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Abstract

As intelligent transportation systems are becoming more and more preva-
lent, the relevance of automatic surveillance systems grows larger. While
such systems rely heavily on video signals, other types of signals can be used
as well to monitor the security of passengers. The present article proposes
an audio-based intelligent system for surveillance in public transportation,
investigating the use of some state-of-the-art artificial intelligence methods
for the automatic detection of screams and shouts. We present test results
produced on a database of sounds occurring in subway trains in real working
conditions, by classifying sounds into screams, shouts and other categories
using different Neural Network architectures. The relevance of these archi-
tectures in the analysis of audio signals is analyzed. We report encouraging
results, given the difficulty of the task, especially when a high level of sur-
rounding noise is present.
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1. Introduction

The proposed study is an attempt to build an intelligent surveillance sys-
tem capable of automatically detecting abnormal situations in public trans-
portation environments, such as underground subways or metros, based on
the analysis of audio signals. Recently, Neural Networks have rose to promi-
nence in most intelligent and expert systems, in applications as varied as
image classification, customer behavior prediction, or medical diagnosis (Af-
fonso et al., 2017; Vanneschi et al., 2018; Eshtay et al., 2018). In the litera-
ture, intelligent systems for automatic surveillance generally use video signals
(Orhan Bulan, 2013; Hata et al., 2005; Baran et al., 2016; Foggia et al., 2016;
Velastin et al., 2006), but the use of audio can be an interesting comple-
ment as it helps circumvent issues inherent to video signals such as vision
field obstruction or lighting changes. In this paper, we focus on a particu-
lar context for surveillance systems; namely, that of public transportation.
While most research in this specific application also use video signals (He
et al., 2017; Velastin et al., 2006; Orhan Bulan, 2013), we tackle the issue
from a different angle by using audio signals instead. This approach has
been introduced within the framework of public transportation surveillance;
in (Rouas et al., 2006) to detect screams, in (Ganansia et al., 2011) to detect
and localize shouts and graffiti sprays, in (Zouaoui et al., 2015) to detect
abnormal sounds, and within the framework of general surveillance systems
in (Valenzise et al., 2007) to detect screams and gunshot sounds.

The contribution of this paper is mostly experimental and applicative,
not methodological. It shows that using state of the art neural networks can
serve the purpose of audio surveillance in public transportation, and reveals
some interesting characteristics of those methods, as well as how a good
understanding of them can lead to an improvement in performances.

From a more general perspective, the task we address is referred to as
acoustic event detection (AED), which is a research topic of growing interest
in the audio signal processing community (Chu et al., 2009; Crocco et al.,
2016; Dennis et al., 2013; Fernández-Delgado et al., 2014; McLoughlin et al.,
2015; Diment et al., 2015). The DCASE challenge (Virtanen et al., 2016)
attests to the popularity of this task, which has many applications ranging
from smart houses involving automatic systems for domestic events detec-
tion using audio and video data streams (Wang et al., 2014; Wu et al., 2009),
to humanoid robotics where an audition model is a prerequisite for natural
human-robot interaction (Wu et al., 2009; Janvier et al., 2012; Noda et al.,
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2015; Nakadai et al., 2004), including automatic surveillance applications
(Foggia et al., 2016; Velastin et al., 2006). AED can be thought of as a
combination of automatic audio segmentation and audio event classification
(Janvier et al., 2014), hence adding to the classification task the difficulty
of identifying the temporal location of the audio events (Phan et al., 2015),
as it does not rely on prior segmentation of the data. Audio event classi-
fication techniques in the state of the art are diverse, with many different
combinations of features and classifiers: Mel-Frequency Cepstral Coefficients
(MFCCs) classified with Gaussian Mixture Models (GMMs) (Pohjalainen
et al., 2011), with Support Vector Machines (SVMs) (Wu et al., 2009; Huang
et al., 2010; Lei and Mak, 2014), with Hidden Markov Models (HMMs) (Nta-
lampiras et al., 2009); MFCCs and other spectral features classified with
GMMs (Gerosa et al., 2007; Chu et al., 2009), with the k-nearest-neighbors
algorithm (kNNs) (Chu et al., 2009), and more recently with random forests
(RFs) (Phan et al., 2015); Gabor features classified with GMMs (Gerosa
et al., 2007; Geiger and Helwani, 2015) and with SVMs (Wang et al., 2014);
all-pole group delay features classified with Deep Neural Networks (DNNs)
(Diment et al., 2015); Gammatone-Wavelet features classified with SVMs
(Valero and Alías, 2012); spectrogram image features classified with kNNs
(Dennis et al., 2013), SVMs and DNNs (McLoughlin et al., 2015; Diment
et al., 2015; Wei et al., 2016); MFCCs and deep scattering features classi-
fied with RFs and the k-means algorithm (Salamon and Bello, 2015). How-
ever, the use of Neural Networks is becoming more and more prominent, be
it Deep (Sharan and Moir, 2017), Convolutional (Lee et al., 2017; Hershey
et al., 2017) or Recurrent Neural Networks (RNNs) (Wang and Metze, 2017).
The task defined in this study is to detect violent events in the subway via
automatic detection of screams and shouts emitted by the people involved
in the events. Such events span different cases, such as people in physical
difficulty, people quarreling, panic situations, calls for help, etc. Shouts and
screams are here defined as loud vocal sounds with and without explicit se-
mantic content, respectively. Since it turns out that scream occurrences are
outnumbered by shout occurrences in our database, in the following we em-
ploy the general term “shout” to characterize the overall set of abnormally
loud sounds generated by people subject to or witnesses of violent events.
Although such alert signals are quite specific, this task remains challenging
since there generally exists a large variability between different realizations
of screams and shouts, depending on the causing events, a large variability
of “speakers”, number of persons involved, their emotional state, etc. The

