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THE COMPLEX WKB METHOD FOR DIFFERENCE

EQUATIONS AND AIRY FUNCTIONS

ALEXANDER FEDOTOV AND FRÉDÉRIC KLOPP

Abstract. We consider the difference Schrödinger equation ψ(z+h) +ψ(z−
h) + v(z)ψ(z) = 0 where z is a complex variable, h > 0 is a parameter,
and v is an analytic function. As h → 0 analytic solutions to this equation

have a standard quasiclassical behavior near the points where v(z) 6= ±2.

We study analytic solutions near the points z0 satisfying v(z0) = ±2 and
v′(z0) 6= 0. For the finite difference equation, these points are the natural

analogues of the simple turning points defined for the differential equation
−ψ′′(z) + v(z)ψ(z) = 0. In an h-independent neighborhood of such a point,

we derive uniform asymptotic expansions for analytic solutions to the difference

equation.

1. Introduction, Preliminaries, and Main Results

1.1. The problem. We study analytic solutions to the difference Schrödinger
equation

ψ(z + h) + ψ(z − h) + v(z)ψ(z) = 0 (1.1)

where z is a complex variable, h is a positive parameter and v is an analytic func-
tion. We describe their asymptotics as h→ 0.
Note that the parameter h is a standard quasiclassical parameter. Indeed, formally,

ψ(z+h) =
∑∞
l=0

hl

l!
dlψ
dzl

(z) = eh
d
dzψ(z), and h can be regarded as a small parameter

in front of the derivative.
One encounters difference equations in the complex plane in many fields of math-
ematics and physics. For example, they arise when studying an electron in a crys-
tal submitted to a constant magnetic field (e.g., [17]), wave scattering by wedges
(e.g., [1]) and one-dimensional quasi-periodic differential Schrödinger equations
with two frequencies (e.g., [10]). The quasiclassical case corresponds respectively
to the cases of a small magnetic field, of a thin wedge and the case where one
frequency is small with respect to another.
The quasiclassical theory of difference equations in the complex plane can also be
useful to study orthogonal polynomials, see section 1.7.
The quasiclassical asymptotics of analytic solutions to ordinary differential equa-
tions in the complex plane are described by the well-known complex WKB method
(see, e.g., [21, 7]). The complex WKB method for difference equations was devel-
oped in [3, 13, 15].
The present paper is devoted to uniform asymptotic formulas describing analytic
solutions to (1.1) in h-independent complex neighborhoods of simple turning points
(see sections 1.2.1 and 1.3.3). The results of this paper were partially announced
in [12].

The idea to study the asymptotics of solutions to a difference equation in a
complex neighborhood of a turning point appears to be very natural. One can say

Key words and phrases. Difference Schrödinger equation, complex WKB method, Airy
functions.
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that this idea and the techniques developed to get the asymptotics are the main
analytic innovations of the paper.

In the next sections, we first recall some basic definitions and statements of the
complex WKB method for difference equations. Next, we introduce a few objects
needed to formulate our results that we then state.
We assume that v is analytic on a disk U ⊂ C.
Below, a neighborhood is a δ-neighborhood, in particular, a neighborhood of a point
is an open disk with the center at this point.

1.2. A very short introduction to the complex WKB method. Here, follow-
ing [13, 15], we briefly describe basic definitions and results of the complex WKB
method for difference equations.

1.2.1. The complex momentum. The main analytic object of the complex WKB
method is the complex momentum p. For (1.1) it is defined by the formula

2 cos p+ v(z) = 0. (1.2)

It is a multivalued analytic function on U . At its branching points cos p(z) ∈ {±1},
thus, v(z) ∈ {±2}.
In analogy with the glossary of the complex WKB method for differential equations,
the points where v(z) ∈ {±2} are called turning points.
A set D ⊂ U is regular if v(z) 6= ±2 in D.

1.2.2. The main theorem of the complex WKB method. As in the case of differential
equations, one of the main geometric notions of the complex WKB method is the
canonical domain. In this paper we do not use it directly, and the reader needs
to keep in mind only that the canonical domains are regular, simply connected
domains independent of h, and that one has the following two theorems.

Theorem 1.1. Any regular point belongs to a canonical domain.

The proof of this statement repeats the proof of Lemma 5.2 from [11].

Theorem 1.2. Let K ⊂ U be a canonical domain, let z0 ∈ K, and let p be a branch
of the complex momentum analytic in K. Then there exist solutions ψ± to (1.1)
analytic in K and such that as h→ 0

ψ±(z) =
1√

sin(p(z))
e
± i
h

∫ z
z0
p(z) dz+o(1)

. z ∈ K. (1.3)

This asymptotic representation is locally uniform in K.

In [13] this theorem was proved for v analytic in bounded domains, and in [15] it
was proved in the case where v is a trigonometric polynomial.
Note that, by definition, at a turning point of p, one has sin p(z) = 0. Thus,
representation (1.3) cannot be valid in a neighborhood of a turning point.

Remark 1.1. For the differential equation −h2ψ′′(z)+v(z)ψ(z) = 0, formula (1.3)

has to be replaced with (see, e.g. [21]) ψ±(z) = 1√
p(z)

e
± i
h

∫ z
z0
p(z) dz+o(1)

, where the

complex momentum is defined by the relation p2 + v(z) = 0, i.e., as for (1.1), by
the symbol of the equation.

1.3. The complex momentum and the conformal mapping ζ. Here, we dis-
cuss properties of the complex momentum that we use throughout this paper. These
properties easily follow from the definition of p.
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1.3.1. Analytic branches of the complex momentum. Let p0 be a branch of the
complex momentum analytic in a regular simply connected domain D. Then, an
analytic function p̃ : D → C is a branch of the complex momentum if and only if
there exists s ∈ {±1} and n ∈ Z such that

p̃(z) = sp0(z) + 2πn, ∀z ∈ D. (1.4)

1.3.2. The values of p at turning points. We note that z0 ∈ U is a turning point if
and only if p(z0) = 0 modπ. A simple transformation of the equation shows that
it suffices to consider the case where p(z0) = 0 mod 2π. Indeed, for ψ, a solution
to (1.1), we set φ(z) = eiπz/hψ(z). Then, φ satisfies equation

φ(z + h) + φ(z − h)− v(z)φ(z) = 0. (1.5)

The complex momenta for equations (1.1) and (1.5) differ by πmod 2π, and z0 is a
turning point for (1.1) if and only if it is a turning point for (1.5).

1.3.3. The complex momentum near a turning point. Let z0 be a turning point. If
v′(z0) 6= 0, we call the turning point z0 simple. In this case, the complex momentum
is analytic in τ =

√
z − z0 in a neighborhood of 0, and as τ → 0 any of its analytic

branches admits a representation of the form

p(z) = p(z0) + k1τ +O(τ2), τ =
√
z − z0, k1 6= 0. (1.6)

1.3.4. Our assumptions. From now on, we assume that

• in the disk U , there exists a single turning point, namely its center z0, and
it is simple;
• p(z0) = 0 mod 2π.

1.3.5. The function ζ. The function ζ we describe here plays an important role in
the asymptotic analysis of (1.1) near turning points.
We cut U from z0 to a point of its boundary along a simple curve and denote the
thus obtained domain by U ′. In U ′, we fix an analytic branch p of the complex
momentum.

We have p(z0) = 2πn, n ∈ Z. Clearly, p(z)−2πn also is a branch of the complex
momentum analytic in U ′. So, we can and do assume that p(z0) = 0.

Let us fix in U ′ an analytic branch ζ of the function

z 7→
(

3

2i

∫ z

z0

p(z) dz

) 2
3

. (1.7)

This branch is actually analytic in U . One has ζ(z0) = 0, and ζ ′(z0) 6= 0.

Remark 1.2. There are three different analytic branches of function (1.7): they
equal e4πij/3ζ, j ∈ Z3 = Z/3Z. The set of these branches is independent of the
curve along which we cut U to get U ′ and on the precise choice of the branch p.

We note that the definition of ζ implies that it satisfies one of the two equations√
ζ(z)ζ ′(z) = ±ip(z), z ∈ U. (1.8)

Possibly reducing U somewhat, we can and do assume that

• ζ is a bi-analytic bijection of U onto its image.
3



Figure 1. Integration paths

1.4. Basic facts on Airy functions. The equation

w′′(ζ) = ζw(ζ), ζ ∈ C, (1.9)

is the Airy equation. Its solutions are Airy functions.
Let (γj)j∈Z3 be the curves shown in Fig. 1 borrowed from [22]; γ0 is asymptotic to

the half-lines e±2iπ/3R+, R+ = [0,+∞) ⊂ R; for j ∈ Z3, rotating γ0 around 0 by
2jπ/3, one obtains γj . The functions defined by the formulas

wj(ζ) =

∫
γj

e
−
(
s3

3 −ζs
)
ds, j ∈ Z3, ζ ∈ C, (1.10)

are three Airy functions related to the standard Airy function Ai by the formulas
(see, e.g., [22])

wj(ζ) = 2πiωjAi(ωjζ), ω = e2πi/3, ζ ∈ C. (1.11)

Assume that | arg z| < 2π/3. As |z| → ∞ one has

Ai (z) =
exp

(
− 2

3z
3/2 + o(1)

)
2
√
π z1/4

, Ai (−z) =
cos
(

2
3z

3/2 + π
4 + o(1)

)
√
π z1/4

(1 +o(1)) (1.12)

where we use the analytic branches of z → z3/2 and z → z1/4 that are positive for
z > 0 (see [18], pp. 116, 118 and 392).

1.5. Notations. The letter C denotes various positive constants independent of z
and h.
For two functions f and g defined on a domain D ⊂ C, we write that g(z) = O(f(z))
in D if |g(z)| ≤ C|f(z)| for all z ∈ D.

1.6. Solutions in a complex neighborhood of a branch point.

1.6.1. Asymptotic solutions. First, let us describe asymptotic solutions to (1.1).
Therefore, we introduce several objects. For a function f defined on U , we set

[H(f)](z) := f(z + h) + f(z − h) + v(z)f(z) if {z − h, z, z + h} ⊂ U. (1.13)

We let

g(z) :=
sinh

(√
ζ(z)ζ ′(z)

)
√
ζ(z)

, z ∈ U, (1.14)

where the determination of the square roots in the denominator and the numerator
are the same (the definition of g is independent of its choice). The function g is
analytic in U . Possibly reducing U somewhat, we can and do assume that

• g does not vanish in U .
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We further define

A0(z) :=
1√
g(z)

. (1.15)

The function A0 is analytic in U .
One has

Theorem 1.3. There exist functions (Al)l∈N∪{0} and (Bl)l∈N, ( A0 being defined
by (1.15) ), all analytic on U and such that, for any L ∈ N ∪ {0} the following
holds. Let w be one of the Airy functions wj, j ∈ Z3. If we define

wh(z) = w
(
ζ(z)/h

2
3

)
, w′h(z) = w′

(
ζ(z)/h

2
3

)
. (1.16)

and

W (z) = h
1
3wh(z)

L∑
l=0

hlAl(z) + h
2
3w′h(z)

L∑
l=1

hlBl(z), (1.17)

then one has

H(W ) = O
(
hL+2+ 1

3wh

)
+O

(
hL+2+ 2

3w′h

)
. (1.18)

We call the formal expression

h
1
3wh(z)

∞∑
l=0

hlAl(z) + h
2
3w′h(z)

∞∑
l=1

hlBl(z) (1.19)

an asymptotic solution to (1.1).
Theorem 1.3 is proved in section 3, where we describe, inter alia, a way to

compute the coefficients (Al)l and (Bl)l.
Let us comment on the results of Theorem 1.3. First, we note that, for the

differential equation −ψ′′(z) + v(z)ψ(z) = 0, in a neighborhood of a simple turning
point (a point where v(z) = 0 and v′(z) 6= 0), there are asymptotic solutions of the
form (1.19) (with different coefficients (Al)l, (Bl)l and function ζ).

