N

N

Mission Possible: Unify HPC and Big Data Stacks
Towards Application-Defined Blobs at the Storage Layer
Pierre Matri, Yevhen Alforov, Alvaro Brandon, Maria Pérez, Alexandru
Costan, Gabriel Antoniu, Michael Kuhn, Philip Carns, Thomas Ludwig

» To cite this version:

Pierre Matri, Yevhen Alforov, Alvaro Brandon, Maria Pérez, Alexandru Costan, et al.. Mission
Possible: Unify HPC and Big Data Stacks Towards Application-Defined Blobs at the Storage Layer.
Future Generation Computer Systems, 2020, 109, pp.668-677. 10.1016/j.future.2018.07.035 . hal-
01892682

HAL Id: hal-01892682
https://hal.science/hal-01892682
Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01892682
https://hal.archives-ouvertes.fr

Mission Possible: Unify HPC and Big Data Stacks
Towards Application-Defined Blobs at the Storage Layer

Pierre Matri?, Yevhen Alforov®, Alvaro Brandon?, Maria S. Pérez?®, Alexandru Costan®, Gabriel Antoniu®,
Michael Kuhn¢, Philip Carns®, Thomas Ludwig®

“Universidad Politécnica de Madrid, Madrid, Spain
bDeutsches Klimarechenzentrum, Hamburg, Germany
¢Inria Rennes, France
4 Universitit Hamburg, Hamburg, Germany
¢Argonne National Laboratory, Lemont, IL, USA

Abstract

HPC and Big Data stacks are completely separated today. The storage layer offers opportunities for convergence,
as the challenges associated with HPC and Big Data storage are similar: trading versatility for performance. This
motivates a global move towards dropping file-based, POSIX-IO compliance systems. However, on HPC platforms
this is made difficult by the centralized storage architecture using file-based storage. In this paper we advocate that the
growing trend of equipping HPC compute nodes with local storage redistributes the cards by enabling object storage
to be deployed alongside the application on the compute nodes. Such integration of application and storage not only
allows fine-grained configuration of the storage system, but also improves application portability across platforms. In
addition, the single-user nature of such application-specific storage obviates the need for resource-consuming storage
features like permissions or file hierarchies offered by traditional file systems. In this article we propose and evaluate
Blobs (Binary Large Objects) as an alternative to distributed file systems. We factually demonstrate that it offers
drop-in compatibility with a variety of existing applications while improving storage throughput by up to 28%.

1. Introduction

HPC and Big Data platforms are carving new data
storage models. This is made necessary by the ever-
increasing scale of the computation and of the datasets
ingested and produced by large-scale applications. The
success of key-value stores [1, 2] or block storage
systems [3, 4] on Clouds, and the advent of burst
buffers [5, 6] or advanced I/O libraries [7, 8] for HPC
clearly highlight this need.

At the heart of these different methods is the move
from legacy POSIX-compliant storage systems towards
simple storage paradigms designed especially for one
purpose, trading versatility for performance. Indeed,

Email addresses: pmatri@fi.upm.es (Pierre Matri),
alforov@dkrz.de (Yevhen Alforov), abrandon@fi.upm.es
(Alvaro Brandon), mperez@fi.upm.es (Maria S. Pérez),
alexandru.costan@irisa.fr (Alexandru Costan),
gabriel.antoniu@inria.fr (Gabriel Antoniu),
michael.kuhn@informatik.uni-hamburg.de (Michael Kuhn),
carns@mcs.anl.gov (Philip Carns), ludwig@dkrz.de
(Thomas Ludwig)

POSIX-IO imposes functionality such as hierarchical
namespaces or file permissions. While these features
are often provided for convenience, they are in practice
rarely needed by modern applications and can signifi-
cantly hinder the storage performance. Indeed, the li-
braries and frameworks commonly used to access the
storage on HPC [9] and Big Data platforms [10, 11] pro-
vide relaxed semantics (i.e., the set of rules and guaran-
tees provided by the system regarding the behavior of its
storage operations) compared to those of the underlying
file system.

Yet, deploying new storage models on HPC platforms
used to be hard or simply impossible. Indeed, paral-
lel file systems such as Lustre or GPFS on HPC have
been the cornerstone of HPC storage for decades and are
likely to remain so in the next few years. This is largely
explained by the high level of versatility and support for
legacy applications, which is without comparison with
that of purpose-built storage systems. In contrast, this
is easy on cloud computing platforms such as [12, 13],
which enable users to deploy and configure exactly the
storage system they need on compute nodes.



Application-defined storage on HPC comes as a so-
Iution. It leverages local storage on compute nodes
available in a growing number of leadership-class su-
percomputers [14, 15] to allow scientists to deploy tran-
sient data services alongside the application. Such ser-
vices offer the application exactly the semantics and
fine-grained tuning it needs. Multiple examples of such
services exist in the literature [16, 17]. This integra-
tion of the application with the storage it needs greatly
eases its containerization and hence application porta-
bility across platforms.

We argue that deploying storage alongside the appli-
cation additionally obviates the need for the aforemen-
tioned features of distributed file systems by removing
the multi-user constraint. Blob-, or Object-based stor-
age [18, 19, 20] has been demonstrated to provide an
alternative to file-based storage on HPC and Big Data
platforms. The reason is twofold. First, the flat names-
pace and simple semantics they provide enables perfor-
mance improvements that are simply inaccessible to dis-
tributed file systems. Second, the data model they pro-
vide is close enough to that of file systems so most ap-
plications could use it with little to no modification.

In this article we leverage application-defined storage
to assess the applicability and benefits of object-based
storage for both HPC and Big Data platforms. Our con-
tributions can be summarized as follows:

o After briefly describing our goals and reviewing re-
lated work (Section 2), we propose blobs as can-
didates for addressing the storage needs of HPC
and Big Data (Section 3).

o We leverage a representative set of HPC and Big
Data applications to prove that the vast majority of
the I/O calls performed can be covered by state-
of-the-art blob storage systems (Section 6).

o We describe the modifications necessary in the
storage stack for HPC and Big Data applications
to run atop blob storage (Section 7).

o We use an experimental testbed and a leadership-
class supercomputer (Section 5) to evaluate the
performance benefits and trade-offs running
these applications atop the same blob storage
systems rather than traditional file-based storage
(Section 8). We highlight a completion time im-
provement of up to 25% with blobs.