3



first specific aspect of the present work is the rarity of the data: in order to
design a realistic AED system, a dedicated database was recorded, consisting
of real signals recorded in the Paris subway (called ’Metropolitain’, or simply
Metro). A whole Metro train was booked for the recording sessions, thanks
to the Paris public transportation authority (the RATP) being a partner of
the research project which frames this study. Abnormal situations were en-
acted by actors, including many extra participants representing the crowd of
passengers. As a consequence all recordings used in the present study are
real and not derived from synthetic signals or simulated acoustic mixes, and
the size of the corpus cannot match that of handcrafted synthetic data such
as in (Lafay et al., 2016) and (Wang and Metze, 2017). The second specific
aspect concerns the characteristics of this environment which is very noisy
and variable. It contains many objects that can act as sound sources and
filters, shaping the acoustic scene; noise from the vehicle itself (e.g., motor
noise, boogie-rails frictions), noise coming from the surrounding environment
(e.g., railway traffic, station noise, loud-speaker announcements), and noise
produced by passengers. Within such an environment, the choice of tar-
get classes used to define the acoustic landscape is crucial, especially within
the framework of audio event detection. The classification techniques used
here are different architectures of neural networks applied on acoustic MFCC
features, namely (feedforward) deep neural networks (DNNs), convolutional
neural networks (CNNs) and recurrent neural networks (RNNs; in particular
we used Long Short Term Memory (LSTM) cells). We set the main task as
a 3-way classification task, with target classes defined as shouts (comprising
shouts and screams), conversational speech and background noise. Besides
this main task, we created another set of 14 classes (by dividing each of the
previous 3 classes into 5 smaller sub-classes) on which we performed a 14-
way classification. We report results of an extensive benchmark made using
the 3 types of neural networks, for both the 3-class problem and the 14-class
problem. The remaining of this paper is organized as follows: Section 2.1
gives a detailed description of the database used for the experiments. Sec-
tion 3 presents the methodological background of neural networks. Section 4
presents the parameters and settings of the experiments we carried out, while
Section 5 reports the results. Finally, Section 6 draws some conclusions and
perspectives.
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2. Database and analysis of environment impact

As stated in the introduction, the present task is to detect dangerous
situations occurring in the metro by analyzing the audio environment. In an
effort to account for the likelihood that the situation exhibits a potentially
dangerous/violent aspect, we devised the following three classes;

• Shouts (includes screams and all overlapping background sound),

• Speech (includes all overlapping background sound),

• Background sounds (all sounds not pertaining to the previous two
classes; no speech nor shout sounds are assumed to be present).

Additionally we define some more classes to describe the acoustic environ-
ment related to the metro’s trajectory during its course:

• Stand-by (acoustic scene when the train is idle, in the station),

• Compressor (noise from compressor, very specific),

• Departure (acoustic scene during departure, when speed increases
from zero to full-speed),

• Cruise (acoustic scene during the period of time when the train is at
full speed),

• Arrival (acoustic scene during arrival in station, when speed decreases
to zero).

Those classes will be used in order to help classify the main three classes.

2.1. Data acquisition
Within the framework of research project DéGIV (Zouaoui et al., 2015),

a subway train from the automatic line 14 of the Paris Metropolitain was
reserved for the recording sessions.

An Omni-directional microphone (C224 6v cell from ELNO brand) was
placed on the ceiling of the metro car, and a low-latency JACK server audio
interface, made specifically for this project, was used to record the signal,
producing 16-bits/48-kHz PCM signals. Several sessions took place between
10 am and 4 pm while the train was running its usual course, among other

5



trains from the same subway line, running between different stations and
stopping at all of them. For security matters, the train did not allow regular
passengers in, and three sets of actors played several pre-defined alert scenar-
ios displaying a situation of security matter (robbery, assault, fight, person
falling, etc). Numerous extras were present to simulate regular passengers.
For data recording, two microphones were placed on the ceiling about 10 cm
from one another (along with a video camera, although the latter was not
used in this study). Different settings were defined, in which each scenario
was played; two different zones, depending on the distance with the micro-
phones, as shown in Fig. 11: close-distance (∼ 1 m to 2.5 m) in red and
far-distance (∼ 3 m to 4.5 m) in blue; two crowd densities: heavy density
(between 12 and 17 people involved in the scene) and low density (between
5 and 7 people). Every alert scenario was repeated for all possible combi-
nations of settings. Violent scenes were played and captured while the train
was either accelerating, moving at stationary high speed, or braking, but not
when it was stopped at a station for security reasons. For the same reasons
the doors never opened at the stations to make sure no regular passengers
would get on the train. To compensate, violent scenes and sequences of doors
opening and closing were also captured while the train was in the workshop.
Additionally a large amount of sequences of chatter among passengers was
captured. Finally, our database contains all the noises induced by the train
activity (doors opening and closing, brake compressors draining air, doors
closing signal, etc.). We believe these data convey a realistic diversity of sig-
nal occurrences for the considered application (different scenarios, different
source-to-microphone positions, different noises, etc.). A preliminary study
using this database has been presented in (Laffitte et al., 2016).