To justify the Ansatz (1.19) for the difference equation, one has to derive as-
ymptotic formulas of the form

wh(z ± h) = f(z)wh(z)± h 1
3 g(z)w′h(z) + . . . , (1.20)

where f(z) = cosh(
√
ζ(z)ζ ′(z)) and the dots denote smaller order terms. If one

tries to prove this formula using Taylor expansions for the left hand side, one has to
handle an infinite number of infinite subsequences of terms of the same order. So,
an effective resummation of these sequences is required. As we see in this paper,
to derive formulas analogous to (1.20), instead of resummation of Taylor series, it
is very natural to use tools from complex analysis.

Formula (1.20) imply that

H (wh) (z) =
(

2 cosh(
√
ζ(z)ζ ′(z)) + v(z)

)
wh(z) + . . . . (1.21)

In view of (1.2) and (1.8), the leading term in the right-hand side of (1.21) is zero.

Finally, we note that if h−
2
3 |ζ(z)| is large, then wh(z) and w′h in (1.17) can

be replaced by their asymptotic representations. As a result, in view of (1.12),
the leading term in (1.17) turns into a linear combination of the leading terms
from (1.3).
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1.6.2. Solutions with standard asymptotic behavior. Our main result is

Theorem 1.4. Let L ∈ N, and let W be one of the functions constructed in The-

orem 1.3 for the order L. Then there exists an h-independent neighborhood
◦
U ⊂ U

of z0 such that, for sufficiently small h, there exists ψ, a solution to equation (1.1)

that is analytic in
◦
U and admits there the asymptotic representation

ψ(z) = W (z) +O(wh h
L+1+ 1

3 ) +O(w′h h
L+1+ 2

3 ) (1.22)

where wh and w′h are defined in (1.16).

Theorem 1.4 is proved in sections 5 and 6.
Let us briefly explain the idea of the proof of Theorem 1.4. First, in section 5, using
the approximate solutions constructed in Theorem 1.3, we construct a parametrix
R, i.e., an operator such that, for suitable functions f , one has HRf = f + Df ,
where H is defined in (1.13) and D is a small operator. The operator D is a
singular integral operator. We estimate its norm using natural geometric objects of
the complex WKB method. This allows us to prove Theorem 1.4 on some special
subdomains of U . In section 6, we study the thus constructed solutions on larger
domains and complete the proof of Theorem 1.4.
To complete this short description, let us underline that, as equation (1.1) is non-
local in z, the ideas of analysis of (1.1) are different from those used to study the
analogous differential equation.

1.7. Related results. The WKB asymptotics of solutions of difference equations
on Z with “slowly varying” coefficients have been studied since the end of 1960-s.
In [20] and [19], the authors essentially studied equations of the form

Yk+1 = M(hk)Yk, k ∈ Z, (1.23)

with a small positive h and an (n×n)-matrix valued function M defined on R. We
note that if

Y (x+ h) = M(x)Y (x), x ∈ R, (1.24)

then, the sequence (Yk)k∈Z = (Y (kh))k∈Z satisfies (1.23). We note also that equa-

tion (1.1) restricted to R is equivalent to (1.24) with M(x) =

(
−v(x) −1

1 0

)
, and

that a turning point for equation (1.1) is a point x where the eigenvalues of the
matrix M(x) coincide.
The short note [20] is essentially devoted to the case where all the eigenvalues of
the matrix M in (1.23) are distinct. In [19] the author constructed asymptotic
solutions to (1.23) in a small (depending on h) neighborhood of a point where two
eigenvalues of M(x) become equal.
In [5] the authors considered difference equations of the form

J∑
j=I

aj(hk, h) yk+j = 0, k ∈ Z.

We note that this class includes the difference Schrödinger equations

yk+1 + yk−1 + v(hk)yk = 0, k ∈ Z.

The authors described the asymptotics of solutions to this equations for hk being
in a small (as h→ 0) neighborhood of a point where v(x) ∈ {±1}.
We mention also three (series of) papers motivated by problems originating in the
theory of orthogonal polynomials.
First, there is a series of papers by J.S. Geronimo and co-authors, see, e.g. [16]
and references therein, devoted to uniform asymptotic formulas for solutions to the
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equation ak+1ψk+1 + bkψk + akψk−1 = λψk, k ∈ Z, where λ is the spectral param-
eter, and the coefficients ak are positive and bk are real.
Also we mention papers by R.Wong and coauthors, see e.g., [23], who also studied
solutions to three terms recurrence relations with real coefficients for large values
of the integer variable.
Finally, we mention paper [6] where the authors studied WKB asymptotics of so-
lutions to a difference equation using the Maslov canonical operator.
There are more papers devoted to the subject. The reader can find more references
in the papers that we mentioned above.

To the best of our knowledge, the present paper is the first where one rigorously
obtains uniform asymptotics of analytic solutions to a difference equation on C in
an h-independent neighborhood of a turning point.

2. The space of solutions to equation (1.1)

The observations that we discuss now are well-known in the theory of difference
equations and are easily proved.
Let c ∈ R and I = {z ∈ U : Im z = c}. We assume that the length of the
segment I is sufficiently large (with respect to h) and discuss the set S of solutions
to equation (1.1) on I.
Let {f, g} ⊂ S. The expression

(f(z), g(z)) = f(z + h)g(z)− f(z)g(z + h), z, z + h ∈ I, (2.1)

is called the Wronskian of f and g. It is h-periodic in z.
If the Wronskian of two solutions does not vanish, they form a basis in S, i.e, ψ ∈ S
if and only if

ψ(z) = a(z)f(z) + b(z)g(z), z, z + h ∈ I, (2.2)

where a and b are h-periodic complex coefficients. One has

a(z) =
(ψ(z), g(z))

(f(z), g(z))
, b(z) =

(f(z), ψ (z))

(f(z), g(z))
. (2.3)

3. Asymptotic solutions: the proof of Theorem 1.3

3.1. The proof of Theorem 1.3 up to two propositions. First, we formulate
two statements needed to construct asymptotic solutions to (1.1). Below we use
the notations introduced in (1.16).

Proposition 3.1. Let A be analytic in U . Let N ∈ N. If {z − h, z, z + h} ⊂ U ,

H
(
Ah

1
3wh

)
= h

1
3wh

N∑
l=2

hlal +O
(
hN+1+ 1

3wh

)
+ h

2
3w′h

N∑
l=1

hlbl +O
(
hN+1+ 2

3w′h

) (3.1)

as h→ 0. All the coefficients (al)l≥2 and (bl)l≥1 are analytic in U , independent of
the choice of w in (1.16), and

b1 = b1[A] = Ag
d

dz
log
(
A2g

)
. (3.2)
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Proposition 3.2. Let B be analytic in U , and let N ∈ N. If {z−h, z, z+h} ⊂ U ,

H
(
B h

2
3w′h

)
= h

1
3wh

N∑
l=1

hlcl +O
(
hN+1+ 1

3wh

)
+ h

2
3w′h

N∑
l=2

hldl +O
(
hN+1+ 2

3w′h

) (3.3)

as h→ 0. All the coefficients (cl)l≥1 and (dl)l≥2 are analytic in U , independent of
the choice of w in (1.16), and

c1 = c1[B] = ζBg
d

dz
log(ζB2g). (3.4)

Before proving Propositions 3.1 and 3.2, we use them to prove Theorem 1.3. The
proof is done by induction on the order L. For L = 0, one has W = A0h

1
3wh. In

view of (1.15) and (3.2), the coefficient b1 corresponding to A = A0 is equal to 0.
So, the statement of Theorem 1.3 for L = 0 immediately follows from (3.1) with
N = 1.
Now, we assume that Theorem 1.3 is proved up to the order L = L0 − 1, L0 ∈ N.
Let us prove it for L = L0. We set

W (z) = h
1
3wh(z)

L0∑
l=0

hlAl(z) + h
2
3w′h(z)

L0∑
l=1

hlBl(z), (3.5)

where (Al)l<L0
and (Bl)l<L0

are chosen as in the case L = L0 − 1, AL0
and BL0

still having to be chosen. By the induction hypothesis

H

(
h

1
3wh

L0−1∑
l=0

hlAl + h
2
3w′h

L0−1∑
l=1

hlBl

)
= O

(
hL0+1+ 1

3wh

)
+O

(
hL0+1+ 2

3w′h

)
. (3.6)

In view of Propositions 3.2 and 3.1 this implies that

H

(
h

1
3wh

L0−1∑
l=0

hlAl + h
2
3w′h

L0−1∑
l=1

hlBl

)
=ahL0+1+ 1

3wh + bhL0+1+ 2
3w′h

+O
(
hL0+2+ 1

3wh

)
+O

(
hL0+2+ 2

3w′h

)
,

where a and b are analytic functions in U . On the other hand, using (3.1) and (3.3)
with N = 1, we get

H(AL0
hL0+ 1

3wh) = hL0+1+ 2
3w′h b1[AL0

] +O(hL0+2+ 1
3wh) +O(hL0+2+ 2

3w′h),

H(BL0h
L0+ 2

3w′h) = hL0+1+ 1
3wh c1[BL0 ] +O(hL0+2+ 1

3wh) +O(hL0+2+ 2
3w′h).

Therefore,

HW = hL0+1
(
h

1
3wh (a+ c1[BL0

]) + h
2
3w′h (b+ b1[AL0

])
)

+O(hL0+2+ 1
3wh) +O(hL0+2+ 2

3w′h).

So, to prove Theorem 1.3, it suffices to choose AL0 and BL0 so that

a+ c1[BL0
] = 0, and b+ b1[AL0

] = 0.

In view of (3.2) and (3.4), these relations are equivalent to the equations

ζBL0g
d

dz
log
(
ζB2

L0
g
)

= −a, and AL0g
d

dz
log
(
A2
L0
g
)

= −b. (3.7)
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One constructs solutions to these equations by the formulas

AL0
(z) = − 1

2
√
g(z)

∫ z

z0

b dz
√
g
, and BL0

(z) = − 1

2
√
ζ(z)g(z)

∫ z

z0

a dz√
ζg
. (3.8)

As

• g and ζ are analytic in U ,
• g does not vanish in U ,
• ζ vanishes in U only at z0 where it has a simple zero,

the coefficients AL0
and BL0

are analytic in U . This completes the proof of Theo-
rem 1.3. �

Remark 3.1. The function BL0
constructed by (3.8) is the only solution to the

first equation in (3.7) that is analytic in U . The function AL0
constructed by (3.8)

is unique up to a solution to the homogeneous equation AL0
g d
dz log

(
A2
L0
g
)

= 0
that is proportional to A0 given by (1.15).

3.2. The proof of Proposition 3.1. Consider (wj)j∈Z3
the three solutions to the

Airy equation (1.9) defined by (1.10). Let w be wj for some j ∈ Z3 and let γ be
the corresponding integration path γj in (1.10).
Note that

h
1
3w(h−

2
3 ζ) =

∫
γ

e
− 1
h

(
t3

3 −tζ
)
dt, h

2
3w′(h−

2
3 ζ) =

∫
γ

e
− 1
h

(
t3

3 −tζ
)
t dt. (3.9)

Below, we use the notations from (1.16). Let K ⊂ U is a closed disk centered at
z0 and independent of h. Below, we assume that z ∈ K and h is sufficiently small.
The proof of the asymptotics of H(Ah

1
3w) in K as h → 0 is broken into several

steps.
1. In view of (3.9), we get

H
(
Ah

1
3w
)

=

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
F0(t, z, h) dt, (3.10)

F0(t, z, h) = A(z + h)e
t
h (ζ(z+h)−ζ(z)) +A(z − h)e

t
h (ζ(z−h)−ζ(z)) + v(z)A(z).

