baseline performance com-
pared with (1) a purpose-built shared log storage system (i.e.,
Zlog) and (2) an object storage system built for concurrent I/O
patterns (i.e., Týr).
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Týr Zlog

Fig. 4: SLoG single-partition append performance, using up to 8,192 append
client cores, with 1 KB appends.

1 4 16 64
0

1

2

3

4

5

Number of partitions

T
hr

ou
gh

pu
t

(1
0
6

ap
pe

nd
s

/
se

c)

SLoG + Lustre SLoG + GPFS
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Fig. 5: SLoG multi-partition append performance, using 8,192 append client
cores, with 1 KB appends.

C. Baseline append performance with a single partition

We start evaluating the baseline performance of SLoG using
a single log. This demonstrates the relevance and efficiency of
write proxying.

Theta is one of the few supercomputing platforms offering
access to the local SSD drives of the compute nodes, we can
compare Týr and Zlog on the machines. The application uses
between 1 and 8,192 cores as append clients. We deploy Týr
and Zlog using between 64 and 1,536 cores for the storage
servers, on different machines from the append clients (we
measured this ratio to be optimal for our setup). We measure
the number of appends per process per core over 10 minutes.
We do not use any write batching or compression. Týr and
Zlog are configured with a replication factor of 3.

We plot the results on Figure 4. Overall, they show that the
performance achieved with SLoG is competitive with that of
Týr or Zlog when the number of concurrent writers is low,
despite the overhead of write proxying and the limitations of
the underlying file system. As soon as the I/O capabilities
of a single write proxy are saturated, however, the write
performance offered by SLoG with both Lustre and GPFS
reaches a plateau, slightly decreasing as more writers are
added. Týr and Zlog exhibit similar behavior, which is due
to the high write contention at the tail of the log.
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Fig. 6: SLoG horizontal scalability up to 100,000 append client cores, using
up to 6,250 SLoG partitions, with 1 KB appends.

D. Varying the number of partitions

The performance decrease observed with a single log when
the write proxy gets saturated is the main motivation driving
the parallelism model of SLoG. By evenly distributing the
writes across partitions, we increase the number of proxies,
hence increasing the total write capacity of the log.

Since neither Zlog nor Týr offers such a parallelism model
to support high logging velocity, we implement for each a
SLoG backend. For Zlog, each partition is mapped to a Zlog
log. For Týr, we map a partition to a blob. Since thee systems
are built for concurrent I/O, the SLoG client library accesses
the storage systems directly, bypassing the write proxy.

In Figure 5 we plot the results. We show how increasing the
number of partitions impacts the performance of the storage.
We use the same setup as in the preceding section with 8,192
clients, varying the number of partitions between 1 and 64. The
results show a clear increase in the throughput per client. As
expected, doubling the number of partitions roughly doubles
the achieved throughput on the log by evenly splitting the load
across multiple files, reducing hot spots at the tail of the log
and consequently increasing throughput.

We also measure the achieved read performance during
this experiment. We do not note any substantial performance
degradation when increasing the number of partitions, with
only a 5,3% performance drop between 1 and 8,192 partitions.

E. Scaling up to 100,000 append cores

We demonstrate the scalability of the system by varying the
number of client cores from 12,500 to 100,000. Based on our
previous experiments, 16 client cores per proxy yield the best
overall performance. We hence vary the number of partitions
proportionally between 780 and 6,250. We use both Týr and
Lustre as backends, using the same configuration as in the
preceding section. Týr is deployed on 20,000 storage cores.

Overall, the results depicted in Figure 6 confirm the near-
horizontal scalability that can be achieved with SLoG by
increasing the number of concurrent partitions, using either
file- or object-based storage as the backend. We measure a
throughput of up to 174 million appends per second on Lustre
and up to 241 million appends per second with Týr.

V. RELATED WORK

SLoG seeks to enable HPC applications to leverage dis-
tributed shared logs over the storage primitives provided by
the platform. This tackles the challenges posed by large-scale
computational steering. At smaller scale, however, researchers
have used comparable approaches on HPC platforms.

In [33], Agelastos et al. propose a lightweight distributed
service able to collect live metrics on the Blue Waters system.
However, this tool is specifically built for system monitoring.
Knüpfer et al. propose a comparable contribution in [34],
describing a large-scale monitoring infrastructure capable of
collecting performance metrics from a large number of com-
pute nodes. In contrast with these two contributions, SLoG
tackles a more general problem with significantly higher
throughput requirements.

The challenges of parallel I/O to a single file on HPC
systems have been tackled by Frings et al. in [35]. Indeed,
their design of SIONlib enables a large number of processes
to concurrently collaborate on a single file. While that work
is well suited for a number of use cases, its goal is not to
provide a total ordering across the events that is crucial for
distributed logging. Actually, while not the target of this paper,
SIONlib could be seen as complementary to SLoG by enabling
all partitions to share a single file.

Also relevant to the distributed logging field are the excel-
lent publications describing state-of-the-art streaming data sys-
tems, including CORFU [15], Kafka [7], and BookKeeper [8].
SLoG builds on the best practices learned from these systems
to cope with the hard specificities of HPC storage systems.
SLoG does not intend to replace such systems but to comple-
ment them by providing an alternative for platforms on which
they are not available.

VI. CONCLUSION AND PERSPECTIVES

Distributed shared logs provide a relevant storage model
for a number of applications (e.g., computational steering, in
situ visualization). However, they are currently not available
on HPC platforms, typically offering parallel file systems for
persistent storage and only limited possibilities for installing
specialized storage services such as distributed shared logs.

In this paper we introduce the SLoG middleware, proposing
a distributed shared log abstraction over a parallel file system.
To provide high write throughput, we circumvent the low
write concurrency of parallel file systems using write proxying,
while at the same time partitioning the log to ensure high
horizontal scalability. We show on up to 100,000 cores of
the Theta supercomputer that SLoG delivers its promise of
high append performance with multiple persistence backends,
which include object stores in addition to parallel file systems.

We foresee that such an interface could serve in the context
of HPC and big data convergence, providing users with a
high-level abstraction of distributed logging that can adapt
to a variety of backend systems depending on the primitives
available on each platform. SLoG could therefore prove to
be a strong building block for distributed logging, fueling
application portability between HPC and big data platforms.
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