2.2. A short analysis of data variability
It is important to note that in this transport environment, speech or

shout signals can contain a huge amount of noise, making the distinction
between speech, shouts and background noise often very difficult. In this
subsection, we illustrate this notable characteristic of our database. Fig. 2
displays the spectrograms of segments of speech (Fig. 2-(a,b)) and shout
(Fig. 2-(c,d)), in a situation where the train is idle (stopped at the station,

1Image from research project DéGIV (Détection et Gestion d’Incidents dans une Voiture
ferroviaire) co-funded by "FUI-BPI France" and "Conseil Général de l’Essonne"
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Figure 1: Graphical representation of one metro car, where the microphones are repre-
sented by the two dots to the left of the red square. The red zone is the near-zone and
the blue zone is the far-zone

in a static/immobile state) (Fig. 2-(a,c)) and in a situation where the train is
at full speed (Fig. 2-(b,d)). By comparing Fig. 2(a) and Fig. 2(b), we can see
that full speed implies a much higher level of noise than idle, and consequently
the speech signal is much severely masked at full-speed. Because shouts have
more energy than speech, the full speed has a lower impact on shouts, as seen
by comparing Fig. 2(c) and Fig. 2(d). Still, in Fig. 2(d), the shout signal is
somewhat “blurred” by the full-speed noise.

To quantify the difference between the full speed and the idle conditions
in terms of signal energy, we calculated the energy of individual 10ms-frames
extracted from typical portions of our dataset (33.7s in total) and manually
labeled (see Section 2.3). Fig. 3(a) displays the histograms of frame energy
(in dB) for the two conditions (idle and full speed), for frames that contain no
speech or shout signal (thus pure background/vehicle noise). We can see that
the two histograms (therefore the two conditions) are clearly separated, with
an average difference of about 60 dB, which is a large value. Fig. 3(b) also
displays the histograms of frame energy for the two conditions, but this time
for frames containing shouts. We can see that the energy of shouts clearly
exceeds the energy of the background noise when the train is idle, and that
the amount of additional energy from shouts spreads over a large range of
values. When the train is at full speed, the (spread of) additional energy from
shouts is more moderate. There is a significant overlap between the energy
distributions of the full-speed noise-only frames and the full-speech noise +
shouts frames. For this kind of frames, we can expect the presence of full-
speed noise to make the classification into the shout category particularly
difficult. For frames above a certain threshold, −20dB for instance, the
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Figure 2: Example spectrograms of speech during portion on standby (a) and at high
speed (b). Example spectrogram of shouts during portion on standby (c) and at high
speed (d).
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classification into shouts may be easier. Note that this confirms the example
spectrogram plot in Fig. 2(d) where some shout regions are masked by the
full-speed background noise, and some other regions are more visible.

Figure 3: Distribution of short-term (10ms) frame energy when the train is idle vs. when
it is at high speed. (a): background noise only; (b): background noise + shouts.

2.3. Data labeling
The data were manually cross-labeled by two different audio experts (two

of the authors). The first expert labeled the entire dataset and the second
expert ran a second pass to validate or correct the labeling of the first expert.
Our first approach consists in decomposing the entire dataset in the three
main target classes described above. The first class is obviously driven by the
targeted application. Recall that, due to the low proportion of scream occur-
rences, this class contains both screams and shouts. The distinction between
speech (+ background sounds) and background sounds (only) corresponds to
the most obvious distinction appearing in the data in the absence of shouts.
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We believe that the definition of those three categories can help the detec-
tion methods in detecting shouts, as opposed to a two-category classification
(shout (+ background sounds) vs. “everything else”). Indeed, in the latter
case, the mixing of speech with background sounds in a unique class may
disturb the classifier, since the “proximity” between those two types of sig-
nals is questionable compared to the proximity between speech and shouts.
In the following, for simplicity, we refer to the shouts (+ screams) / speech
/ background sounds classification problem as “the 3-class problem”.

Figure 4: Example spectrogram of a recording between two stations of line 14. The red
lines show the boundary of the 5 environment-related classes.

In light of the characteristics of our dataset exposed in the previous sec-
tion, we attempted to better account for the noisiness and variability of the
physical environment by explicitly classifying the background sounds (i.e.
the environment/vehicle sounds) into subclasses, superimposed on shouts
and speech. To this aim, based on an extensive listening of the database, we
defined the following 5 subclasses, illustrated on the spectrogram in Fig. 4:

• Stand-by: This class is defined as all situations where the train is not
moving. When the train is operating on the line, the duration of this
class usually stands between 15-20 s. When the train is parked in the
workshop or at the end of the line, the duration ranges from 2 min (end
of the line) to 10 min (workshop).
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• Compressor: Specific noise made by the vehicle’s compressors when
about to start moving. Its duration is around 1 s. It is composed of
noise ranging from 2000 Hz to 22050 Hz with diminishing energy after
600 ms.

• Departure: The train engages in the process of starting its engine
and moving forward, between the compressor noise and the moment
it enters the tunnel. An energy stain specific to this event can be
observed, beginning around 2000 Hz and progressing towards 5000 Hz
at the end. This sound is very distinct to the ear.

• Cruise: Time span between two stations, when the train is inside the
tunnel. The duration of this portion varies from 40 s to 90 s, depending
on the distance between stations. Its spectral content varies according
to the speed. In terms of spectrum representation, the speed leads to
harmonics that can be seen around 7000 Hz in Fig. 4. The stages of
acceleration and deceleration can be identified, with a transition around
26 s. Moreover this event is composed of very energetic noise along the
entire frequency axis, stemming from the mechanical rolling.

• Arrival: This event occurs between the moment the train comes out
of the tunnel and when it stops. As with the Departure event, it is
easily identifiable upon listening. Its duration depends mainly on the
length of the station.

In the example shown in Fig. 4, some additional sounds can be identified
such as; speech signal (between 0 s and 5 s), sound of crumpled newspaper
right underneath the microphones (between 10 s and 16 s), internal and
external mechanical noises due to railroad switch (between 18 s and 20 s) or
due to the joint between two rails (between 34 s and 36 s).