(3.11)

Note that (t, z, h) 7→ F0(t, z, h) is analytic in C×K × V , where V is a sufficiently
small neighborhood of zero.
2. To get the asymptotics of the integral in (3.10), we apply the well-known
method described in detail in section 4 of chapter VII of [22]. First, we represent
F0(t, z, h) in the form

F0(t, z, h) = a0(z, h) + b0(z, h)t+ (t2 − ζ(z))f0(t, z, h) (3.12)

with

a0(z, h) =
1

2

(
F0(
√
ζ(z), z, h) + F0(−

√
ζ(z), z, h)

)
, (3.13)

b0(z, h) =
1

2
√
ζ(z)

(
F0(
√
ζ(z), z, h)− F0(−

√
ζ(z), z, h)

)
, (3.14)

where, in (3.13) and (3.14), we use one and the same branch of
√
ζ(z).

Both a0 and b0 are analytic in (z, h) ∈ K×V (we remove the removable singularities
at z = 0). With a0 and b0 so chosen, it is easily seen that the function f0 is analytic
in (t, z, h) ∈ C×K × V .
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3. Substituting (3.12) into (3.10) and integrating by parts, we get

H
(
Ah

1
3wh

)
= a0h

1
3wh + b0h

2
3w′h +

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
(t2 − ζ(z))f0 dt

= a0h
1
3wh + b0h

2
3w′h + h

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
F1(t, z, h) dt.

(3.15)

where F1(t, z, h) = ∂f0
∂t (t, z, h).

4. Now, we transform the last integral in (3.15), the one containing F1, in the
same way as we transformed the integral with F0 from (3.10).
For a fixed positive integer N , we repeat this procedure inductively N + 2 times.
Reasoning as above, one proves that

H
(
Ah

1
3wh

)
= h

1
3wh

N+1∑
l=0

hlal(z, h) + h
2
3w′h

N+1∑
l=0

hlbl(z, h) + hN+2IN+2, (3.16)

where, for l ∈ N ∪ {0}, we have defined

Il =

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
Fl(t, z, h) dt. (3.17)

As when l = 0, the coefficients al and bl are expressed in terms of Fl by

al(z, h) =
1

2

(
Fl(
√
ζ(z), z, h) + Fl(−

√
ζ(z), z, h)

)
,

bl(z, h) =
1

2
√
ζ(z)

(
Fl(
√
ζ(z), z, h)− Fl(−

√
ζ(z), z, h)

)
,

and the function fl is defined by the relation

Fl(t, z, h) = al(z, h) + bl(z, h)t+ (t2 − ζ(z))fl(t, z, h) (3.18)

Finally, for l ≥ 1, one has Fl(t, z, h) = ∂fl−1

∂t (t, z, h).
For l ∈ N ∪ {0}, the coefficients al and bl are analytic in (z, h) ∈ K × V .
5. To estimate the integrals Il, one has to estimate the functions Fl. Below, the
constants C are independent on z, h and t. The symbol O(·) is subsequently used
for estimates uniform in z, t and h.

Let us assume that that(t, z, h) ∈ C×K×V and show that there exists a constant
C0 > 0 such that, for any l ∈ N, one has

Fl(t, z, h) = O
(
eC0|t|

)
, (3.19)

where the implicit constant in (3.19) depends only on the index l.
This estimate is obvious for F0. Let us assume that it is proved for some l = l0 and
prove it for l = l0 + 1.
Clearly, ζ(z) is bounded on K. In view of the definitions of (al)l≥0, (bl)l≥0 and
the induction hypothesis, we have al0(z, h) = O(1) and bl0(z, h) = O(1). These
observations, the definition of fl (3.18) and the induction hypothesis imply that
there exists R > 0 independent of h such that, for all |t| ≥ R, fl0(t, z, h) = O(eC0|t|).
By the maximum principle, this implies that fl0 satisfies this estimate for all t ∈ C.
Now the Cauchy estimates for the derivatives of the analytic functions imply (3.19)
for l = l0 + 1.
6. Let us prove that

Il = O
(
h

1
3wh

)
+O

(
h

1
3w′h

)
. (3.20)

Therefore, one essentially has to repeat the reasoning made in Section 4, Chapter
VII of [22]. So, we omit some details.

10



If Z = h−
2
3 ζ(z) is bounded by a constant, setting T = h−

1
3 t, we change variable

in (3.17). In view of step 5, we get

Il = h
1
3

∫
γ

e
−
(
T3

3 −TZ
)
O(eC0h

1
3 |T |) dT = O(h

1
3 ),

and this leads to (3.20) as w and w′ have no common zero.

If Z = h−
2
3 ζ(z) is large, we estimate the integral Il using the method of steepest

descent. In view of the fifth step, we have

Il =

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
O(eC0|t|) dt.

We deform the integration path to a path of steepest descent for e
− 1
h

(
t3

3 −tζ(z)
)

exactly as when computing the asymptotics of the Airy function w, i.e., the asymp-

totics of the integral
∫
γ
e
− 1
h

(
t3

3 −tζ(z)
)
dt. The saddle points ±

√
ζ(z) are uniformly

bounded when z ∈ K. Let r > 0 be sufficiently large for the saddle points to be
inside the disk of radius r centered at 0. We compute the asymptotics of the inte-
gral over γ ∩ {|t| ≤ r} directly by means of the method of steepest descents and,
comparing the answer with the asymptotics of the Airy function w(Z) as Z →∞,

we find that this integral is bounded by O(h
1
3wh) + O(h

2
3w′h). The integral over

the remaining part of γ quickly tends to 0 as h → 0: actually, it is exponentially
small with respect to O(h

1
3wh) +O(h

2
3w′h). This yields (3.20).

7. Formula (3.16) and estimate (3.20) lead to the representation

H
(
Ah

1
3wh

)
(z) = h

1
3wh(z)

N∑
l=0

hlal(z, h) + h
2
3w′h(z)

N∑
l=0

hlbl(z, h)

+O
(
hN+1+ 1

3wh(z)
)

+O
(
hN+1+ 2

3w′h(z)
)
,

(3.21)

The coefficients (al)l∈N∪{0} and (bl)l∈N∪{0} being analytic in h, we can approximate
them by Taylor polynomials. This yields

H
(
Ah

1
3wh

)
(z) = h

1
3wh(z)

N∑
l=0

hlal(z) + h
2
3w′h(z)

N∑
l=0

hlbl(z)

+O
(
hN+1+ 1

3wh(z)
)

+O
(
hN+1+ 2

3w′h(z)
)
,

(3.22)

where (al(z))l∈N∪{0} and (bl(z)))l∈N∪{0} are new coefficients independent of h. In
particular, one has

a0(z) = a0(z, 0), b0(z) = b0(z, 0),

a1(z) = a1(z, 0) +
∂a0

∂h
(z, 0), b1(z) = b1(z, 0) +

∂b0
∂h

(z, 0).
(3.23)

Now, to complete the proof of Proposition 3.1, it suffices to compute a0, b0, a1, b1.
8. Let us check that

a0(z, 0) =
∂a0

∂h
(z, 0) = 0. (3.24)

Substituting (3.11) into (3.13), we get

a0(z, h) = A(z + h)cosh

(√
ζ(z)

ζ(z + h)− ζ(z)

h

)
+A(z − h)cosh

(√
ζ(z)

ζ(z − h)− ζ(z)

h

)
+ v(z)A(z).

Thus,

a0(z, 0) = A(z)
(

2 cosh (
√
ζ(z)ζ ′(z)) + v(z)

)
.

11



Recall that the complex momentum p is defined in (1.2). In view of (1.8) we get

2cosh
(√

ζ(z)ζ ′(z)
)

+ v(z) = 0. (3.25)

So, a0(z, 0) = 0. As a0(z, h) is even in h, we also see that ∂a0
∂h (z, 0) = 0.

9. Let us check that

b0(z, 0) = 0, ∂b0
∂h (z, 0) = 2A′(z)

sinh
(√

ζ(z)ζ′(z)
)

√
ζ(z)

+A(z)cosh
(√

ζ(z)ζ ′(z)
)
ζ ′′(z).

(3.26)
Substituting (3.11) into (3.14), we get

b0(z, h) = A(z + h)
sinh

(√
ζ(z)

ζ(z+h)−ζ(z)
h

)
√
ζ(z)

+A(z − h)
sinh

(√
ζ(z)

ζ(z−h)−ζ(z)
h

)
√
ζ(z)

.

Clearly, b0(z, h) is odd in h, and so b0(z, 0) = 0. Computing ∂b0
∂h (z, 0), we complete

the proof of (3.26).
10. To compute a1(z, 0) and b1(z, 0), we first study f0. Let r > 0 be such that
|ζ(z)| ≤ r2/2 for all z ∈ K. Let |t| = r, z ∈ K and h ∈ V . Formulas (3.11)
and (3.25) imply that

F0(t, z, h) = F0(t, z)+O(h), F0(t, z) = 2A(z)
(

cosh (tζ ′(z))− cosh (
√
ζ(z)ζ ′(z))

)
.

This result, the formulas a0(z, 0) = b0(z, 0) = 0 (see steps 9–10) and (3.12) imply
that for |t| = r one has

f0(t, z, h) =
F0(t, z)

t2 − ζ(z)
+O(h).

By the maximum principle for analytic functions, this representation remains true
for all |t| ≤ r.
11. The result of the previous step and the Cauchy estimates for the derivatives
of the analytic functions imply that, for |t| ≤ r/2, z ∈ K and h ∈ V , one has

F1(t, z, h) = F1(t, z) +O(h), where F1(t, z) =
∂

∂t

(
F0(t, z)

t2 − ζ(z)

)
. (3.27)

Therefore

a1(z, 0) =
F1

(√
ζ(z),z

)
+F1

(
−
√
ζ(z),z

)
2 , b1(z, 0) =

F1

(√
ζ(z),z

)
−F1

(
−
√
ζ(z),z

)
2
√
ζ(z)

.

As t 7→ F1(t, z) is odd, one has

a1(z, 0) = 0, b1(z, 0) =
1

t

∂

∂t

(
F0(t, z)

t2 − ζ(z)

)∣∣∣∣
t=
√
ζ

.

Elementary calculations yield

b1(z, 0) =
Aζ ′

2ζ

(
ζ ′(z)cosh

(√
ζζ ′
)
−

sinh
(√
ζζ ′
)

√
ζ

)
, ζ = ζ(z).

The results of the steps 8, 9 and 11 imply that

a0(z) = b0(z) = a1(z) = 0, b1(z) = A(z)g(z)
d log(A2g)

dz
(z),

where g is the defined in (1.14). Substituting these formulae into (3.22), we ob-
tain (3.1) and (3.2). This completes the proof of Proposition 3.1. �
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3.3. Proof of Proposition 3.2. The proof of Proposition 3.2 being parallel to
that of Proposition 3.1, we concentrate only on the differences and omit details.
We assume that B is analytic in U . Let w, γ and K be as in the proof of Propo-
sition 3.1. We use the notations from (1.16). We assume that z ∈ K and that h

is sufficiently small. The derivation of the asymptotics of H(Bh
2
3w′) is split into

several steps.
1. We get

H
(
Bh

2
3w′h

)
=

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
G0(t, z, h) dt, (3.28)

G0(t, z, h) = t
(
B(z + h)e

ζ(z+h)−ζ(z)
h t +B(z − h)e

ζ(z−h)−ζ(z)
h t + v(z)B(z)

)
. (3.29)

2. Fix an N ∈ N. Reasoning as in steps 1-6 of the proof of Proposition 3.1, instead
of (3.21), for z ∈ K and for sufficiently small h, we prove that

H
(
B h

2
3w′h

)
= h

1
3wh

N∑
l=0

hlcl(z, h) + h
2
3w′h

N∑
l=0

hldl(z, h)

+O
(
hN+1+ 1

3wh

)
+O

(
hN+1+ 2

3w′h

)
,

where, for l ∈ N ∪ {0}, one computes

cl(z, h) = 1
2

(
Gl(
√
ζ(z), z, h) +Gl(−

√
ζ(z), z, h)

)
, (3.30)

dl(z, h) =
1

2
√
ζ(z)

(
Gl(
√
ζ(z), z, h)−Gl(−

√
ζ(z), z, h)

)
, (3.31)

gl(t, z, h) =
Gl(t, z, h)− cl − dlt

t2 − ζ(z)
, Gl+1 =

∂gl
∂t
. (3.32)

In (3.30) and (3.31), we use one and the same branch of
√
ζ(z).