We finally conclude with future work that enhances
our proposal (Section 9).

2. Related work and motivation

In this section we start by reviewing the state of the
art regarding relaxing POSIX semantics on both HPC
and Big Data applications, convergence between both
these worlds and application-defined storage for HPC.

2.1. HPC: Relaxing POSIX-10 API and semantics

Increasingly large amounts of data are generated by
HPC applications as the result of simulations and large-
scale experiments. Thus, storage systems need to pro-
vide concurrent access to the data for large numbers of
tasks and processes. Such parallel storage operations
rely on the usage of a parallel file system (PFS) imple-
menting the POSIX-IO interface as the storage layer.
Typical examples of such file systems used on most
HPC platforms are Lustre [21] and OrangeFS [22].

Beyond the POSIX-IO interface lies the POSIX-1IO
semantics that a fully compliant file systems must im-
plement. This standard has advantages regarding porta-
bility, but its inflexibility can cause considerable per-
formance degradation [23]. For example, this standard
requires that changes made to a shared file must be vis-
ible immediately by all processes. Because an applica-
tion has no way of telling the file system that POSIX-
IO semantics are unnecessary or unwanted, it cannot
avoid this performance penalty. For many file systems,
these performance issues are noticeable even for small
numbers of client processes and straightforward I/O pat-
terns [24, 25]. The issues also affect higher levels of the
I/O stack because an underlying POSIX-compliant file
system effectively forces POSIX-1O semantics upon all
other layers . For instance, this applies to the common
HPC I/O stack with Lustre [26].

2.2. Big data: from file systems to object storage

Big data applications require a storage model that fol-
lows a write-once, read-many model. This requirement
drove the design of many distributed file systems by sac-
rificing some of the POSIX-IO operations in order to
gain data throughput. GFS [27] implements only a set
POSIX-compliant operations needed by data-intensive
applications, namely, create, delete, open, close, read,
and write. HDFS [11] is based on GFS and is designed
to work in commodity hardware. It implements some
additional POSIX-IO requirements such as directory
operations and file permissions, but it discards some
others such as concurrent reads and writes. Ceph [4]
follows the same trend, discarding some POSIX-IO se-
mantics and implementing only those that allow a dis-
tributed file system to work with most applications.
GlusterFS eliminates the metadata server and claims to



be fully POSIX compliant. However, work has shown
that this compliance can impact throughput [28].

We can clearly see a trend where the file system
POSIX-IO API or semantics such as providing a hierar-
chical namespace, file permissions, or strict file access
parallelism are unnecessary. Thus, they can be traded
for performance and adaptability for Big Data.

2.3. Storage convergence between HPC and Big Data

During the past decade many research projects and
workshops were dedicated to the opportunities and pos-
sibilities of running large scale scientific applications
by using cloud computing technologies [29, 30]. In
general, many efforts there were made to investigate
the performance of HPC applications (mostly form life
sciences [31]) on clouds (with and without virtualiza-
tion [32]) highlighting cost efficiency or trade-offs [33].

Several research efforts focus on building optimized
or customized distributed-computing platforms that
meet the requirements of HPC applications and scien-
tific simulations [34]. Many of those are based on big
data frameworks such as Spark or Hadoop / MapRe-
duce. In contrast, Pan et al. [35] propose to port parallel
file systems to cloud environments in order to support
a wide range of applications expecting POSIX-IO on
cloud applications. However, the application use cases
considered in that work are rarely data-intensive. In the
same way other researchers also aimed to provide the
features of PFS in the cloud storage. For instance, Y.
Abe and G. Gibson in [36] presented a storage model
which gives data access to a user through the storage
service layer (S3 interface) and directly through a PFS.

3. Could blobs be the enabling factor?

Although the set of tools and techniques used for
HPC and big data environment differ, many objectives
are similar. The most important is probably to provide
the highest-possible data access performance and par-
allelism. As such, the storage stack for HPC and Big
Data looks similar. Indeed, the related work showed
that a common trend for both HPC and big data is
to relax many of the concurrent file access semantics,
trading such strong guarantees for increased perfor-
mance. Nevertheless, some differences remain. Specif-
ically, while the big data community increasingly drops
POSIX-IO altogether, the HPC community tends to pro-
vide this relaxed set of semantics behind the same API.
Although this choice increases backwards compatibility
with legacy applications, it also has significant perfor-
mance impact.

HPC : BigData
App App App App App App
: Lo___IT____1.,

1/O library calls 1 BD Framework calls !

L2 20N 2

Big Data Framework

1/O library

HPC Adapter Big Data Adapter

_--L__. ---L__.
[ Blob calls [ Blob calls

Converged Blob Storage

Figure 1: Converged side-to-side storage stack for HPC and Big Data.

Very few HPC applications actually rely on strong
POSIX-IO semantics. For instance, the MPI-IO stan-
dard does not only relaxes many of these semantics but
also drops many of its operations altogether. For exam-
ple, it does not expose the file hierarchy or permissions
to the end user. Therefore, applications leveraging these
libraries do not need these features to be provided.

Consequently, we ask ourselves whether the un-
derlying storage technologies from both worlds could
be unified, leading to specific software stacks and li-
braries running atop a low-level, low-opinionated stor-
age paradigm, such as the one provided by blob storage
systems (Figure 1). Indeed, blob-based storage systems
such as Tyr [20] or Rados [18] could provide a strong al-
ternative to file-based storage on both sides. These sys-
tems typically have a much more limited set of primitive
compared with file systems:

o Blob Access: object read, object size,
e Blob Manipulation: object write, truncate,
¢ Blob Administration: create object, delete object,

o Namespace Access: scan all objects.

These operations are similar to those permitted by the
POSIX-IO API on a single file. Therefore, most file
operations performed on a file system can be mapped
directly to the corresponding primitives of blob storage
systems. In that model we classify file open and unlink
as file operations.