Each of the 5 background sound classes are then combined with the three
main (shout/speech-related) classes, to perform classification on 3 × 5 = 15
composite classes (e.g. speech + cruising, shouts + compressor, etc). The
result of this classification can then be marginalized over the 5 background
sound classes, so as to end up with a 3-way classification result, over the
three main classes. The goal of this approach is to see if it alleviates the
burden of the classifier, compared to the raw 3-class problem, by reducing
the variability of each class despite a higher number of classes.
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Table 1: Duration (in seconds) of the 15 fine classes and the 3 broad classes in the
train/validation/test datasets

Stand-by Departure Start compressor Cruise Arrival Total
Background noise 290/36/57 100/28/22 19/4/4 663/115/88 69/11/9 1292/190/194
Speech 650/68/187 124/8/40 19/3/6 472/57/105 91/24/25 1554/152/356
Shout 65/1/13 6/0/2 - 228/41/14 7/1/4 358/43/30

We split our database in three different sets: a training set, a valida-
tion set and a test set. All the results presented further in this paper were
calculated on the test set. The total amount of data was approximately
3,800 seconds, distributed across training, validation and testing datasets as
shown in Table 1. . This table gives the amount of data in seconds for each
sub-class, contained in the training dataset, the validation dataset, and the
test dataset. For example, data pertaining to sub-class Background noise +
Stand-by is scattered across the three datasets in the following proportion:
290s for training, 36s for validation and 57s for test. Because the long-term
temporal structure of the environment seemed crucial to us, we did not want
to artificially cut any sequences containing a natural continuity. Thus, our
dataset was processed so as to keep the chronological order of appearance
of sounds. As a result, a precise control over the data distribution for each
class across train, valid and test dataset was beyond our reach.

As can be seen in Table 1 that the sub-class "Shout + Start compressor"
contains no data at all. This is because the occurrences from class "Start
compressor" were too short and those from class "Shout" were too sparse to
get an overlap between occurrences from these two classes. As a result we
obtain a total of 14 sub-classes. In the following, for simplicity, this second
approach is referred to as “the 14-class problem”. Classes "Shout+Departure"
and "Shout+Arrival" have respectively 2s and 4s of training occurrences,
which will obviously limit the complexity of our model.

Table 1 shows that our dataset suffers from imbalance, i.e. the differ-
ent classes have quite a different amount of occurrences (and thus train-
ing, validation and testing data). In particular, we already mentioned that
scream occurrences are quite rare. Even screams + shouts together, i.e. the
shout class, is sparse compared to the speech class and the background noise
class. Class imbalance is a known issue in the machine learning literature
(Japkowicz and Stephen, 2002; He and Garcia, 2009) and it is not perfectly
clear how to take this problem into account within a discriminative model
framework such as the DNN framework (as opposed to generative models
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where it can be tackled by inserting prior class distribution in the model).
However our situation is a very specific case scenario, wherein the classes
are naturally imbalanced. In fact, scream/shout occurrences are even more
imbalanced (under-represented) in real life than in our dataset. We have
not had the chance to conduct experiments to address this problem exten-
sively in our study, however, we decided to simply create a dataset with all
available data, thereby displaying a higher proportion of occurrences of the
rare class than would be found in fully real conditions, because the absolute
number of occurrence is already low. Indeed, the more data the more accu-
rate the model. In short, we tried to find a trade-off between (limiting the)
over-representation of screams and shouts in our dataset w.r.t. reality, and
(limiting) their under-representation w.r.t. other classes.

3. Methods

The machine learning systems used to perform the classification tasks
introduced above, as well as their theoretical background, are presented in
this section.

3.1. Artificial Neural Networks
3.1.1. Generalities

In the present study we used artificial neural networks (ANNs) to achieve
the classification task. More precisely we used classical feed-forward deep
neural networks (DNNs), convolutional neural networks (CNNs), and recur-
rent neural networks (RNNs) such as Long Short-Term Memory (LSTM)
networks. ANNs have been extensively studied and used as a powerful tool
for regression and classification problems, for many applications. Because
they are extensively described in the literature (Bishop, 1995; Bengio et al.,
2007; Lippmann, 1994; Funahashi, 1998; Gish, 1990; Zhang, 2000) and be-
cause the contribution of this paper is mostly experimental and applicative,
and not methodological, we only give a brief overview of the general prin-
ciples of ANN-based classification, and of the different neural architectures
that we have tested. The reader is referred to the above-mentioned references
for a detailed description of ANN architectures and methodology.

In a classification paradigm the output of an ANN is an estimate yn of the
posterior probability p(c|xn) of each class c ∈ [1, C], where C is the number
of classes, given an input data vector xn, where n is here the time index.
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The selected class is the most likely, i.e. the one with the highest posterior
probability.

ANNs are associated with supervised learning: they are trained on labeled
data because they need some ground-truth information to learn from so as
to adjust their weights accordingly. The training, i.e. the optimization of the
parameter values (layer weights, see below) for optimal data discrimination,
is done via maximization of a likelihood function. The latter encodes the
link between input and output data (i.e. the associated labels) from the
training dataset. Maximization of this likelihood function is usually achieved
by means of a gradient descent algorithm which sequentially updates the
parameters. Again, details on learning (deep) ANNs can be found in (Bishop,
1995; Bengio et al., 2007; Gish, 1990).

3.1.2. Deep neural networks
A classical feed-forward neural network is composed of several layers of

elementary units (also called cells). Each unit performs a non-linear trans-
formation on a weighted sum of its inputs, which are the outputs of the
previous layer. The input layer is simply the input vector, and the output
layer computes the posterior probability of each class (one class per output
unit), deciding which class the input belongs to. Intermediary layers between
the input and output layers are called hidden layers, and when the number
of hidden layers is larger than one, an ANN becomes “deep”. In that case
The units operate in chain, building more complicated transformations of the
input. The idea is that the resulting non linear functions can be arbitrarily
complex. Conceptually, the units represent unknown factors which “explain”
the data. The more layers, the more conceptual these factors become, even-
tually representing some abstractions of the data that enable the output layer
to discriminate it more efficiently.