Approximating the (cl)l∈N∪{0} and (dl)l∈N∪{0} as functions of h by Taylor polyno-
mials, we get

H
(
B h

2
3w′h

)
= h

1
3wh

N∑
l=0

hlcl(z) + h
2
3w′h

N∑
l=0

hldl(z)

+O
(
hN+1+ 1

3wh

)
+O

(
hN+1+ 2

3w′h

)
.

(3.33)

One has

c0(z) = c(z, 0), d0(z) = d(z, 0),

c1(z) = c1(z, 0) +
∂c0
∂h

(z, 0), d1(z) = d1(z, 0) +
∂d0

∂h
(z, 0).

(3.34)

3. Substituting (3.29) into formula (3.31) with l = 0, we obtain the formulas

d0(z, 0) =
∂d0

∂h
(z, 0) = 0 (3.35)

in the same way as we obtained (3.24).
4. Let us check that

c0(z, 0) = 0, ∂c0
∂h (z, 0) =

√
ζ
(
2B′(z)sinh

(√
ζζ ′
)

+B(z)cosh
(√
ζζ ′
)√

ζζ ′′
)
,

(3.36)
13



where ζ = ζ(z). Substituting (3.29) into formula (3.30) with l = 0, we get

c0(z, h) = B(z + h)
√
ζ(z) sinh

(√
ζ(z)

ζ(z + h)− ζ(z)

h

)
+B(z − h)

√
ζ(z) sinh

(√
ζ(z)

ζ(z − h)− ζ(z)

h

)
.

The coefficient c0(z, h) is odd in h, and so c0(z, 0) = 0. Computing ∂c0
∂h (z, 0), we

complete the proof of (3.36).
5. As G1 is computed in the same way as F1 in steps 11–12 of the proof of
Proposition 3.1, we omit the details and write down the result:

G1(t, z, h) = G1(t, z) +O(h), G1(t, z) = 2B
∂

∂t

t
(
cosh (tζ ′)− cosh

(√
ζζ ′
))

t2 − ζ
,

(3.37)
where ζ = ζ(z). This representation is locally uniform in t and uniform in z ∈ K.
6. Having described G1, we easily get the formulas

d1(z, 0) = 0, c1(z, 0) =
Bζ ′

2

(
ζ ′cosh

(√
ζζ ′
)

+
sinh

(√
ζζ ′
)

√
ζ

)
, ζ = ζ(z).

We again omit elementary details and only note that the first formula follows from
the evenness of the function t 7→ G1(t, z).
7. Substituting the results of steps 3,4 and 6 into (3.34), we get

c0(z) = d0(z) = d1(z) = 0, c1(z) = ζ(z)B(z)g(z)
d log(ζB2g)

dz
(z),

where g is the function from (1.14). Substituting these formulas into (3.33), we
prove the statement of Proposition 3.2. �

4. Properties of asymptotic solutions

We now study basic properties of the asymptotic solutions. More precisely,
we fix an integer L and study the functions (Wj)j∈Z3

, i.e., the functions W from
Theorem 1.3 corresponding to the chosen L and to the Airy functions w = wj ,
j ∈ Z3.

4.1. Functional relations. We recall that the function (Wj)j∈Z3 are defined in a
domain U satisfying the assumptions from sections 1.3 and 1.6.1.

Lemma 4.1. One has

W0(z) +W1(z) +W2(z) = 0, ∀z ∈ U. (4.1)

Proof. Formula (1.10) and the definitions of the integration paths (γj)j∈Z3
(see

Fig. 1) imply that

w0(ζ) + w1(ζ) + w2(ζ) = 0, ζ ∈ C. (4.2)

As the function ζ and all the coefficients (Al)l∈N∪{0} and (Bl)l∈N∪{0} in represen-
tations (1.16)– (1.17) are independent of the choice of w, the solution of the Airy
equation in this representation, the relation (4.2) implies (4.1). �

Relation (4.1) implies that

(W0(z),W1(z)) = (W1(z),W2(z)) = (W2(z),W0(z)), ∀{z, z + h} ⊂ U, (4.3)

where (f(z), g(z)) = f(z + h)g(z) − g(z + h)f(z) is the difference Wronskian of f
and g.
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Figure 2. Stokes lines and sectors

4.2. Estimates of Wj. To prove the existence of analytic solutions that admit
asymptotic expansions of the form (1.19), we need rough estimates of (Wj)j∈Z3 in
U . Therefore, we first introduce some tools.

4.2.1. Geometry. We recall that the function ζ defined in (1.7) is analytic in U and
bijectively maps U onto V = ζ(U), ζ(z0) = 0.
We put

σj = ζ−1(V ∩ aj), aj = e−2πij/3 R−, j ∈ Z3, (4.4)

where R− = (−∞, 0]. The curves (σj)j∈Z3
are analytic. They all begin at z0. Any

two of them do not intersect except at z0. The angles between these curves at z0

are equal to 2π/3.
The curves (σj)j∈Z3

cut the domain U (a neighborhood of z0) into three simply
connected subdomains that we call sectors. We denote them by S0, S1 and S2 so
that the sector S0 is bounded by σ1 and σ2, S1 is bounded by σ2 and σ0, and S2

is bounded by σ0 and σ1, see Fig. 2. Let

Uj = U \ σj , j ∈ Z3. (4.5)

These domains do not contain branch points of the complex momentum p: the only
branch point of p in U is z = z0. We shall use

Lemma 4.2. For j ∈ Z3, there exists a branch pj of the complex momentum that
is analytic in Uj and such that pj(z0) = 0 and

(1) Im
∫ z
z0
pj(z) dz > 0 inside Sj;

(2) Im
∫ z
z0
pj(z) dz < 0 inside the two other sectors;

(3) Im
∫ z
z0
pj(z) dz = 0 along the curves σ1, σ2 and σ0 (in the case of σj, we

mean the boundary values);

Moreover, one has

p1 = −p0 in σ0 ∪ S1 ∪ σ2 ∪ S0 ∪ σ1, p2 = −p0 in σ0 ∪ S2 ∪ σ1 ∪ S0 ∪ σ2. (4.6)

In the WKB method, the curves σj , j ∈ Z3, are called Stokes lines.

Proof. Let us check the first three points of Lemma 4.2 for j = 0. We recall that
ζ is an analytic branch of the function (1.7). We can assume that in (1.7) p is a
branch of the complex momentum analytic in U0 and such that p(z0) = 0.
Formulas (4.4) and the definition of ζ imply that Im

∫ z
z0
p(z) dz = 0 on any of the

Stokes lines. We note that

ζ(Sj) = {v ∈ V : v 6= 0, arg v ∈ −2πj/3 + (−π/3, π/3)}, j ∈ Z3. (4.7)
15



This and the definition of ζ imply that Im
∫ z
z0
p(z) dz 6= 0 in each of the sectors.

In view of the analysis made in section 1.3.1, in U0, we can choose an analytic
branch p0 of the complex momentum so that Im

∫ z
z0
p0(z) dz > 0 in S0. For p0, the

statements 1. and 3. of Lemma 4.2 are obviously valid.
To prove point 2., it suffices to check that Im

∫ z
z0
p0(z) dz < 0 in the sectors S1 and

S2. Therefore, we note that as z 6= z0, z ∼ z0, crosses σ2 moving from S0 to S1

the argument of ζ(z) decreases (ζ vanishes only at z = z0) as does the argument of∫ z
z0
p0(z) dz. Therefore, point 2. of Lemma 4.2 follows from points 1. and 3.

To complete the proof of Lemma 4.2, we choose p1 in the following way. First, we
restrict p0 to S1; then, in S1 we choose p1 = −p0 and continue p1 analytically from
S1 to U1. For the thus chosen p1, we have

Im

∫ z

z0

p1(z) dz = −Im

∫ z

z0

p0(z) dz > 0, z ∈ S1.

This proves point 1 for p1. Point 2 and point 3 for p1 are proved as for p0 and p.
To choose p2, first, we restrict p0 to S2, then, in S2 we choose p2 = −p0 and p2

analytically from S2 to U2. To complete the proof of Lemma 4.2 for p2, we reason
as for p1. We omit further details. �

4.2.2. Estimates. For j ∈ Z3 and z ∈ Uj , we set

ρj(z) = e
i
h

∫ z
z0
pj(z

′) dz′
. (4.8)

We note that ρj is continuous up to the cut along σj , and the boundary values of
its absolute value |ρj | on both the sides of the cut equal one. So, below, we consider
|ρj | as a continuous function in U .

Let us recall that H is defined by (1.13). We set

δj(z) = [H(Wj)](z), z ∈ U, j ∈ Z3. (4.9)

Proposition 4.1. For each j ∈ Z3, one has

|Wj(z)| ≤ Ch1/3|ρj(z)|, z ∈ U, (4.10)

|δj(z)| ≤ ChL+2+1/3 |ρj(z)|, {z, z + h, z − h} ⊂ U, (4.11)

where L is the order entering the definition of Wj, see (1.17).

Proposition 4.1 immediately follows from formulas (1.16)–(1.18) with w = wj and

Lemma 4.3. Let j ∈ Z3. Then one has

|wj(h−
2
3 ζ(z))| ≤ C|ρj(z)|, |w′j(h−

2
3 ζ(z))| ≤ Ch− 1

6 |ρj(z)|, z ∈ U. (4.12)

Proof. We prove (4.12) only for j = 0. The other cases are treated similarly. We
recall that w0 = Ai, that ζ bijectively maps U onto its image and that ζ(z0) = 0
(see (1.7)). Clearly,

w0(h−
2
3 ζ(z)) = O(1) and w′0(h−

2
3 ζ(z)) = O(1) if |ζ(z)| ≤ h 2

3 . (4.13)

Now we turn to the case where |ζ(z)| ≥ h 2
3 . It suffices to prove (4.12) in U0.

The asymptotic formulas (1.12) imply that, for Z ∈ {Z ∈ C \ R− : |Z| ≥ 1}, one
has

|w0(Z)| ≤ C|Z|− 1
4

∣∣∣∣e− 2
3 Z

3
2

∣∣∣∣ and |w′0(Z)| ≤ C|Z| 14
∣∣∣∣e− 2

3 Z
3
2

∣∣∣∣ , (4.14)

where the Z 7→ Z
3
2 is analytic in C \ R− and positive when Z > 0.

Estimate (4.14) and the definition of U0, see (4.5), imply that, for z ∈ U0 such that

|ζ(z)| ≥ h 2
3 , one has

|w0(h−
2
3 ζ(z))| ≤ C

∣∣∣∣e− 2
3h ζ(z)

3
2

∣∣∣∣ and |w′0(h−
2
3 ζ(z))| ≤ Ch− 1

6

∣∣∣∣e− 2
3h ζ(z)

3
2

∣∣∣∣ , (4.15)
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where z → ζ(z)3/2 is analytic in U0 and positive along α0 = ζ−1((0,∞)).
In view of the analysis made in section 1.3.1,

ζ(z)
3
2 = ±3i

2

∫ z

z0

p0(z′) dz′, z ∈ U0.

As α0 = ζ−1((0,∞)) ⊂ S0, along α0 one has Im
∫ z
z0
p0(z′) dz′ > 0. Therefore, in U0

ζ(z)
3
2 = − 3i

2

∫ z
z0
p0(z′) dz′, and

∣∣∣e− 2
3h ζ(z)

3
2

∣∣∣ = |ρ0(z)|. This and (4.15) imply (4.12)

for |ζ(z)| ≥ h−2/3. This and (4.13) imply the statement of the lemma. �

4.3. Wronskians. Below C ⊂ U is a closed disk independent of h with the center
at z0. We now prove

Lemma 4.4. For {z, z + h} ⊂ C, as h→ 0 one has

(W0(z),W1(z)) = h(w′0(z)w1(z)− w′0(z)w1(z)) +O(h
5
3 ).