In contrast, directory-level operations do not have
their blob counterpart, because of the flat nature of the
blob namespace. Should applications need them, such
operations can be emulated using the scan operation.



Table 1: Application summary

| Platform | Application | Usage | Total reads | Total writes | R/ W ratio | Profile

mpiBLAST (BLAST) Protein docking 27.7 GB 12.8 MB 21x10° Read-intensive

HPC / MPI MOM Oceanic model 19.5 GB 3.2GB 6.01 Read-intensive
ECOHAM (EH) Sediment propagation | 0.4 GB 9.7 GB 42 %1072 Write-intensive
Ray Tracing (RT) Video processing 67.4 GB 71.2 GB 0.94 Balanced
Sort Text Processing 5.8 GB 5.8 GB 1.00 Balanced
Connected Component (CC) | Graph Processing 13.1 GB 71.2 MB 0.18 Read-intensive

Cloud / Spark | Grep Text Processing 55.8 GB 863.8 MB 64.52 Read-intensive
Decision Tree (DT) Machine Learning 59.1 GB 4.7 GB 12.58 Read-intensive
Tokenizer Text Processing 55.8 GB 235.7 GB 0.24 Write-intensive

Obviously, this emulation is far from optimized. Yet,
since we expect these calls to be vastly outnumbered by
blob-level operations, this performance drop is likely to
be compensated by the gains permitted by using a flat
namespace and simpler semantics.

While some of these features (e.g., permissions) are
usually not used at the application level, they may be
necessary at the system management level, for multi-
user systems as provided on HPC environments. In
the context of blob-based storage systems, we advocate
that such access control can be provided using multiple
keyspaces (e.g., per-application keyspaces), in which
these features can be configured at the keyspace level.

Legacy application, which could rely on a fully com-
pliant POSIX-IO interface, could leverage a POSIX-1O
interface implemented atop such blob storage. This is
proven possible by the Ceph file system, a file-system
interface to Rados.

4. A representative set of applications

The challenges posed by convergence between HPC
and Big Data applications have raised many discussions
in the community [29]. One of the emerging ideas from
these discussions is that the applications cannot be con-
sidered separately from the underlying software stack;
the fuel for convergence could enable a wide variety
of HPC and Big Data applications to leverage converg-
ing services and underlying infrastructure. Although
designing a full converging stack is not the objective
of this paper, we focus on storage as one of the criti-
cal milestones that could make such convergence possi-
ble. Specifically, we choose I/O-intensive applications,
which could benefit most from such converged storage.

Accordingly, we base our experiments on a number
of I/O-intensive applications extracted from the litera-
ture [37, 38] that cover the diversity of I/O workloads
commonly encountered on both HPC (Section 4.1) and
Big Data platforms (Section 4.2).

4.1. HPC Applications

The HPC applications we use are based on MPI. They
all leverage either large input of output datasets as-
sociated with large-scale computation atop centralized
storage usually provided by a distributed, POSIX-10-
compliant file system such as Lustre [21].

mpiBLAST [39] is a parallel MPI implementation
of NCBI BLAST [40]. It is a read-intensive
biomolecular tool searching for regions of sim-
ilarity between biological sequences. It com-
pares nucleotide or protein sequences to sequence
databases and calculates the statistical significance.

MOM (Modular Ocean Model) [41] is a read-intensive
three-dimensional ocean circulation model tar-
geted at understanding the ocean climate system.

ECOHAMS (ECOlogical model, HAMburg, ver-
sion 5) [42] is a write-intensive three-dimensional
biogeochemical ecosystem model with the focus
on the North Sea [43, 44]. It modelizes the pelagic
and benthic cycles of carbon, nitrogen, phospho-
rus, silicon and oxygen on the northwest European
continental shelf.

Ray Tracing is a balanced read-write workload ex-
tracted from the BigDataBench [38], itself derived
from [45]. It generates images by tracing the path
of light and simulating the effects of its encounters
with virtual objects.

4.2. Big Data Applications

As the leading open-source Big Data processing and
analytics framework, Apache Spark [46] appears as an
ideal candidate for this research. Chosen applications
are extracted from SparkBench [47], a benchmarking
suite for Spark. It comprises a representative set of
workloads belonging to four application types: machine
learning, graph processing, streaming, and SQL queries.



Sort is a widely used benchmark that reads input data
and sorts it based on a given key. It is I/O-intensive
since all the data read will be processed and written
back to the file system. For example, it can be used
to sort a series of readings from sensors by date.

Grep is a filtering workload that searches in the input
data for lines containing a given word and saves
these lines into HDFS. In contrast to Sort, the size
of the input and output will not be equal, and some
data will be filtered out.

Decision Tree is a machine learning workload that
reads a dataset containing rows with a series of fea-
tures and a class they belong to. This dataset is then
split into a training and a test set. The workload
creates a predictive model with the training set that
is able to predict the class of the elements in the
test set. These predictions are written back to disk.

Connected Component is an algorithm that finds the
subgraphs in a graph in which any two vertices are
connected by a path but are not connected to any
other node on the supergraph. This can be seen as
a way of finding clusters of nodes. For example,
in a social network it can be used to find commu-
nities of users. The implementation in the bench-
mark will read a dataset and write the labels of each
component back to disk.

Tokenizer is a Spark application we developed that
reads a text file, tokenizes each line into words,
and for each line calculates the NGrams=2 (i.e.,
contiguous sequences of 2 words from each line).
These Ngrams are saved in a text file. This is
a common preprocessing step in topic modeling
for documents where word patterns have to be ex-
tracted as an input to a machine learning model.
This application shows a write-intensive workload.

5. Experimental configuration

We run experiments using the Grid’5000 [48] experi-
mental testbed, which spans 11 sites in France and Lux-
embourg. In this paper we use 32 nodes of the para-
pluie cluster in Rennes. Each node embeds 2 x 12-core
1.7 Ghz 6164 HE, 48 GB of RAM, and 250 GB HDD.
We use Gigabit Ethernet connectivity (MTU = 1500 B)
for Big Data applications, and 4 x 20G DDR Infiniband
for HPC applications. HPC applications ran atop Lustre
2.9.0 and MPICH 3.2, using multiple ratios of storage-
to-compute nodes. Big Data application ran atop Spark
2.1.0, Hadoop / HDFS 2.7.3 and Ceph Kraken.