3.1.3. Convolutional neural networks
CNNs were introduced in (Fukushima, 1980) as a visual pattern recog-

nition technique unaffected by shifts in position. As such, their power lies
in their ability to consider 2-dimensional data. The first layers filters the
input, analyzing it across both dimensions. Each layer consists in a certain
number of “plies” or “feature maps” (the term varies in the literature) each
corresponding to a filter. Concretely, each hidden unit in a given convolution
ply takes a small subset of the previous layer’s output as input, and performs
a linear combination with a weight matrix. Since the weight matrix is the
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same for all hidden units within a ply, the operation amounts to performing
a convolution. Several such plies are used to create multiple (hidden) filtered
versions of the input. A pooling ply is generally used after a convolution
ply, where a mathematical max operation is performed to reduce the dimen-
sionality. (LeCun and Bengio, 1998; Abdel-Hamid et al., 2014) present some
applications of CNNs for automatic speech recognition (ASR).

3.1.4. Recurrent neural networks
RNNs were made to circumvent DNNs’ inherent flaw in processing se-

quences. Their general architecture is the same as classical feed-forward
neural network ANN, but they are capable of considering a series of input
vectors as a temporal sequence, by means of a memory. Two forms of RNN
exist: unidirectional (used in this study) where the flow of information en-
tering the memory goes forward in time, and bidirectional, (which will not
be discussed here) where the information travels both ways (forward and
backward in time). The memory is contained in the hidden cells, who are
able to retain and accumulate passed information and subsequently use it
when necessary to output classification decisions. A more advanced type of
cell called Long Short Term Memory (LSTM), introduced in (Hochreiter and
Schmidhuber, 1997), actually uses a separate container for its memory: the
state, denoted cn, where all information are accumulated. Three different
operations are performed on that state at each time-step: erase pieces of in-
formation, add some new elements, and output what is relevant. In order to
do this the LSTM cell analyses the current input xn and the previous output
hn−1; it filters them through three different sigmoid gates corresponding to
the three operations. Each gate outputs values between 0 and 1, deciding
what to let through and how much of it. These outputs are then combined
together to discard some information, add some new into the memory and
release some which is then used to update the state cn and compute the cur-
rent output hn. LSTMs have recently shown excellent performances in ASR
(Miao, 2014; Graves and Schmidhuber, 2005; Graves et al., 2013) and AED
(Parascandolo et al., 2016), and become the new state-of-the-art in these
domains and other domains of pattern recognition and mapping.

3.2. Processing temporal sequences with ANNs
Within the framework of audio event detection, the target sounds are

naturally characterized by the temporal evolution of their spectral content.
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The spectral content on a short duration (a few tens of ms) is usually rep-
resented by a vector of spectral coefficients such as Mel-frequency cepstral
coefficients (MFCCs). Successive vectors are obtained by sliding the analysis
window, generally by a portion of its size, to ensure some overlap between
successive frames. Different realizations of target sounds usually have a dif-
ferent duration, which implies that the total number of spectral coefficient
vectors required to fully represent a given sound event also varies, in an un-
predictable manner (for instance, a shout expressing fear can be quite short
or quite long depending on the speaker).

Unfortunately, in their “default configuration”, DNNs only take fixed-size
inputs and consider each successive input vector xn independent from one
another, failing to capture the sound’s temporal structure. To remedy this,
it is common to feed a DNN with a supervector obtained by concatenating
K consecutive vectors of spectral parameters. For example, if some delay is
tolerated, at time n (at the frame sampling level), the DNN can be fed with a
supervector encompassing all input vectors from frame n−K/2 to n+K/2−1.
Such DNNs are sometimes called “contextual” DNNs. One advantage is that
they can learn the temporal structure of sounds on the scale of K successive
frames, but are limited to that length. Yet,K successive frames may very well
represent only a portion of a (long) sound, and conversely may also be longer
than a given sound and include several sounds that we want to discriminate
(which happens when the block of K frames overlaps the boundary between
two sounds. This situation is detailed below).

As for CNNs, they consider 2D inputs (i.e. images). Therefore the tem-
poral dimension can be taken into account in a simple manner by feeding
the CNNs with (portions of) 2D spectrograms formed with K consecutive
vectors. The convolution operation then allows an efficient joint exploitation
of the spectral correlations in both time and frequency dimensions. How-
ever, the problem remains of fixed-sized processed blocks that contrast with
variable-size sounds.

The intrinsic capacity of RNNs to process sequences of input vectors
makes them perfectly suitable for audio sequences. Their main advantage
over DNNs and CNNs is the use of a memory linking consecutive inputs to-
gether over a possibly very long temporal horizon, set automatically. This
memory allows the network to capture the time structure of the audio pat-
terns without the constraint of an arbitrary, fixed-size segmentation, even
when the RNNs is fed one vector/frame at a time.