Before proving Lemma 4.4, we check

Lemma 4.5. Let j ∈ Z3, and let w = wj. For {z, z + h} ⊂ C, as h→ 0 one has

h
1
3wh

∣∣∣z+h = h
1
3 cosh (

√
ζ(z)ζ ′(z))wh + g(z)h

2
3 w′h +O(h

4
3wh) +O(h

5
3w′h) ,

where we use the notations from (1.16) and g is defined in (1.14).

Proof of Lemma 4.5. We proceed as in the proof of Proposition 3.1. Thus, we omit
some details and concentrate on the new computations.
Let γ = γj be the integration path in (1.10). Also, below we assume that z ∈ C
and that h is sufficiently small. The proof is broken into several steps.
1. We compute

h
1
3wh

∣∣∣
z+h

=

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
E(t, z, h) dt, E(t, z, h) = e

t
h (ζ(z+h)−ζ(z)). (4.16)

2. We represent E(t, z, h) in the form

E(t, z, h) = α(z, h) + β(z, h)t+ (t2 − ζ(z))φ(t, z, h) (4.17)

with

α(z, h) =
E(
√
ζ(z), z, h) + E(−

√
ζ(z), z, h)

2
= cosh

(√
ζ
ζ(z + h)− ζ(z)

h

)
,

β(z, h) =
E(
√
ζ(z), z, h)− E(−

√
ζ(z), z, h)

2
√
ζ(z)

=
1√
ζ

sinh

(√
ζ
ζ(z + h)− ζ(z)

h

)
.

3. Clearly,

α(z, h) = cosh (
√
ζζ ′) +O(h), β(z, h) = g(z) +O(h). (4.18)

4. Substituting (4.17) into (4.16) and integrating by parts, we get

h
1
3wh

∣∣∣
z+h

= αh
1
3wh + βh

2
3w′h + h

∫
γ

e
− 1
h

(
t3

3 −tζ(z)
)
E1(t, z, h) dt,

E1(t, z, h) =
∂φ

∂t
(t, z, h).

(4.19)

Reasoning as when proving Proposition 3.1, we check that the last term in the right
hand side of (4.19) is O(h

4
3w) + O(h

5
3w′). Lemma 4.5 follows from this estimate,

asymptotics (4.18) and representation (4.19). �

Now, we turn to the proof of Lemma 4.4.
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Proof of Lemma 4.4. Below we assume that {z, z+h} ⊂ C and that h is sufficiently
small. Using (1.17) and Lemma 4.5, we compute

(W0(z),W1(z)) = A2
0(z)

×
(

(h
1
3 cosh (

√
ζζ ′)w0 + gh

2
3 w′0 +O(h

4
3w0) +O(h

5
3w′0))

· (h 1
3w1 +O(h

4
3w1) +O(h

5
3w′1))

− (h
1
3 cosh (

√
ζζ ′)w1 + gh

2
3 w′1 +O(h

4
3w1) +O(h

5
3w′1))

·(h 1
3w0 +O(h

4
3w0) +O(h

5
3w′0))

)
.

Here, wj = wj(h
− 2

3 ζ(z)), j ∈ Z3, ζ = ζ(z), and g = g(z).
Now, we assume that z ∈ σ0 ∪ S1 ∪ σ2 ∪ S0 ∪ σ1. Then, by (4.12) and (4.6)

|w0w1| ≤ C, |w′0w1| ≤ Ch−
1
6 , |w0w

′
1| ≤ Ch−

1
6 , |w′0w′1| ≤ Ch−

1
3 , (4.20)

and we get

(W0(z),W1(z)) = hg(z)A2
0(z)(w′0w1 − w0w

′
1) +O(h

5
3 ).

In view of (1.15), Lemma 4.4 is proved for z ∈ σ0 ∪ S1 ∪ σ2 ∪ S0 ∪ σ1.
When z ∈ σ0 ∪ S2 ∪ σ1 ∪ S0 ∪ σ2, we similarly get

(W0(z),W2(z)) = hg(z)A2
0(z)(w′0w2 − w′2w0) +O(h

5
3 ). (4.21)

In view of (4.3), (W0,W2) = −(W0,W1) and relation (4.2) imply that w′0w2 −
w0w

′
2 = −(w′0w1 − w0w

′
1). Therefore, Lemma 4.4 for z ∈ S2 follows from (4.21).

This completes the proof of Lemma 4.4. �

5. Solutions to (1.1) on precanonical domains

Fix L ∈ N. Here we construct solutions (ψj)j∈Z3 to equation (1.1) that, up to
O(hL), coincide with (Wj)j∈Z3

, the functions from Theorem 1.3. The result of this
section is preliminary: we only construct the (ψj)j∈Z3

on some subdomains of U .

5.1. The result of this section.

5.1.1. Notations and some definitions. First, to formulate the results of this section,
we introduce some notations and recall some definitions related to the complex
WKB method for difference equations, see, for example, [13].
For z ∈ C, we let x = Re z and y = Im z.
A curve γ ⊂ C is called vertical, if z is a piecewise continuously differentiable
function of y along γ.
Let γ ⊂ U be a regular vertical curve parameterized by z = z(y). Let p be a
branch of the complex momentum continuous on γ. The curve γ is precanonical

with respect to p, if the function y 7→ Im
∫ z(y)

z0
p(z) dz is non decreasing and the

function y 7→ Im
∫ z(y)

z0
(p(z)− π) dz is non increasing.

Let d > 0. For M ⊂ C we define the horizontal d-neighborhood of M to be the set
Md := M + [−d, d] and M−d := (Md − d) ∩M ∩ (Md + d).
We recall that, for j ∈ Z3, the sector Sj and the Stokes line σj are shown in Fig. 2.
For j ∈ Z3, we denote by Sj,j+1 the closure of the domain Sj ∪ Sj+1 without the
boundary of U . For example, one has

S1,2 = σ1 ∪ S2 ∪ σ0 ∪ S1 ∪ σ2.

We also note that relations (4.6) imply that

|ρj(z)ρj+1(z)| = 1, z ∈ Sj,j+1, j ∈ Z3. (5.1)

Let r1 < r2. We set S(r1, r2) = {z ∈ C : r1 < Im z < r2}.
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5.1.2. The main result of the section. One has

Theorem 5.1. Let j ∈ Z3, L ∈ N, c ∈ (1, 2) and r > 0. Let K ⊂ Sj,j+1 be a
regular simply connected domain bounded by two curves having common endpoints
z1 and z2 and both precanonical with respect to either the branch pj or pj+1.
Then, for sufficiently small h, there exist two solutions ψj and ψj+1 to (1.1) that are
analytic in Kch and that, in Kch ∩ S(Im z1 + rh, Im z2 − rh) admit the asymptotic
representations

ψl(z) = Wl(z) +O(|ρl|hL+1+ 1
3 ), l ∈ {j, j + 1}, (5.2)

where Wl is the function described in Theorem 1.3 and corresponding to wl and the
order L.

Let us discuss the solutions ψj and ψj+1 described in Theorem 5.1.

Corollary 5.1. In the case of Theorem 5.1, the solutions ψj and ψj+1 can be
analytically continued to U ∩ S(Im z1, Im z2). Let r > 0. As h→ 0, one has

(ψj(z), ψj+1(z)) = (Wj(z),Wj+1(z)) +O(hL+1+ 2
3 ) (5.3)

in Kch ∩ S(Im z1 + rh, Im z2 − rh).

Proof. The solutions being analytic in Kch with c > 1, they can be analytically
continued to U ∩ S(Im z1, Im z2) just be means of equation (1.1).
We fix l ∈ Z3 and note that, for all z in a compact set C ⊂ U , for sufficiently
small h, one has |ρl(z + h)|/|ρl(z)| ≤ C. For z ∈ Kch ∩ S(Im z1 + rh, Im z2 − rh),
representation (5.3) follows from this observation and from (4.10), (5.2) and (5.1).

�

The remainder of this section is devoted to the proof of Theorem 5.1.
For the sake of definiteness, when proving Theorem 5.1, we assume that j = 0
and that the two curves from Theorem 5.1 are precanonical with to respect to the
branch p0. The other cases are treated similarly.
Below, K is as in the theorem (for j = 0), it is bounded by the precanonical curves
γ1 and γ2, and their common endpoints satisfy Im z1 < Im z2. Finally, h is supposed
to be sufficiently small.

5.2. Ideas of the proof. In the present section, we describe the construction of
the solution ψ0. The solution ψ1 is constructed similarly.
Let us assume that ψ0 is a solution to (1.1) analytic in Kch that we expect to be
close to W0. Let us recall that δ0 = HW0. Clearly, ∆0 := W0 − ψ0 satisfies the
equation

H(∆0)(z) = δ0(z), {z − h, z, z + h} ⊂ Kch. (5.4)

For z ∈ Kch, let γ(z) denote a vertical curve in Kch that contains z and connects
z1 and z2. We construct a solution to the equation for ∆0 in the form

∆0 = R0 g0 where R0g0 (z) :=

∫
γ(z)

r0(z, ζ)g0(ζ) dζ, (5.5)

r0(z, ζ) =
1

2ih

W0(z)W1(ζ)−W0(ζ)W1(z)

(W0(ζ), W1(ζ))
θ0

(
ζ − z
h

)
, θ0(t) = cot(πt)− i.

(5.6)
Here, (W0(ζ), W1(ζ)) is the difference Wronskian of W0 and W1. The choice of
Ansatz (5.5) is explained by

Lemma 5.1. Let 0 < β < 1. Let f be a function defined and analytic in U ∩
S(Im z1, Im z2) and such that the expression

fβ(z) = (z − z1)β(z − z2)βf(z) (5.7)
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is bounded. Then, if {z − h, z, z + h} ⊂ U ∩ S(Im z1, Im z2), one has

HR0f(z) = f(z) +D0f(z), D0f(z) =

∫
γ(z)

d0(z, ζ)f(ζ) dζ (5.8)

where

d0(z, ζ) =
1

2ih

δ0(z)W1(ζ)−W0(ζ)δ1(z)

(W0(ζ), W1(ζ))
θ0

(
ζ − z − 0

h

)
, (5.9)

and δj := HWj are the “error” terms estimated in (4.11). The function D0f is
analytic in U ∩ S(Im z1, Im z2).

Proof. The analyticity of f and the boundedness of fβ imply that D0f is well
defined and analytic in U ∩ S(Im z1, Im z2). The relation HR0f = f +D0f follows
from the residue theorem. We omit further details. �

We note that an operator similar to R0 was introduced in [14], but, was not
studied for small h.
In view of Lemma 5.1 and the formulas ∆0 = R0g0 and H(∆0) = δ0, we can expect
that in Kch

g0 +D0g0 = δ0. (5.10)

Roughly, to prove Theorem 5.1, we consider (5.10) as an equation on a vertical
curve γ. It appears that if γ is precanonical, the operator D0 is small. This enables
us to construct a solution ψ0 to equation (5.10) on γ1. Next, we check that it is
analytic in Kch, satisfies (1.1) and admits the asymptotic representation (5.2). The
solution ψ1 is constructed similarly.

5.3. The integral operator D0. The aim of this section is to estimate the ope-
rator norm of D0 in a suitable functional space.
Let γ be either γ1 or γ2. We fix α ∈ (0, 1) and define the strip

Πγ,α = γ \ {z1, z2}+ [−αh, αh].

We recall that z → |ρ0(z)| defined in U0 is a continuous function in U . We fix
0 < β < 1 and let Hγ,α,β be the linear space of functions analytic in Πγ,α and
having finite norm

‖f‖ = sup
z∈Πγ,α

|fβ(z)|
|ρ0(z)|

(5.11)

fβ being defined in (5.7). Obviously, endowed with this norm, Hγ,α,β is a Banach
space.
For f ∈ Hγ,α,β , we define D0f by the formula in (5.8), where γ(z) is a vertical curve
that connects the points z1 and z2 in Πγ,α and passes through z. The function D0f
is then analytic in Πγ,α. One has

Proposition 5.1. For sufficiently small h

‖D0‖Hγ,α,β→Hγ,α,β ≤ ChL+ 2
3 .