All storage systems are configured with similar pa-
rameters to allow for a fair comparison. Specifically,
each system is configured with a replication factor of 1
(no replication), and using a stripe size of 64 MB.

In addition, we prove that the results obtained with
HPC applications are replicable to a high-end super-
computer. To do so, we performed extra experiments
on the Theta supercomputer [15] hosted at the Argonne
Leadership Computing Facility (ALCF). Theta is a last-
generation 9.65-petaflop Cray XC40 system. It is com-
posed of 3,624 nodes, each containing a 64 core In-
tel Knights Landing processor with 16 GB of high-
bandwidth in-package memory (MCDRAM), an addi-
tional 192 GB of DDR4 RAM, and a 128 GB local SSD.

6. Analyzing the distribution of storage calls

In this section we demonstrate that the actual I/O calls
made by both HPC and big data applications are not in-
compatible with the set of features provided by state-
of-the-art blob storage systems. Our intuition is that
read and write calls are vastly predominant in the work-
loads of those applications and that other features of dis-
tributed file systems such as directory listings are rarely
used, if at all.

6.1. Tracing HPC applications

Figure 2 summarizes the relative count of storage
calls performed by our set of HPC applications. The
most important observation for all four applications is
the predominance of reads and writes. Except for ECO-
HAM, no application performed any other call to the
storage system that reads or writes files, thus confirm-
ing our first intuition. This was expected because the
MPI-IO standard does not permit any other operation.

The few storage calls other than read and write
(mainly extended attributes reads and directory listings)
are due to the run script necessary to prepare the run
and collect results after it finishes. These steps can be
performed offline from the I/O-heavy MPI part of the
application. This results in only reads and writes being
performed (EH / MPI).

We conclude that the only operations performed by
our set of HPC applications, namely, file I/O, can be
mapped to blob I/O on a blob storage system. Conse-
quently, these applications appear to be suited to run
unmodified atop blob storage.

6.2. Tracing Big Data applications

Figure 3 shows the relative count of storage calls per-
formed by our set of big data applications to HDFS.



File read B File write Directory operations Hother

S 100
S 80
£ 60
S 40
[}
on
g 20
g
ZI

BLAST MOM EH  EH/MPI RT

Figure 2: Measured relative amount of different storage calls to the
persistent file system for HPC applications

Table 2: Spark directory operation breakdown

Operation Action Count
mkdir Create directory 43
rmdir Remove directory 43
opendir (Input data Open / List 5
directory) directory
. . . Open / List
opendir (Other directories) directory 0

Similar to what we observed with HPC applications, the
storage calls are vastly dominated by reads and writes
to files. In contrast with HPC, however, all applications
also cause Spark to perform a handful of directory op-
erations (86 in total across all our applications). These
directory operations are not related to the data process-
ing because input / output files are accessed directly by
using read and write calls.

Analyzing these directory operations, we notice that
they are related solely to (a) creating the directories nec-
essary to maintain the logs of the application execution,
(b) listing the input files before each application runs if
the input data is set as a directory, and (¢) maintaining
the .sparkStaging directory. This directory is inter-
nally used by Spark to share information related to the
application between nodes and is filled during the appli-
cation submission. It contains application files such as
the Spark jar or the application jar, as well as distributed
cache files [49].

We analyze in detail the directory operations per-
formed by big data applications. Table 2 shows the
breakdown of all such directory operations across all
applications by storage call. We note that only the input
data directories are listed, meaning that Spark accesses
directly all the other files it needs with their path. Con-
sequently, a flat namespace such as the one provided by

§ 100
2 80
R
=
S 40
(0]
on
s 20
2
2B

Sort Grep DT CC  Tokenizer

Figure 3: Measured relative amount of different storage calls to the
persistent file system for Big Data applications

blob storage systems could probably be used.

7. Big Data: Hierarchical to flat namespace

We previously observed that Spark storage calls in-
cluded several very rare directory operations. Our ob-
servations concluded that such calls are only performed
for separating data files from temporary files and are not
strictly necessary for the application itself. Yet, one of
our objectives is to prove that Spark applications can run
unmodified atop blob storage. We prove that Spark can
run atop a flat namespace providing only object-level
operations, as provided by blob storage systems; such a
proof would confirm our previous assertions.

Since file operations dominate directory operations,
we choose to optimize the former at the expense of the
latter. Thus, for any given hierarchical file path we gen-
erate a predictable flat path. Subsequent operations to
that path are translated to a file operation on the rewrit-
ten path. In HDFS we achieve this by storing all files
at the root. That is, we store on path /foo__bar a file
that would normally be stored on /foo/bar in a hier-
archical namespace. Listing or deleting a directory is
implemented by scanning and filtering the whole set of
files in the system, selecting only the matching files that
would be contained in that folder. Although such scan
operations are costly, they are infrequent. Consequently
the performance gains by flattening the file system (i.e.,
not managing permissions) should outweigh the cost of
such operations. Table 3 summarizes the rewrite rules
we apply on incoming storage calls from Spark.

We intercept and rewrite storage calls by modifying
Hadoop / HDFS file storage interface. We run all Big
Data applications 100 times and compare the average
completion time of each benchmark suite on HDFS us-



800
700 | | Hierarchical B Flat
600
500
400
300
200
100

Avg. task completion (s)

Sort Grep DT CC  Tokenizer

Figure 4: Average Big Data task completion time with and without flat

namespace simulation, with 95% confidence intervals.

Table 3: Big Data storage call translation rules

Original operation Rewritten operation
create(/foo/bar) create(/foo__bar)
open(/foo/bar) open(/foo__bar)
read(fd) read(bd)
write(fd) write(bd)
mkdir (/foo) Dropped operation
opendir (/£00) scan(/), return all files matching
/foo__*
rmdir(/£00) scan(/), remove all files matching
/foo__*

ing the original hierarchical namespace or simulating a
flat namespace. We plot the results in Figure 4. Flat-
tening the namespace on HDFS does not result in any
significant task completion time variation despite the
higher completion time of directory operations, plotted
in Figure 5. Indeed, these calls are diluted in the vastly
superior amount of file read and write calls.