In the present study we use the “contextual” configuration for DNNs and
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CNNs, i.e. we process blocks of K consecutive input vectors. In the liter-
ature, in such a configuration the classification task is often performed and
evaluated offline with pre-segmented audio patterns. This means that at
training and testing time, only sequences with K vectors belonging to the
same sound are considered. However, in the present framework of alert signals
detection, we have to perform an online analysis on an incoming “continuous”
audio stream. The sound patterns that we must detect are thus no longer
pre-segmented. In this case, concatenating the K “current” consecutive in-
put frames (for instance the current input frame and the K − 1 past frames)
does not necessarily match the onset and offset of the sound pattern. In the
neighborhood of class boundaries (when we go from one type of sound to an-
other), a supervector can contain vectors from the first sound concatenated
with vectors from the second sound. This naturally brings some ambiguity
in the classification process (test time) and/or the estimation of the models
(training time). In order to evaluate the influence of this problem in the clas-
sifier’s performances we considered two configurations: pre-segmented data
and streaming data. In the latter, the supervector is formed by concatenating
consecutive input frames regardless of their labels. The label of a supervector
containing segments pertaining to two different classes is chosen by taking
the class with the highest number of frames within that supervector. More
precisely, the results presented in this paper were obtained in 3 different con-
figurations: i) using pre-segmented data for both training and testing, ii)
using pre-segmented data for training and streaming data for testing, and
iii) using streaming data for both training and testing. Pre-segmentation
was done manually. Configuration i is unrealistic in a practical application
(in the absence of automatic robust pre-segmentation which is a problem on
its own). We used it mainly as a baseline for the other two configurations.
Configurations ii and iii are realistic since online processing on unsegmented
data is required only at test time. Concretely, tests in Configuration iii will
indicate if including information about the surrounding sounds at training
time is a good thing for the classification system.

3.3. Post-processing for final decision
For DNNs and CNNs, the block of K consecutive vectors slides by K/2

to proceed to the next detection. Therefore, an estimate of the input target
class is provided every K/2 frames, hence at every frame index n = pK/2.
With RNN, the estimation is made for every input frame xn, hence at every
frame index n = 1 to N .

17



To further improve the results, we tested two different post-processing
algorithms:

• A smoothing algorithm that prevents a decision at time n from diverg-
ing if the two directly adjacent decision, n− 1 and n+ 1 are the same.
In that case, decision at time n is forced to be the same that at time
n− 1 and n+ 1.

• A majority voting algorithm that looks at Nmaj.vot. consecutive output
decisions, and finally outputs the class with most occurrences for the
whole set of Nmaj.vot. consecutive decisions.

4. Experimental Set-up

4.1. Feature extraction
The signal extracted from the microphones was 16 bits PCM samples at

48-kHz. For DNNs and RNNs, the audio feature vectors consisted of 40 Mel-
frequency cepstral coefficients (MFCCs) calculated every Ti = 10 ms, over a
Tw = 20 ms time window (hence a 10-ms overlap), from the 48-kHz audio
recordings, using the SoX software tool (SoX, 2015). Each audio sequence
was thus turned into a series of such audio feature vectors. According to
the aforementioned parameters, 1s of audio produced 100 feature vectors,
which were then concatenated (in the DNN and CNN case) to form input
examples. For CNNs, 40Mel-frequency spectral coefficients (MFSCs) instead
of MFCCs were used as defined in (Abdel-Hamid et al., 2014), in order to
keep the locality property of the spectrum.

4.2. Configurations
As seen in Section 2.3, we tested two strategies to classify the 3 main

target classes (Shouts, Speech and Background sounds): First we considered
them without any information about the (vehicle) environment, and second
we combined them with the 5 background sound classes, resulting in 15
composite classes.

In the 3-class case, we tested all three types of considered networks:
DNNs, CNNs and RNNs, using classical sigmoid units. For DNNs, the fol-
lowing parameter settings were tested and compared:

• Number of hidden layers: 1 or 2,
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Table 2: Data-to-parameter ratios for different window sizes and DNN architectures.

number of frames K 10 20 50
1*128 473 228 79
2*128 349 - 74
1*512 115 57 20

• Number of units per layer: 128, 256 and 512,

• Number K of consecutive frames used to form the input supervector:
10, 20 and 50 frames.

The corresponding ratios between number of scalar training data and number
of network parameters (called data-to-parameter ratios; DPRs) are given in
Table 2. 2 For CNNs, the following parameter values were tested:

• Number of convolution plies in each CNN layer: 150, 100,

• Size of CNN convolution filters: 5× 5, 5× 10, 8× 10, 8× 10,

• Number of hidden (convolution) layers: 1 and 2,

• Size of the top NN layer: 1× 128, 1× 512, 2× 128.

Due to a high number of tested configurations for CNNs, we do not report
DPRs for all of them. We will give the DPRs corresponding to the selected
results in Section 5.

For RNNs, we tried the following configurations:

• Number of hidden layers: 1 or 2,

• Number of units per layer: 128, 256 and 512,

The corresponding DPRs are given in Table 3. Here again, the RNN’s com-
plexity is limited by the DPR to avoid the over-fitting problem.

For each network type, we compared the results obtained for all proposed
configurations, and we selected the best performing configuration, whose

2As seen in Table 2 the DPR did not allow us to test more complex networks archi-
tecture, to avoid training data over-fitting, which is why our deepest network only had 2
hidden layers.
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Table 3: Data-to-parameter ratios for different numbers of context frames.

1*128 1*256 1*512 2*128
RNN/LSTM 152 34 9 48

results will be presented in Section 5. In those preliminary tests, the 2 post-
processing methods mentioned in Section 3.3 were tested and compared with
the results obtained without any post-processing. We also compared the use
of pre-segmented data and the use of streaming data, for both training and
testing, in line with the discussion in Section 3.2. Altogether, we ran a large
amount of experiments, corresponding to the parameter settings above. For
clarity, in Section 5, we present only the best results obtained in the main
configurations (e.g. for each type of ANN). Along the same lines, for the
14-class problem, we only tested one architecture, corresponding to the best
results obtained in the 3-class case. This case is detailed in Section 5.3.