The remainder of this subsection is devoted to the proof of Proposition 5.1. There-
fore, for f ∈ Hγ,α,β , we estimate Rf(z). Up to the end of this subsection, we
assume that {z, ζ} ⊂ Πγ,α and that h is sufficiently small.

5.3.1. Auxiliary lemma. When estimating Rf(z), we use

Lemma 5.2. For q > 0, there exists C > 0 such that

sup
{z, ζ} ⊂ Πγ,α

min
k∈Z
|ζ − z − kh| ≥ qh

∣∣∣∣ρ0(ζ)

ρ0(z)
d0(z, ζ)

∣∣∣∣ ≤ ChL+ 2
3 . (5.12)
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Proof. We proceed in several steps.
1. Proposition 4.1 and Lemma 4.4 imply that∣∣∣∣ρ0(ζ)

ρ0(z)
d0(z, ζ)

∣∣∣∣ ≤ ChL+ 2
3

(
|ρ1(ζ)ρ0(ζ)|+ |ρ1(z)ρ2

0(ζ)|
|ρ0(z)|

) ∣∣∣∣θ0

(
ζ − z − 0

h

)∣∣∣∣ . (5.13)

2. Recall that in S0,1 one has ρ0(z)ρ1(z) = 1 (see (5.1)). As γ1, γ2 ⊂ S0,1, one has
|ρ0(z)||ρ1(z)| ≤ C for z ∈ Πγ,α. Therefore,∣∣∣∣ρ0(ζ)

ρ0(z)
d0(z, ζ)

∣∣∣∣ ≤ ChL+ 2
3 (1 + e(z, ζ))

∣∣∣∣θ0

(
ζ − z − 0

h

)∣∣∣∣ , e(z, ζ) =

∣∣∣∣ρ0(ζ)

ρ0(z)

∣∣∣∣2 .
(5.14)

3. For z ∈ Πγ,α, we define z⊥ ∈ γ so that Im z⊥ = Im z. We have

|e(z, ζ)| ≤ C

∣∣∣∣∣exp

(
2i

h

∫ ζ⊥

z⊥

p0(z′) dz′

)∣∣∣∣∣ .
4. On the complex plane outside a fixed neighborhood of the points Z, we have
the estimate

|θ0(z)| = | cot(πz)− i| ≤ C

{
1, Im z ≥ 0;

e2πIm z, Im z ≤ 0.

Therefore, for ζ outside the (qh)-neighborhood of z + hZ, we get∣∣∣∣θ0

(
ζ − z − 0

h

)∣∣∣∣ ≤ C and

∣∣∣∣e(z, ζ) θ0

(
ζ − z − 0

h

)∣∣∣∣ ≤ C

e
− 2
h Im

ζ⊥∫
z⊥

p dz

if Im (ζ − z) ≥ 0;

e

2
h Im

z⊥∫
ζ⊥

(p−π) dz

if Im (ζ − z) ≤ 0.

5. As γ is a precanonical curve, we finally get∣∣∣∣θ0

(
ζ − z − 0

h

)∣∣∣∣ ≤ C, and

∣∣∣∣e(z, ζ) θ0

(
ζ − z − 0

h

)∣∣∣∣ ≤ C. (5.15)

This and (5.14) imply (5.12). �

5.3.2. Estimates in the strip S(Im z1 + h/2, Im z2 − h/2). When z ∈ S(Im z1 +
h/2, Im z2 − h/2), we prove

|ρ0(z)−1D0f(z)| ≤ ChL+ 2
3 ‖f‖. (5.16)

First, we assume that z is between the curves γ+αh/2 and γ+αh. Then, one can
deform the integration path γ(z) in (5.8) to γ. The distance between the poles of
d0 and γ is larger than Ch. This, (5.11) and (5.12) imply (5.16).
Next, we assume that z is either between the curves γ and γ + ah/2 or on one of
them. In this case, in (5.8) we can replace the integration path γ by γ̃ where

• γ̃ is a continuous curve that connects z1 to z2,
• γ̃ coincides with γ−αh/2 in the strip {Im z1 + h/2 ≤ Im z ≤ Im z2− h/2},
• outside this strip, γ̃ consists of two segments of straight lines.

Reasoning as above on this new integral, we again obtain (5.16).
Let us assume now that z is to the left of γ. We note that, by the Residue theorem,
the integral in (5.8) decomposes as the sum of

−δ0(z)W1(z)−W0(z)δ1(z)

(W0(z), W1(z))
f(z) = O(hL+1+ 2

3 ) f(z)

and the integral defined by (5.8)–(5.9) with θ((ζ − (z+ 0))/h) replaced with θ((ζ −
(z − 0))/h).
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This new integral for z to the left of γ is analyzed as above. This completes the
proof of (5.16).

5.3.3. Estimates in S(Im z1, Im z1 +h/2) and S(Im z2−h/2, Im z2). Both domains
are treated similarly. So, we detail only the analysis for the first one. We prove
that

|ρ0(z)−1(D0f)β(z)| ≤ C hL+ 2
3 ‖f‖. (5.17)

For z between γ+αh/2 and γ+αh, reasoning as in section 5.3.2, one obtains (5.16)
that implies (5.17).
For z between γ and γ+αh/2, by contour deformation, the integration path in (5.8)
is replaced with γ̃ defined in section 5.3.2. We, thus, write D0f as the sum of an
integral, say A, over the part of γ̃ ∩ {Im ζ ≤ z1 + h/2} and an integral, say B, over
the part of γ̃ ∩ {Im z1 + h/2 ≤ Im ζ}.
Reasoning as in section 5.3.2, we estimate B and obtain

|ρ0(z)−1B| ≤ ChL+ 2
3 ‖f‖. (5.18)

Let us turn to A. We again use (5.13). Now, both |z− z1| and |ζ− z1| are bounded
by Ch; thus, |ρ0(z)/ρ0(ζ)| ≤ C. Furthermore, for such z, only one pole of the
integrand, the pole at the point z, can approach the integration path in A; the
other poles stay at a distance greater than Ch from it. Therefore, we get

|ρ0(z)−1A| ≤ C hL+1+ 2
3 ‖f‖

∫
Im z≤Im z1+h/2

|dζ|
|z − ζ| |ζ − z1|β

,

where we integrate along γ̃. Changing variable t = (ζ − z1)/|z − z1|, one checks
that the last integral is bounded by C/|z − z1|β . Thus,

|ρ0(z)−1A| ≤ C hL+1+ 2
3 ‖f‖/|z − z1|β .

This and (5.18) yields (5.17).
We omit further details and note only that, to prove (5.17) when z is to the left

of γ, we first transform the integral from (5.8) as when doing the estimations in the
strip S(Im z1 + h/2, Im z2 − h/2) (see the end of the section 5.3.2).

5.3.4. Completing the proof of Proposition 5.1. Proposition 5.1 follows from esti-
mates (5.16) and (5.17).

5.4. Solutions to the integral equation (5.10). Consider the integral equa-
tion (5.10) in Hγ,α,β . Proposition 5.1 and the estimate for δ0 from (4.11) imply

Lemma 5.3. For sufficiently small h, the equation (5.10) has a unique solution g0

in Hγ,α,β. It satisfies

‖g0(z)‖ = O(hL+2+ 1
3 ). (5.19)

Moreover, one has

Lemma 5.4. The solution g0, constructed in Lemma 5.3 for the curve γ = γ1, can
be analytically continued to the domain Kαh. It then satisfies (5.10) and in Kαh

|(z1 − z)(z2 − z)|β
|g0(z)|
|ρ0(z)|

≤ ChL+2+ 1
3 . (5.20)

Proof. The proof is divided into four parts.
1. As g0 is analytic in Πγ1,α, it suffices to continue it to the right of γ1. The function

ζ → θ0

(
ζ−z−0
h

)
has all its poles in z+ 0 +hZ. Hence, for z between γ1 and γ1 +h,

we can define D0g0 by means of (5.8) with γ(z) = γ1, and D0g0 appears to be
analytic between γ1 and γ1 + h.
As g0 is analytic between γ and γ + αh, to define D0g0 for z between γ1 + αh
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and γ1 + (1 + α)h, we can deform the path of the integral in (5.8) to a vertical
curve connecting z1 to z2 staying between γ1 and γ1 +αh. Thus, (5.8) implies that
D0g0 is analytic in z between γ1 and γ1 + αh+ h. In view of equation (5.10), this
implies that g0 itself is analytic to the left of γ + (α + 1)h. Reasoning in this way
inductively, one shows that g0 and D0g0 are analytic between γ and γ + (α+ 2)h,
between γ and γ + (α+ 3)h and so on. As a result, one sees that g0 and D0g0 are
analytic in Kαh to the right of γ and satisfy (5.10) for all z ∈ Kαh.
2. Clearly, g0 is analytic in Πγ2,α, the expression |(z1 − z)(z2 − z)|β |g0(z)| stays
bounded in Πγ2,α (as γ1 and γ2 have common ends), and g0 satisfies equation (5.10)
along γ = γ2. By Lemma 5.3, for sufficiently small h, this equation has a unique
solution in Hγ2,α,β which, thus, coincides with g0. Hence, g0 satisfies (5.19) with
the norm of Hγ2,α,β .
3. In view of the previous step, g0 satisfies (5.20) in Πγ1,α ∪ Πγ2,α. This and the
maximum principle for analytic functions imply that g0 satisfies (5.20) also in the
domain bounded by γ1 and γ2, i.e., in K.
The proof of Lemma 5.4 is complete. �

5.5. The solution to the difference equation. We define ∆0 by (5.5) in terms
of g0 constructed in section 5.4. One has

Lemma 5.5. The function ∆0 can be analytically continued to K(1+α)h where it
satisfies equation (5.4).
Let 0 < c < 1 + α and r > 0. In Kch ∩ S(Im z1 + rh, Im z2 − rh), one has

|∆0(z)| ≤ C|ρ0(z)hL+1|. (5.21)

Proof. By (5.20) the function z 7→ |(z1−z)(z2−z)|β |g0(z)| is bounded in Kαh. For
a given z, the poles of the kernel in (5.5) are contained in z+h(Z \ {0}). Thus, the

function ∆0 is analytic in
(
Kαh

)h
= K(1+α)h.

By means of the Residue theorem, one checks that H∆0 = HR0g0 is equal to
g0 + D0g0 if z, z ± h ∈ K(1+α)h. As g0 satisfies (5.10) in Kαh, we obtain (5.4) if
z, z ± h ∈ K(1+α)h.
To prove (5.21), we estimate R0g0 in the same way as in section 5.3.2 we estimated
D0f . So, we omit further details and only note that

(1) outside (Ch)-neighborhood of the set z + hZ, instead of (5.12) we obtain∣∣∣∣ρ0(ζ)

ρ0(z)
r0(z, ζ)

∣∣∣∣ ≤ Ch− 4
3 ;

(2) on the diagonal {ζ = z}, r0, the kernel of R0, is analytic whereas d0, the
kernel of D0, has a pole. This simplifies the estimates of (R0g0)(z) to the
left of γ1.

�

Having constructed ∆0, we construct a solution ψ0 to equation (1.1) setting ψ0 =
W0 −∆0, see (5.4). Let c ∈ (0, 2). In view of (5.21), one has

ψ0(z) = W0(z) +O(|ρ0(z)|hL+1), z ∈ Kch ∩ S(Im z1 + rh, Im z2 − rh). (5.22)

In view of (4.12), estimate (5.22) implies (5.2) with L replaced with L − 1. As
we could choose a larger L, this actually completes the proof of the statement of
Theorem 5.1 on the solution ψ0.