We demonstrated that running our set of Big Data ap-
plications over a simulated flat namespace not only is
possible but also does not cause any significant perfor-
mance variation. Consequently, these applications also
appear to be suited to run atop a blob storage system,
thus further enhancing the performance of the applica-
tion by leveraging the reduced complexity of managing
a flat namespace.

8. Replacing file-based by blob-based storage

In this section we demonstrate the potential of blob-
based storage to suit the storage needs of both HPC
and Big Data applications. We deploy each application
listed in Section 4 atop state-of-the-art blob storage sys-
tems. We detail these systems in Section 8.1. We prove
that the performance of these applications running atop
converged blob-based storage matches or exceeds that

£ 150
g M Hierarchical & Flat
.z_;
o 100
g
15)
Q
=
S
= 50
s E
=
: I
}:" 0
read write opendir rmdir

Figure 5: Average individual Big Data operation completion time with
and without flat namespace simulation, with 95% confidence intervals.

of the same applications running atop Lustre for HPC
(Section 8.2) and HDFS for Big Data (Section 8.4).

8.1. Overview of the blob storage systems

We run our applications atop two state-of-the-art blob
storage systems: Tyr [20] and Rados [18]. We are us-
ing only the basic blob storage functionality they pro-
vide, and do not make use of any advanced features
they may support. Although their high-level design has
similarities, these two systems have different strengths
and weaknesses resulting from design decisions made
for each to support specific use cases.

Tyr is a large-scale blob storage system designed
around the same design principles as the Dynamo
key-value database [50]. It is targeted at high
access parallelism using multiversion concurrency
control (MVCC) associated with built-in multiob-
ject transactions. Tyr offers fine-grained random
write access to data, as well as single-hop reads
(i.e., accessing the storage server without prior
communication with any metadata server).

Rados is the storage layer for Ceph FS [4]. Rados has
the ability to scale to thousands of hardware de-
vices by using management software that runs on
each of the individual storage nodes. The software
provides features such as thin provisioning, snap-
shots and replication.

We assess the performance impact of replacing file-
based with blob-based storage by observing three met-
rics. The job completion time is the total execution
time of the application, from submission to completion.
Read bandwidth and write bandwidth respectively rep-
resent the average data transferred per unit of time for
read and write requests. We collect all these metrics on



1.6

B Lustre B Tyr B Rados

14

1.2

1.0

0.8

Avg. throughput (GB /s)

0.6 =
28/4

24/8

Compute nodes / Storage nodes

20/12

Figure 6: Average agreggate throughput across all HPC applications
varying the compute-to-storage ratio, with 95% confidence intervals.

the compute nodes by instrumenting the adapter, and we
aggregate the results.

8.2. Replacing Lustre with blob-based storage on HPC

In this section, we demonstrate how blob-based stor-
age system can be used to support HPC applications
while matching or exceeding Lustre I/O performance by
replacing the latter with Tyr and Rados.

We experiment using three storage-to-compute node
configurations in order to ensure that our results are in-
dependent of the cluster configuration. We run the same
experiments respectively with 28 compute / 4 storage
nodes, 24 / 8 and 20 / 12. We average the results of 100
experiment runs.

On each node, we deploy a small interceptor to redi-
rect POSIX storage calls to the blob storage system.
It is based on FUSE [51], which is supported on most
Linux kernels today. In that configuration, this inter-
ceptor acts as the HPC adapter as presented in Figure 1.
This adapter translates file operations to blob operations
according to Table 4. Directory operations are not sup-
ported as we showed previously that they are unneces-
sary for HPC applications. The APIs of the blob stor-
age systems we consider allow for a direct mapping be-
tween file-based and blob-based storage operations. We
partially implement the stat function. Specifically, the
file size is mapped to the blob size, the permissions are
set to 777, the block size and allocated block size are
set to 512 bytes, and the inode number is set to the hash
of the blob key. The remaining information is set to 0.
Our implementation does not support symbolic or hard
links, which are not needed by our applications.

In Figure 6 we plot the average aggregate read and
write bandwidth for all applications while varying the
compute-to-storage node ratio. We note that for our
configuration the 24 compute node / 8 storage node

1.8

B Lustre B Tyr A Rados

1.6

1.4

1.2

Avg. read throughput (GB / s)

BLAST MOM EH/MPI RT

Application

Figure 7: Comparison of read throughput for each HPC application
with Lustre, Tyr and Rados, with 95% confidence intervals.

Table 4: HPC storage call translation rules

POSIX Call Translated Call
create(/foo/bar) create(/foo__bar)
open(/foo/bar) open(/foo__bar)
read(fd) read(bd)
write(fd) write(bd)
mkdir (/foo) Unsupported operation
opendir (/foo) Unsupported operation
rmdir(/foo) Unsupported operation

setup results in the higher bandwidth for all storage sys-
tems. Hence, the following experiments are performed
with that configuration. This ratio is much lower than on
common HPC platforms (3:1 vs. ~ 70:1 at ORNL, for
instance [52]) mainly because the jobs we run are sig-
nificantly more data-intensive than compute-intensive.
We note from these results that blob storage systems
constantly outperform Lustre in all configurations for
both reads and writes. We will detail these results in
the following experiments. For read-intensive applica-
tions such as BLAST and MOM, this performance in-
crease allows blob storage systems with 4 storage nodes
to achieve a bandwidth comparable to Lustre’s with 8
storage nodes.

In Figure 7 we plot the average read bandwidth for
each of our HPC applications with Lustre file-based
storage and Tyr or Rados blob-based storage. We note
an average 14% reduction of the total read time when
using blob-based storage compared to Lustre. This is
because of the optimized write path of the two blob stor-
age systems considered. Indeed, both enable clients to
locate and access any piece of data directly without prior
communication with any dedicated metadata node. Al-
though both blob storage systems behave similarly with
respect to read performance, Rados shows a higher read
performance due to its lower read consistency.