4.3. Training algorithms settings
All tested DNNs were trained using the momentummethod of the Stochas-

tic Gradient Descent introduced by (Rumelhart et al., 1986), applied on
batches of size 128 input frames with a momentum of 0.5, without cost
regularization and without dropout (preliminary tests showed that no per-
formance improvement was obtained with cost regularization and dropout).
Cross-entropy was used as the cost function. The learning rate was set to
0.1 for the first 100 epochs, then decaying by a factor of 0.9 if the error delta
was less than 0.1, and the process was completely stopped when the error
delta fell below 0.01.

For CNNs, cross-entropy was also used as the cost function with square-
norm regularization of 0.001. Weight optimization was done via Stochastic
Gradient Descent on batches of 128 input matrices. The stopping criterion
was the same as with DNNs.

RNNs used LSTM units and were trained on a minimum of 50 epochs and
up to 100 epochs, with a fixed learning rate of 0.05. Two stopping criteria
were used; pike in the validation error of more than 5% or in the training error
of more than 3%. Cross-entropy was used as the cost function, with both
norm-one and square-norm regularization of 0.001. No momentum was used
in the gradient descent, and batches were composed of ten 500 frames-long
sequences.
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Finally, note that no pre-training (e.g. on conventional audio data) was
used in this study for all networks. In other words, all our ANNs were trained
from scratch on the presented Metro database.

5. Experimental results

5.1. Metrics
The results are reported in the form of confusion matrix, where entry

ei,j is the percentage of occurrences from class i classified as class j. The
highest numbers in each line of the confusion matrix are displayed in bold,
representing the largest proportion of data from class i and showing how
it was classified. For the 15-way classification we provide either the “raw”
14-class confusion matrix, or the corresponding 3-class matrix averaged over
the 5 background classes, or both. To take into account class imbalance in
the averaging process, we weigh the classification score for the composite
classes by the actual proportion they represent within the main classes, as
provided by Table 1. Formally, let Ni(k) denote the total number of tested
data frames of shout/speech-related class i in background sound class k. Let
ei(k),j(l) denote the percentage of occurrences of shout/speech-related class
i in background sound class k classified as shout/speech-related class j in
background sound class l. Then, the entries of the average 3-class confusion
matrix are given by:

êi,j =

∑
k

∑
l Ni(k)ei(k),j(l)∑
k Ni(k)

. (1)

5.2. Results for the 3-class problem
Before commenting the scores presented in the different tables, it is im-

portant to mention that these represent classification results over one single
experiment and should not be considered as averages. On the other hand,
in order to attest to the meaningfulness of the scores, we made sure that the
variance between multiple experiments did not exceed a few percent.

In this section, we present the results obtained for the 3-class problem.
First, we present the best results obtained with DNN architectures, reported
in Table 4. The DNN architecture that provided those results is composed of
1 hidden layer of 128 units. It was trained and tested on pre-segmented data,
with blocks of K = 10 frames. The smoothing algorithm was applied to im-
prove the results. We can see in Table 4 that the correct classification scores
are 78.8%, 69.9% and 84.4%, for the shout class, the speech class and the

21



Table 4: Confusion matrix of a DNN with 1 layer of 128 on pre-segmented events after
smoothing.

1 2 3 Total
1: Shout 78.8 17 4.2
2: Speech 28.6 69.9 1.5 74.9
3: Background 1 14.6 84.4

background sound class respectively, with a total accuracy of 74.9%. These
numbers are quite satisfactory given the difficulty of the task due mainly to
the variability and noisiness of the signals (see Section 2.2). The main confu-
sions come from speech classified as background sound (28.6%) and vice-versa
(14.6%), which can be explained by the large amount of noise present in a
lot of speech sequences, and shouts (or screams) recognized as speech (17%),
which was somehow expected given that the boundary between loud speech
and moderate shouts can be difficult to define sometimes, even for human
listeners. Interestingly, shouts are pretty rarely confused with background
sound (4.2%) and the reciprocal result is even better (only 1%). This may
indicate that the DNN is able to capture the specificity of shout/scream
sounds. Yet, it is interesting to note that those results were obtained with a
single-layer DNN, i.e. adding a second layer with as many units as the first
layer did not improve the results, even though the DPR remains acceptable
(see Table 2), which gives an idea of the inherent difficulty of discriminating
the considered data.

As for CNNs, the best results, presented in Table 5, were obtained with
the following architecture: 150 plies using 2D filters of size 8×10, with a layer
of 128 hidden units on top of it. It was trained and tested on pre-segmented
matrices of K = 50 consecutive frames of MFSCs, and the corresponding
DPR was 15. Overall, the performance is a little better than that of the
best DNN with an improvement in total accuracy of 2.8%: the shout score
is slightly better (79.6% vs 78.8%), whereas the background sound score is
slightly below (82.8% vs 84.4%). However, the speech score has significantly
improved (75% vs 69.9%).

Finally, the best results obtained with RNNs are presented in Table 6,
with a network composed of one layer of 256 LSTM units. Those results
were obtained with pre-segmented training data and test data, and with no
post-processing. The overall accuracy significantly improved, now reaching
over 82%. The score for the background sound class (83.1%) is in-between
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Table 5: Confusion matrix of a CNN with 1 layer of 128 units, on pre-segmented segments
of 50 frames.