5.6. The second solution. Mutatis mutandis, the construction of the solution ψ1

repeats that of ψ0. We omit further details and mention only that, in this case,
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• we set ψ1 = W1 −R1g1 where R1 is an integral operator with the kernel

r1(z, ζ) =
1

2ih

W0(z)W1(ζ)−W0(ζ)W1(z)

(W0(ζ), W1(ζ))
θ1

(
ζ − z
h

)
, θ1(t) = cot(πt) + i;

• instead of (5.11), we use the norm ‖f‖ = sup
z∈Πγ,α

|fβ(z)|
|ρ1(z)|

.

6. Proof of the main Theorem

In this section we finally prove Theorem 1.4. We recall that in U there are three
Stokes lines beginning at z0. They are analytic curves, and the angle between any
two of them at z0 is equal to 2π/3. So, possibly reducing U somewhat, we can
assume that at least two of them form a vertical curve. We prove the theorem in
the case where these are σ1 and σ2, and σ1 goes upwards from z0, i.e., the vector
tangent to σ1 at z0 is directed in the upper half-plane. Mutatis mutandis, the other
cases are treated in the same way. Moreover, we assume that the tangent vector to
σ0 is either directed in the lower half-plane or is parallel to the real line and directed
to the left. Then the curves σj , j ∈ Z3, correspond to Fig. 2. The complimentary
case is studied similarly.
Below we assume that h is sufficiently small.

6.1. Two geometric lemmas. To prove Theorem 1.4, we shall use the following
two lemmas.

Lemma 6.1. There exist two curves in S1,2 precanonical with respect to p2 and

having common endpoints, and
◦
U1 ⊂ U , a neighborhood of z0, such that

• the domain K1 bounded by the two curves is simply connected,

• K1 ∩
◦
U1 = S1,2 ∩

◦
U1.

and

Lemma 6.2. There are exist two curves in σ2 ∪ S0 ∪ σ1 precanonical with respect

to p0 and having common endpoints, and
◦
U0 ⊂ U , a neighborhood of z0, such that

• the domain K0 bounded by the two curves is simply connected,

• K0 ∩
◦
U0 = (σ2 ∪ S0 ∪ σ1) ∩

◦
U0.

We prove these two lemmas in section 7.1.

We define
◦
U =

◦
U0 ∩

◦
U1.

6.1.1. Solution ψ1. We denote by ψ0,0 and ψ1,0 the solutions ψ0 and ψ1 constructed
by Theorem 5.1 for the domain K0, and consider the solution ψ1 constructed in

Theorem 5.1 for the domain K1. In view of Corollary 5.1, in
◦
U (possibly reduced

somewhat), all the three solutions are analytic, the Wronskian of ψ0,0 and ψ1,0 does
not vanish (see also Lemma 4.4), and one has

ψ1 = aψ1,0 + bψ0,0, (6.1)

where a and b are h-periodic coefficients (see section 2). We prove

Lemma 6.3. One can reduce
◦
U so that for z ∈

◦
U

a(z) = 1 +O(hL+ 2
3 ), b(z) = O(hL+ 2

3 ), h→ 0. (6.2)
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Proof. In
◦
U (possibly reduced somewhat), the coefficients a and b are described

by (2.3) with ψ = ψ1, f = ψ1,0 and g = ψ0,0.

Let γ12 = (σ1 ∪ σ2) ∩
◦
U . By Lemmas 6.1 and 6.2 one has γ12 ⊂ K0 and γ12 ⊂ K1.

First, we fix c ∈ (1, 2) and assume that {z, z + h} ⊂ (γ12)ch.
In view of Lemma 4.2, one has |ρ1| = |ρ2| = 1 on γ12. This and the definitions of |ρ1|
and |ρ2|, see section 4.2.2, imply that there exists C > 0 such that |ρ1(z)|, |ρ2(z)| ≤
C in (γ12)ch.
As (γ12)ch is a subset of both Kch

0 and Kch
1 , by means of (5.2) and (4.10), we get

a =
(ψ1, ψ0,0)

(ψ1,0, ψ0,0)
=

(W1 +O(hL+ 4
3 ), W0 +O(hL+ 4

3 ))

(W1 +O(hL+ 4
3 ), W0 +O(hL+ 4

3 ))
=

(W1,W0) +O(hL+ 5
3 )

(W1,W0) +O(hL+ 5
3 )
.

Lemma 4.4, then, yields the asymptotic representation for a from (6.2). Reasoning
similarly, we get

b =
(ψ1,0, ψ1)

(ψ1,0, ψ0,0)
=

(W1,W1) +O(hL+ 5
3 )

(W1,W0) +O(hL+ 5
3 )

= O(hL+ 2
3 ).

This is the estimate for b from (6.2).
Let c1 and c2 correspond to the minimal strip S(c1, c2) containing (γ12)ch. We

proved estimates (6.2) for a(z) and b(z) in the case where z, z + h ∈ (γ12)ch. As
c > 1 and as a and b are h-periodic, these estimates remain valid in S(c1, c2). This
implies Lemma 6.3. �

In view of Lemma 6.1, the solution ψ1 admits representation (5.2) with l = 1 in

S1,2 ∩
◦
U . Let us prove that it admits this representation in S0 ∩

◦
U .

In view of Lemma 6.2, the solutions ψ0,0 and ψ1,0 admit representations (5.2) with

l = 0 and l = 1 in S0 ∩
◦
U . Substituting (6.2) and these representations into (6.1)

and using (4.10), we get for z ∈ S0 ∩
◦
U

ψ1(z) = (1 +O(hL+ 2
3 ))(W1(z) +O(hL+1+ 1

3 ρ1(z)))

+O(hL+ 2
3 )(W0(z) +O(hL+1+ 1

3 ρ0(z)))

= W1(z) +O(hL+1ρ1(z)) +O(hL+1ρ0(z)).

In view of Lemma 4.2, in S0 one has |ρ0(z)| ≤ |ρ1(z)|. For ψ1 in S0∩
◦
U , this implies

representation (5.2) with L replaced with L− 1. As we can increase L, we actually

proved (5.2) for ψ1 in the whole domain
◦
U .

Now, we note that

h
1
2 |ρ0(z)| ≤ C|h 1

3w0(h−
2
3 ζ(z))|+ C|h 1

3w′0(h−
2
3 ζ(z))|, z ∈ U. (6.3)

For sufficiently large values of h−
2
3 |ζ(z)|, this estimate follows from the definition

of ρ0 and the asymptotic formulas (1.12). For bounded h−
2
3 |ζ(z)|, it follows from

the fact that w and w′ do not have common zeros.
Estimates (5.2) and (6.3) imply (1.22) with L replaced with L − 1. As we can
increase L, this completes the proof of the statement of Theorem 1.4 on the solution
ψ1 in the case that we consider.

6.1.2. Solution ψ0. Let ψ1,1 and ψ2,1 be the solutions ψ1 and ψ2 constructed by
Theorem 5.1 for the domain K1, and let ψ0 be the solution constructed by Theo-

rem 5.1 for the domain K0. For z ∈
◦
U (possibly reduced somewhat) one has

ψ0 = aψ1,1 + bψ2,1, (6.4)

where a and b are h-periodic. One proves
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Figure 3. Domain K1

Lemma 6.4. One can reduce
◦
U so that, for z ∈

◦
U , one has

a(z) = −1 +O(hL+ 2
3 ), b(z) = −1 +O(hL+ 2

3 ), h→ 0. (6.5)

Proof. We omit details explained in the course of the proof of Lemma 6.3. We fix
c ∈ (1, 2) and assume that z, z + h ∈ (γ12)ch. For the coefficient a from (6.4), we
get

a =
(ψ0, ψ2,1)

(ψ1,1, ψ2,1)
=

(W0, W2) +O(hL+ 5
3 )

(W1, W2) +O(hL+ 5
3 )

=
(−W1 −W2, W2) +O(hL+ 5

3 )

(W1, W2) +O(hL+ 5
3 )

,

where, in the last step, we used relation (4.1). Continuing, we get a = −1 +

O(hL+ 2
3 ). Similarly one proves that b = −1 + O(hL+ 2

3 ). So, (6.5) is proved for
z we considered. Reasoning as in the completion of the proof of Lemma 6.3, we
complete the proof of Lemma 6.4. �

By Theorem 5.1 and Lemma 6.2, the solution ψ0 admits representation (5.2)

with l = 0 in (σ1 ∪ S0 ∪ σ2) ∩
◦
U . Estimates (6.5) and (4.10) imply that in S1,2 ∩

◦
U

one has

ψ0 = −W1 −W2 +O((|ρ1|+ |ρ2|)hL+1) = W0 +O((|ρ1|+ |ρ2|)hL+1).

In view of Lemma 4.2 and the definitions of |ρj |, in S1,2 one has |ρ1| + |ρ2| ≤
C|ρ0| which yields (5.2) with l = 0 in S2 ∩

◦
U . Reasoning as in the completion

of section 6.1.1, we complete the proof of Theorem 1.4 for ψ0 in the case that we
consider.

6.1.3. Solution ψ2. One proves the main theorem for ψ2 using the same techniques
as for ψ0 and ψ1. So, we omit the proof and note only that in S0 one represents
ψ2 as a linear combination of ψ1,0 and ψ0,0, and computes the coefficients in this
linear combination as in the case of ψ0.
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7. Proof of the geometric lemmas

7.1. Proof of Lemma 6.1. This is done in several steps.
Below, all the precanonical lines are precanonical with respect to the branch p2 of
the complex momentum. We recall that p2 is defined and analytic in the domain
U2 and continuous up to its boundary.

7.1.1. AntiStokes lines. We recall that the Stokes lines σj are defined by (4.4). The
AntiStokes lines, (αj)j∈Z3

, are defined as

αj := ζ−1(V ∩ e−2πij/3 [0,+∞)). (7.1)

For j ∈ Z3, σj ∩ αj = {z0} and the curve σj ∪ αj is analytic. The angles between
any two of the AntiStokes lines at z0 equal 2π/3.
In the case we study, the Stokes and AntiStokes lines are pictured in Fig. 3; the
AntiStokes lines are represented by dotted lines. In particular, α2 goes up from z0,
and α1 goes down from z0.
Reducing U if necessary, we assume that the AntiStokes lines α1 and α2 are vertical
in U . As in Fig. 3, let z1 be the lower end of α1 and z2 the upper end of α2.
One has

Lemma 7.1. Along the AntiStokes lines α0, α1 and α2, one has Re
∫ z
z0
p2 dz =

0. The vector field z 7→ v(z) = ∇Im
∫ z
z0
p2 dz vanishes only at z = z0. The

AntiStokes lines are tangent to this vector field at z 6= z0. As z moves away from
z0, Im

∫ z
z0
p2 dz monotonously increases along α2 and monotonously decreases along

α1 and α0.

Proof. The statement on Re
∫ z
z0
p2 dz follows directly from the definitions of the

function ζ and of the AntiStokes lines. We note that ‖v(z)‖ = |p2(z)|, and that p2(z)
vanishes only at z0 (the complex momentum vanishes modulo π only at turning
points and z0 is the only turning point in U). Therefore, the vector field v vanishes
only at z = z0. The statement on Re

∫ z
z0
p2 dz and the Cauchy-Riemann equations

imply that the AntiStokes lines are tangent to the vector field v where it does
not vanish. This and the first two points of Lemma 4.2 imply the statements of
Lemma 7.1 on Im

∫ z
z0
p2 dz. �

We also use

Lemma 7.2. There exists Ũ ⊂ U , a neighborhood of z0, such that the lines α1 ∩ Ũ
and α2 ∩ Ũ are precanonical.
Let us parametrize (α1 ∪ α2) ∩ Ũ by y = Im z, z = z(y) = x(y) + iy. Then, if
y 6= Im z0, one has

d

dy
Im

∫ z(y)

z0

p2(z) dz > 0, (7.2)

d

dy
Im

∫ z(y)

z0

(p2(z)− π) dz < 0. (7.3)

Proof. As α1 and α2 are vertical, inequality (7.2) follows from Lemma 7.1. Fur-
thermore, one has

d

dy
Im

∫ z(y)

z0

(p2 − π) dz = Im (z′(y)p2(z))− π.