14

B Lustre B Tyr @ Rados

1.2

0.8

0.6

Avg. write throughput (GB / s)

BLAST MOM EH/MPI RT

Figure 8: Comparison of write throughput for each HPC application
with Lustre, Tyr, and Rados, with 95% confidence.

£ 120

g M Lustre B Tyr B Rados

§ 100

5

o

g £

S 80

E i

oh = =
Z 60 =

MOM EH/MPI RT
Figure 10: Average performance improvement relative to Lustre for
HPC applications using blob storage, with 95% confidence on Theta

We plot in Figure 8 the average write bandwidth ob-
tained in similar conditions. These results show that
blob storage systems outperform Lustre for BLAST,
MOM and ECOHAM. Interestingly, for Ray Tracing,
Rados performace drops behind that of other systems.
This is the result of the relatively small writes (8§ KB on
average) performed by this application compared to the
other systems, causing high lock contention on concur-
rent writes that hinders the throughput of the system.

In Figure 9 we plot the average application comple-
tion time improvement. The I/O performance gains are
here diluted in compute operations. As expected con-
sidering the previous results, read-intensive applications
exhibit the greatest decrease. BLAST and MOM show a
completion time reduction of nearly 8% with both blob
storage systems. In contrast, write-intensive applica-
tions such as ray tracing show a lower 3% completion
time decrease with Tyr or Rados as the underlying stor-
age when compared with Lustre.

® 120

.:g: 110 B Lustre B Tyr B Rados

£ 100

E
g =0
S 80 El
T 70 =
) B
Z 60 am

BLAST MOM EH/MPI RT

Figure 9: Average performance improvement relative to Lustre for
HPC applications using blob-based storage, with 95% confidence.

g 160

QE) 140 | | —o—BLAST ——— MOM

i 120 —o— EH / MPI —&— RT

£ 100

2 80

§ 60

E

0

< 24/8 48/ 16 72/24 96 /32

Computation / Storage nodes

Figure 11: Average performance improvement at scale relative to 32
nodes setup for HPC applications using blob-based storage on Theta.

8.3. Replicating results on a high-end supercomputer

In this section, we seek to prove that the experiments
obtained in Section 8.2 are reproducible on a high-end
supercomputer. To do so, we leverage the Theta super-
computer hosted at Argonne National Laboratory, and
run the same experiments as in the aforementioned sec-
tion. Although arguably not an easy task due to the
strong limitations of the platform and the lack of supe-
ruser rights, blob storage systems such as Tyr and Rados
are deployable on such platform.

We deploy the applications as described in the previ-
ous section, using 32 nodes (totaling 2048 cores), using
24 nodes for computation and 8 nodes for storage, and
measure the completion time for each application. Ex-
periments with Lustre were using the file system avail-
able to the computer, totaling 170 storage nodes and
shared across all users.

We plot the results in Figure 10. We show the per-
formance improvement to be significantly higher than
on our testbed. The reason for this significant perfor-



1.8
1.6

E HDFS & Tyr @ Rados B CephFS

Avg. read throughput (GB / s)

CC  Tokenizer

Figure 12: Comparison of read throughput for each Big Data applica-
tion with HDFS, Tyr, Rados and CephFS.

& 120

E E HDFS B Tyr B Rados E Ceph
£ 100

D

=

g

S 80

E |

b ol

Z 60 2

Grep CC  Tokenizer

Figure 14: Average performance improvement relative to HDFS for
Big Data applications using blob-based storage.

mance increase is to be found in the technical charac-
teristics of Theta, which offers significantly more RAM
than SSD space. As such, for the most part, the storage
systems deployed on these nodes behave as in-memory
storage systems. We acknowledge that the setup of this
platform is particular in this regard and by consequence
that the results are not representative of those of another
platform with different setup. Yet, we advocate that
the results reach the goal of demonstrating that deploy-
ing blob storage systems on high-end HPC platforms is
possible without requiring any application modification.
We observe a higher variance in the results compared to
Grid’5000, which we attribute to the shared nature of
the centralized storage.

In Figure 11 we scale all four applications on up to
128 nodes of Theta, or 8192 cores. Because of alloca-
tion limitations, each experiment was performed only
5 times. We notice a near-linear decrease of computa-
tion time as the size of the cluster increases. With ap-
plications applications such as ECOHAM or Ray Trac-
ing, the performance improvement is slightly lower than
with purely read-intensive applications due to the higher

10

1.2

E HDFS B Tyr @ Rados B Ceph

Avg. write throughput (GB / s)

CC Tokenizer

Figure 13: Comparison of write throughput for each Big Data applica-
tion with HDFS, Tyr, Rados and CephFS.

cost of write operations compared to read operations.

8.4. Running Spark applications atop blob storage

In this section we run the same set of experiments for
the set of Big Data applications. We demonstrate that
Tyr and Rados significantly outperform HDFS for all
applications. In order to provide an additional baseline
of the performance of file systems, we also run these
applications atop CephFS [4], itself based on Rados.

We use the same configuration as in Section 7, run-
ning computation alongside storage on 32 nodes. We
integrate the storage adapter for blob storage directly
inside HDFS. The Hadoop installation has been mod-
ified to redirect storage calls to blob storage systems.
The translation between POSIX-like calls and flat-
namespace blob operations is done by using the transla-
tion rules defined in Table 3. We implement the CRUSH
algorithm to provide Spark with the physical data loca-
tion on Rados and CephFS. We use the client API capa-
bilities to provide that information with Tyr.

In Figure 12 we plot the average read bandwidth
achieved for each of the Spark benchmarks. We no-
tice a striking read bandwidth improvement when us-
ing Tyr and Rados over HDFS (the read bandwidth is
increased by 28% and 32% respectively). Same as in
HPC, this is due mainly to the direct read feature of
the two storage systems that, unlike HDFS, enable the
applications to bypass any centralized metadata service
and access the storage servers directly. CephFS perfor-
mance highlights the cost of file-based storage by show-
ing a degraded performance compared to Rados. As
with HDFS, this is mostly due to the additional com-
munication required with dedicated metadata servers in
the critical path for read requests, made necessary by
the file hierarchy management.