Therefore, as p2(z0) = 0, reducing U somewhat if necessary, we ensure (7.3).
Since α1∪α2 is vertical, (7.2) and (7.3) imply that the curve α1∪α2 is precanonical.

�

Below, we assume that Ũ = U (if necessary we reduce U somewhat).
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7.1.2. Precanonical line γ1. We now construct a precanonical line γ1 ⊂ S1,2. It
consists of three segments 1,2 and 3 shown in Fig. 3. Let us describe them.
The segments 1 and 3. To construct these segments, we use

Lemma 7.3. Let γ be a compact vertical C1-curve parameterized by y = Im z,
z = z(y) = x(y) + iy. We assume that (7.2)– (7.3) hold along γ. Then, any
compact C1-curve sufficiently close in C1-topology to γ is precanonical.

This statement immediately follows from the definition of the precanonical curves.
The segment 1. It is a segment of a compact precanonical C1-curve c1 ⊂ S1,2

that begins at z1 and above z1 goes to the left of α1. When choosing c1, we take
an internal point of α1 as z̃1, and, as c1, we take a C1-curve close enough in C1-
topology to α1 between z1 and z̃1. Lemmas 7.2 and 7.3 guarantee that c1 is a
precanonical line.
The segment 3. Similarly, the segment 3 is a segment of a compact precanonical
C1-curve c3 ⊂ S1,2, having the upper end at z2 and going to the left of α2 below
the point z2.
The segment 2. We note that α1 ∪ α2 is a level curve of the harmonic function
z → Re

∫ z
z0
p2(z) dz in S1,2. The segment 2 is a segment of another level curve c2

of this function in S1,2. This curve is located to the left of α1 ∪ α2. It does not
contain the point z0, the only point in S1,2 where p2 vanishes. So, c2 is smooth.
We choose c2 sufficiently close to α1 ∪ α2 to ensure that

• c2 is vertical (as α1 and α2 are);
• one has (7.2) along c2 (the vector field ∇Im

∫ z
z0
p2(z) dz does not vanish

along c2 and is tangent to c2);
• (7.3) holds along c2 (as it holds along α1 ∪ α2);
• c2 intersects both c1 and c3.

Clearly, c2 is precanonical.
The curve γ1. The segment 1 is the segment of c1 between z1 and the point of
intersection of c1 and c2, the segment 2 is the segment of c2 between the segment
1 and the point of intersection of c2 and c3, and the segment 3 is the segment of c3
connecting the segment 2 with z2. Clearly, the curve γ1 made of segments 1–3 is
precanonical.

7.1.3. The sign of Im p2 in S2. The only place where we use our assumption on the
direction of the tangent vector to σ0 at z0 is the proof of

Lemma 7.4. Both in S2 between the curves α2 and σ1 and on these curves, near
z0 one has Im p2(z) < 0 if z 6= z0.

Proof. Below we assume that either z is in S2 between the curves α2 and σ1 or on
one of these curves. In view of (1.6), we can write

p2(z) = k1τ(1 +O(τ)),

∫ z

z0

p2(z) dz =
2

3
k1τ

3(1 +O(τ)), z → z0, (7.4)

where k1 6= 0 and τ is the branch of
√
z − z0 analytic in U2 and positive if z > z0.

Let 0 < θ2 < π be the angle at z0 between the line {z ≥ z0} and the curve α2 .
Note that the angle between σ0 and α2 equals π/3. Therefore, as the tangent vector
to σ0 at z0 is either directed downwards or parallel to the real line and directed to
the left, one has 2π/3 ≤ θ2 < π.
In view of Lemma 7.1, along α2, Re

∫ z
z0
p2dz = 0 and Im

∫ z
z0
p2dz is monotonously

increasing. This and the second formula in (7.4) imply that

arg k1 +
3

2
θ2 =

π

2
mod 2π. (7.5)
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Let z − z0 = |z − z0|eiθ. Using (7.5) and the first formula in (7.4), we get near z0

Im p2(z)

|p2(z)|
= sin

(
arg k1 +

θ

2
+ o(1)

)
= cos

(
θ2 −

θ − θ2

2
+ o(1)

)
. (7.6)

Now, we note that, for z we consider, near z0 one has θ2−π/3+o(1) ≤ θ ≤ θ2+o(1).
Therefore, for z sufficiently close to z0, one has

2π

3
+ o(1) ≤ θ2 + o(1) ≤ θ2 −

θ − θ2

2
≤ θ2 +

π

6
+ o(1) <

7π

6
.

This and (7.6) implies the statement of Lemma 7.4. �

7.1.4. Precanonical line γ2. The precanonical line γ2 is located in S1,2 and consists
of six segments 4–9 shown in Fig. 3. Let us describe them.
The segments 4-5-6-7. The segment 4 is a segment of a compact precanonical C1-
curve c4 ⊂ S1,2. This curve begins at z1 and above z1 goes to the right of α1. It is
constructed as the curve c1 containing the segment 1.
The segment 5 is a segment of a level curve c5 of the function z → Re

∫ z
z0
p2(z) dz

in S1,2. The construction of c5 is similar to one of c2. The curve c5 is located to
the right of α1. We choose c5 sufficiently close to α1. Then, c5 is a precanonical
curve and intersects both c4 and the Stokes line σ2.
The segment 4 is the segment of c4 between z1 and the point of intersection of c4
and c5. The segment 5 connects this point with a point of σ2.
We prove

Lemma 7.5. Let γ be a vertical curve, let a ∈ γ and let p be a branch of the complex
momentum continuous on γ. If, on γ, either Im

∫ z
a
p(z) dz = 0 or Im

∫ z
a

(p(z) −
π) dz = 0, then γ is precanonical with respect to p.

Proof. Assume that Im
∫ z
a
p(z) dz = 0 on γ. Then, z 7→ Im

∫ z
a

(p(z) − π) dz =
−πIm (z − a) is decreasing along γ when Im z increases. Thus, γ is precanonical.
If Im

∫ z
a

(p(z) − π) dz = 0, then z 7→ Im
∫ z
a
p(z) dz = Im

∫ z
a
π dz = Im (z − a) is

increasing along γ when Im z increases. Thus, γ is precanonical. �

The segment 6 is the segment of c6 = σ2 between the upper end of the segment
5 and the point z0. The segment 7 is the segment of c7 = σ1 between z0 and an
internal point a of σ1. We describe this point later. Lemma 7.5 implies that the
segments 6 and 7 are precanonical.
Segment 8. This segment is a segment of c8, the level curve γ(a) of the harmonic
function z → Im

∫ z
z0

(p2(z)− π) dz that contains a ∈ σ1. To choose the segment 8,

we check

Lemma 7.6. If a ∈ σ1 \ {z0} is sufficiently close to z0, then γ(a) intersects σ1

transversally at a, enters at a in S2 going upwards, intersects α2 and, up to inter-
section and at the intersection point, remains vertical.

Proof of Lemma 7.6. Below, we identify the vectors on R2 with the complex num-
bers in the standard way, and the bar denotes complex conjugation. The Stokes
line σ1 is tangent to the vector field z 7→ v0(z) = p2(z) at z 6= z0 (p2(z0) = 0). The

curve γ(a) is tangent to the vector field z 7→ vπ(z) = p2(z)− π.
Let a ∈ σ1 \ z0 be sufficiently close to the point z0. In view of Lemma 7.4,
Im p2(a) < 0. Therefore, γ(a) is vertical at a. Moreover, both the vectors v0(a) and
vπ(a) are directed upwards and vπ(a) is directed to the left of v0(a). Therefore, at
a, the curve γ(a) intersects σ1 transversally and enters S2 going upwards.
Furthemore, in view of Lemma 7.4, as long as γ(a) stays in S2 near z0 between the
curves α2 and σ1 or on them, it remains vertical.
To complete the proof, it suffices to show that if a is sufficiently close to z0, then
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Figure 4. Domain K0

γ(a) intersects α2 remaining vertical. Therefore, we note that vπ(z0) = −π. So, at
z0 the vector tangent to γ(z0) is parallel to R, and the curve γ(z0) intersects the
analytic curve α2 ∪ σ2 transversally. Depending continuously on a, γ(a) intersects
this curve also for all a sufficiently close to z0. But, if Im a > Im z0 and a is suffi-
ciently close to z0, the curve γ(a) goes upward from a. Therefore, for a sufficiently
close to z0, the curve γ(a) intersects α2 still remaining vertical. This completes the
proof of Lemma 7.6. �

The segments 8 and 9. We choose the point a, the end of the segment 7 and
the beginning of the segment 8, so that c8 = γ(a) intersects α2 as described in
Lemma 7.6. The end of the segment 8 is the point of intersection of c8 and α2.
By Lemma 7.5, the segment 8 is precanonical. The segment 9 is the segment of
α2 connecting the upper end of the segment 8 to the point z2. It precanonical by
Lemma 7.2.

The domain K1 bounded by γ1 and γ2 is the one described in Lemma 6.1, the
proof of which is complete.

7.2. Proof of Lemma 6.2. The proof uses the same techniques as the proof of
Lemma 6.1. Therefore, we omit standard details. The construction of the curves
γ1 and γ2 bounding the domain K0 from Lemma 6.2 is illustrated by Fig. 4. Below,
all the precanonical lines are precanonical with respect to p0.

7.2.1. Curve γ1. This curve consists of segments 1–3. Let us describe them.
We take an internal point of σ2 as z1, and we fix a, an internal point of σ1. The
segment 1 is the segment of σ2 between z1 and z0, and the segment 2 is the segment
of σ1 between z0 and a.
To describe the segment 3, we consider γ0(a), the curve in σ2 ∪ S0 ∪ σ1 described
by the equation Im

∫ z
a

(p0(z) − π) dz = 0. We suppose that a is sufficiently close
to z0. Then, γ0(a) intersects σ1 at a transversally, enters in S0 going upwards and
is vertical in a neighborhood a (To prove this, one uses the observation that near
z0 on σ1 one has Im p0(z) > 0. The proof of this observation is similar to one of
Lemma 7.4.) The segment 3 is a segment of γ0(a) connecting in this neighborhood
a to a point z2 ∈ S2 . We choose z2 later.
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Lemma 7.5 imply that the segments 1–3 are precanonical.
The points z1 and z2 are the ends of γ1.

7.2.2. Curve γ2. This curve consists of two segments, segments 4 and 5.
The segment 4 is a segment of c4, a level curve of the function z → Re

∫ z
z1
p0(z) dz

in S0 ∪ σ2 that contains the point z1. The curve c4 is orthogonal to σ2 at z1.
Let us note that, under our assumptions on σ0 and σ2 (see the very beginning of
section 6), the angle at z0 between σ2 and the horizontal line {z ≥ z0} belongs to
(0, π/3). Possibly reducing U somewhat, we assume that, at any point ζ ∈ σ2, the
angle between σ2 and the line {z ≥ ζ} belongs to (0, π/2). Then, c4 is vertical at
least in a neighborhood of the point z1 and goes upward from z1 into S0.
The segment 5 is a segment of a level curve c5 of the function z → Im

∫ z
z0
p0(z) dz in

S0. It is located to the right of σ2 ∪σ1 (which is also a level curve of this function).
We choose the curve c5 sufficiently close to σ2 ∪ σ1. Then it is vertical, intersects
γ0(a) and c4, and the segments of these curves between σ2∪σ1 and the intersection
points are vertical.
The point z2 is the point of intersection of γ0(a) and c5. The segment 4 is the
segment of c4 between σ2 ∪ σ1 and c5, and the segment 5 is the segment of c5
connecting c4 to z2.
The segment 5 is precanonical in view of Lemma 7.5. Arguing as when proving
Lemma 7.2 and reducing somewhat U if necessary, we check that the segment 4 is
precanonical.

The domain K0 bounded by the curves γ1 and γ2, is the one described in
Lemma 6.2. Its proof is complete.
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