Figure 13 shows the average write bandwidth for
these applications. Similar to what was observed with



HPC, we note a constant write bandwidth improvement
with blob storage over HDFS and CephFS. We also
note the same pattern we observed with HPC. Specifi-
cally, Rados outperforms Tyr on read-intensive applica-
tions, whereas Tyr enables higher throughput on write-
intensive applications. This is visible with the Tokenizer
application, where lock contention due to lack of multi-
version concurrency control in Rados causes significant
performance loss on concurrent write access.

In Figure 14 we plot the relative improvement in the
total application completion time, diluted in computa-
tion. Running Big Data applications atop blobs im-
proves application cpmpletion time, up to 22% com-
pared to HDFS and 7% compared to CephFS. For Big
Data, the highest gains are obtained with read-intensive
applications such as Grep and Decision Tree. In com-
parison, write-intensive applications such as Tokenizer
also benefit from improved performance, although rela-
tively smaller due to the globally greater complexity of
the write protocols for each storage system.

9. Conclusion

In this paper we argue that blob storage is a strong
candidate for replacing traditional storage for both HPC
and Big Data. Its simple data model is enough to map
directly file operations to blob operations. Based on the
previous observation that simple file reads and writes
constitute the vast majority of the storage calls made by
both HPC and Big Data applications, we factually prove
that this convergence is possible by mapping both HPC
and Big Data applications to blob storage. This does
not require any modification in the application thanks
to a thin adapter layer between the application and the
persistent storage. We leverage 4 real-life HPC appli-
cations as well as 5 Big Data benchmarks to prove on
an experimental testbed that not only such convergence
is possible, but that it also significantly improve perfor-
mance by up to 25% with read-intensive applications.
We confirm on the Theta supercomputer that this setup
is reasonable and applicable to a high-end supercom-
puter with near-linear scalability up to 8,192 cores.

In future work we will experiment both Tyr and Ra-
dos at the same time on a real supercomputer as well as
on one of the leading cloud computing platforms, both
with a larger set of applications and frameworks. We
will compare our approach with an extensive set of com-
petitor storage systems and platform configurations.

11

Acknowledgments

This work is part of the “BigStorage: Storage-
based Convergence between HPC and Cloud to handle
Big Data” project, H2020-MSCA-ITN-2014-642963,
funded by the European Commission within the Marie
Skitodowska-Curie Actions framework. This work was
supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research
under Contract DE-AC02-06CH11357. It is also sup-
ported by the ANR OverFlow project, ANR-15-CE25-
0003. Experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria and including CNRS,
RENATER, and several universities and organizations.

References

[1]
[2]

Apache Cassandra, https://cassandra.apache.org/.
Project Voldemort, http://wuw.project-voldemort.com/
voldemort/.

Openstack Swift, https://docs.openstack.org/swift/
latest/.

S. A. Weil, S. A. Brandt, E. L. Miller, et al., Ceph: A scalable,
high-performance distributed file system, in: Proceedings of the
7th Symposium on Operating Systems Design and Implemen-
tation, OSDI 06, USENIX Association, Berkeley, CA, USA,
2006, pp. 307-320.

N. Liu, J. Cope, et al., On the role of burst buffers in leadership-
class storage systems, in: IEEE 28th Symposium on Mass Stor-
age Systems and Technologies, MSST 2012, April 16-20, 2012,
Asilomar Conference Grounds, Pacific Grove, CA, USA, 2012,
pp. 1-11.

M. Romanus, R. B. Ross, M. Parashar, Challenges and consider-
ations for utilizing burst buffers in high-performance computing,
CoRR abs/1509.05492.

Q. Liu, J. Logan, Y. Tian, et al., Hello ADIOS: the challenges
and lessons of developing leadership class I/O frameworks,
Concurrency and Computation: Practice and Experience 26 (7)
(2014) 1453-1473.

C. Bartz, K. Chasapis, M. Kuhn, P. Nerge, T. Ludwig, A best
practice analysis of HDF5 and NetCDF-4 using lustre, in: High
Performance Computing, no. 9137 in Lecture Notes in Com-
puter Science, Springer International Publishing, Switzerland,
2015, pp. 274-281.

M. P. Forum, Mpi: A message-passing interface standard, Tech.
rep., Knoxville, TN, USA (1994).

M. Zaharia, R. S. Xin, P. Wendell, et al., Apache spark: A uni-
fied engine for big data processing, Commun. ACM 59 (11)
(2016) 56-65.

K. Shvachko, H. Kuang, S. Radia, et al., The Hadoop distributed
file system, in: 2010 IEEE 26th symposium on Mass Storage
Systems and Technologies (MSST), IEEE, 2010, pp. 1-10.
Microsoft Azure, https://azure.microsoft.com/en-us/.
Amazon Web Services, https://aws.amazon.com/.
MareNostrum, https://www.bsc.es/marenostrum/
marenostrum.

Theta, https://www.alcf.anl.gov/theta.

Q. Zheng, K. Ren, et al., Deltafs: Exascale file systems scale
better without dedicated servers, in: Proceedings of the 10th
Parallel Data Storage Workshop, PDSW ’15, 2015, pp. 1-6.

[3]
[4]

[5]

[6]

[8]

[10]

[11]

[12]
(13]
[14]

[15]
[16]



[17]

(18]

[19]

[20]

(21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

P. Carns, J. Jenkins, C. D. Cranor, et al., Enabling NVM for data-
intensive scientific services, in: 4th Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (INFLOW
16), USENIX Association, GA, 2016.

S. A. Weil, A. W. Leung, S. A. Brandt, C. Maltzahn, Rados: A
scalable, reliable storage service for petabyte-scale storage clus-
ters, in: Proceedings of the 2nd international workshop on petas-
cale data storage: held in conjunction with Supercomputing’07,
ACM, 2007, pp. 35-44.

B. Nicolae, G. Antoniu, L. Bougé, et al., Blobseer: Next-
generation data management for large scale infrastructures, J.
Parallel Distrib. Comput. 71 (2) (2011) 169-184.

P. Matri, A. Costan, G. Antoniu, J. Montes, M. S. Pérez, Tyr:
Blob storage meets built-in transactions, in: SC16: Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2016, pp. 573-584.

The Lustre File System, http://lustre.org/ (2017).

M. Moore, D. Bonnie, W. Ligon, et al., OrangeFS: Advancing
PVES, in: 2011 9th USENIX Conference on File and Storage
Technologies (FAST), 2011.

D. Kimpe, R. Ross, Storage models: Past, present, and future,
High Performance Parallel I/O (2014) 335-345.

J. Cope, K. Iskra, et al., Bridging HPC and grid file I/O with
IOFSL, in: Applied Parallel and Scientific Computing - 10th
International Conference, PARA 2010, Reykjavik, Iceland, June
6-9, 2010, Revised Selected Papers, Part II, 2010, pp. 215-225.
D. Huang, J. Yin, et al., UNIO: A unified I/O system framework
for hybrid scientific workflow, in: Cloud Computing and Big
Data - Second International Conference, CloudCom-Asia 2015,
Huangshan, China, June 17-19, 2015, Revised Selected Papers,
2015, pp. 99-114.

M. Kuhn, A Semantics-Aware I/O Interface for High Perfor-
mance Computing, in: Supercomputing, no. 7905 in Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2013,
pp. 408-421.

S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system,
in: ACM SIGOPS Operating Systems Review, Vol. 37, ACM,
2003, pp. 29-43.

S. Mikami, K. Ohta, O. Tatebe, Using the gfarm file system as
a POSIX compatible storage platform for Hadoop MapReduce
applications, in: Proceedings of the 2011 IEEE/ACM 12th Inter-
national Conference on Grid Computing, IEEE Computer Soci-
ety, 2011, pp. 181-189.

BDEC - Big Data and Extreme-Scale Computing, http://
www.exascale.org/bdec/ (2017).

Z.Zhang, K. Barbary, F. A. Nothaft, et al., Scientific computing
meets big data technology: An astronomy use case, in: 2015
IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015, 2015,
pp. 918-927.

H. A. Duran-Limon, J. Flores-Contreras, et al., Efficient execu-
tion of the WRF model and other HPC applications in the cloud,
Earth Science Informatics 9 (3) (2016) 365-382.

A. Jaikar, S. Noh, Cloud computing: Read before use, T. Large-
Scale Data- and Knowledge-Centered Systems 30 (2016) 1-22.
A. Gupta, D. Milojicic, Evaluation of HPC applications on
cloud, in: Open Cirrus Summit (OCS), 2011 Sixth, IEEE, 2011,
pp. 22-26.

R. Ledyayev, H. Richter, High performance computing in a
cloud using OpenStack, Cloud Computing (2014) 108-113.

A. Pan, J. P. Walters, V. S. Pai, et al., Integrating high per-
formance file systems in a cloud computing environment, in:
2012 SC Companion: High Performance Computing, Network-
ing Storage and Analysis, 2012, pp. 753-759.

Y. Abe, G. Gibson, pwalrus: Towards better integration of par-

12

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

allel file systems into cloud storage, in: Cluster Computing
‘Workshops and Posters (Cluster Workshops), 2010 IEEE Inter-
national Conference on, IEEE, 2010, pp. 1-7.

G. C. Fox, J. Shantenu, et al., Towards a comprehensive set
of big data benchmarks, Advances in Parallel Computing 26
(2015) 47-66.

L. Wang, J. Zhan, C. Luo, et al., BigDataBench: A big data
benchmark suite from Internet services, in: 2014 IEEE 20th In-
ternational Symposium on High Performance Computer Archi-
tecture (HPCA), IEEE, 2014.

mpiBLAST: Open-Source Parallel BLAST, http://www.
mpiblast.org/ (2017).

S. F. Altschul, W. Gish, et al., Basic local alignment search tool,
Journal of Molecular Biology 215 (3) (1990) 403—410.

Ocean circulation models, https://www.gfdl.noaa.gov/
ocean-model/ (2017).

U. H. Institute of Oceanography, ECOHAM, https://wiki.
zmaw.de/ifm/ECOHAM (2015).

I. Lorkowski, J. Pitsch, A. Moll, W. Kiihn, Interannual vari-
ability of carbon fluxes in the North Sea from 1970 to 2006—
competing effects of abiotic and biotic drivers on the gas-
exchange of CO;, Estuarine, Coastal and Shelf Science 100
(2012) 38-57.

F. Grof3e, N. Greenwood, et al., Looking beyond stratification: A
model-based analysis of the biological drivers of oxygen deple-
tion in the North Sea, Biogeosciences Discussions (2015) 2511—
2535.

J. Stone, An efficient library for parallel ray tracing and anima-
tion, Tech. rep., Intel Supercomputer Users Group Proceedings
(1995).

M. Zaharia, M. Chowdhury, T. Das, et al., Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing, in: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, USENIX As-
sociation, 2012, pp. 2-2.

M. Li, J. Tan, Y. Wang, L. Zhang, V. Salapura, Sparkbench: a
comprehensive benchmarking suite for in memory data analytic
platform Spark, in: Proceedings of the 12th ACM International
Conference on Computing Frontiers, ACM, 2015, p. 53.

D. Balouek, A. Carpen Amarie, et al., Adding virtualization ca-
pabilities to the Grid’5000 testbed, in: Cloud Computing and
Services Science, Vol. 367 of Communications in Computer and
Information Science, Springer International Publishing, 2013,
pp. 3-20.

Running Spark on YARN, https://spark.apache.org/
docs/latest/running-on-yarn.html (2017).

G. DeCandia, D. Hastorun, M. Jampani, et al., Dynamo: Ama-
zon’s highly available key-value store, SIGOPS Oper. Syst. Rev.
41 (6) (2007) 205-220.

S. Ishiguro, J. Murakami, et al., Optimizing local file accesses
for fuse-based distributed storage, in: 2012 SC Companion:
High Performance Computing, Networking Storage and Anal-
ysis, Salt Lake City, UT, USA, November 10-16, 2012, 2012,
pp. 760-765.

S. Oral, J. Simmons, J. Hill, et al., Best practices and lessons
learned from deploying and operating large-scale data-centric
parallel file systems, in: SC14: International Conference for
High Performance Computing, Networking, Storage and Anal-
ysis, 2014, pp. 217-228.