1 2 3 Total
1: Shout 79.6 18.4 2.04
2: Speech 24.4 75 0.63 77.7
3: Background 0.6 16.6 82.8

Table 6: Confusion matrix of an RNN with 1 layer of 256 LSTM units on pre-segmented
data.

config i
1 2 3 Total

1: Shout 78.1 15.9 5.98
2: Speech 16.2 82 1.73 82.1
3: Background 0.11 16.8 83.1

the scores of the best DNN and CNN. However, the scores for shouts and for
speech vary differently: the shout score (78.1%) is slightly below those of the
best DNN and CNN, but this mild decrease is largely compensated for by a
better score for the speech class (82%), with much less confusions with the
background sound class (16.2%) compared to DNN and CNN (respectively
28.6% and 24.4%). Overall, the RNN provides the best performances when
averaged across the three classes.

All those results were obtained in Configuration i (i.e. with pre-segmented
training data and pre-segmented testing data), however, as mentioned in Sec-
tion 3.2, this configuration is hardly realistic. To remedy this we now assess
the performances of the classifiers in two other, more realistic, configurations:
using streaming data for testing and pre-segmented data (Configuration ii)
or streaming data (Configuration iii) for training. The results are presented
for these two new configurations using the best architecture (one layer of
256 LSTM units) in Table 7. As expected, the overall performance decreases
compared with Configuration i, from 82.1% to 80.5%. In Configuration ii the
scores drop significantly for the background sound class (70.6% vs 83.1%) and
the shout class (69.1% vs 78.1%). Surprisingly, the score for speech increases
from 82% to 86.5%. In Configuration iii however, the overall performance
is slightly better with an improvement from 82.1% to 83.4% in total accu-
racy. The drop for the background sound class is a lot less obvious than
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Table 7: Confusion matrices of an RNN with 1 layer of 256 trained on pre-segmented or
streaming data, and tested with streaming data.

training data: pre-segmented (config ii) streaming (config iii)
1 2 3 1 2 3

1: Shout 69.1 26.7 4.21 67.7 24.9 7.4
2: Speech 1.04 86.5 12.5 0.6 85.8 13.5
3: Background 1.72 27.7 70.6 0.4 18.0 81.5
Total 80.5 83.4

with Configuration ii. (81.5% vs 70.6%), but a little more important for the
shout class (67.7% vs 69.1%). Conversely, the score for the speech class is
also higher than in Configuration i (85.8% vs 82%). Altogether, those latter
results are mitigated: They show a decrease of the score for the main target
class of our task (the Shout class), but they also show some robustness of
the two other classes when tackling the tricky case of streaming data, leaving
room for hope for future improvement of the system.

5.3. Results for the 14-class problem
This section presents the results for the classification of composite classes.

Again, based on our previous results, those results are given for a RNN with 1
layer of 256 LSTM units. The results with the RNN being trained and tested
with pre-segmented data (Configuration i) are given in Table 8. The results
for pre-segmented training data and streaming test data (Configuration ii)
are presented in Table 9.

The main takeaway from Table 8 is that 7 sub-classes out of 14 get an
accuracy rate over 80%, and 3 get an accuracy rate over 59%. The sub-
classes which are not recognized correctly (less than 50% of accuracy) are
"Shout+Stand-by" which is misclassified into "Shout+Cruise" 57.4% of the
time, "Shout+Arrival" which is misclassified into "Shout+Cruise" 47.3% of
the time, "Speech+Compressor" which gets misclassified into "Background+Compressor"
and "Speech+Arrival" which gets misclassified into "Background+Arrival"
34.9% of the time. In the first two cases, this means that the Shout-related
subclasses produce errors in other Shout-related classes, resulting in a correct
classification of the Shout occurrences. However in the other two cases, it
appears the environment overshadowed the Speech content of the sound and
the Speech occurrences were misclassified as Background.
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Table 8: Confusion matrix of an RNN with 1*256 LSTM units on pre-segmented data (i.e
Configuration i).

1(1) 1(2) 1(3) 1(4) 1(5) 2(1) 2(2) 2(3) 2(4) 2(5) 3(1) 3(2) 3(3) 3(4) 3(5)
1(1): Shout + Stand-by 27.8 0 0 57.4 0 6.73 5.73 0.62 0.08 0.31 0.54 0 0.85 0 0
1(2): Shout + Departure 0 85.7 0 0 0 0 0 0 0 14.3 0 0 0 0 0
1(3): Shout + Comp. - - - - - - - - - - - - - - -
1(4): Shout + Cruise 0 0 0 83 0 1.55 0.14 0 6.78 0 0 0.14 0 8.33 0
1(5): Shout + Arrival 10.1 0.94 0 47.3 0 0.47 0.47 1.41 8.67 9.6 0 0 0 0 21.1
2(1): Speech + Stand-by 0.62 0.04 0 0.47 0 85.8 1.96 0.16 4.7 0.69 4.36 0.85 0.03 0.13 0.21
2(2): Speech + Departure 0.89 0.18 0.33 0 0 6.04 59.4 0.51 0.56 0.58 1.07 23.9 0 2.54 3.97
2(3): Speech + Comp. 0 0 0 0 0 0.49 0 23.6 0 0 2.55 0 73.4 0 0
2(4): Speech + Cruise 0 0.27 0 1.8 0 3.12 1.35 0 66 0 0.02 3.27 0 23.6 0.55
2(5): Speech + Arrival 0.23 0 0 0.45 0 4.24 2.43 0 6.14 49.7 1.21 0.11 0 0.57 34.9
3(1): Background + Stand-by 0 0 0 0 0 10 1.17 0.2 0.85 0 68.5 3.3 0.09 11.3 4.5
3(2): Background + Departure 0.38 0 0 0 0 1.12 1.3 0.06 0 0.09 2.39 85.2 0 1.51 7.94
3(3): Background + Comp. 0 0 0 0 0 0.28 0 2.49 0 0 11.9 0 85.3 0 0
3(4): Background + Cruise 0 0.32 0 0.98 0 0.35 0 0 12.7 0 0.23 2.64 0 82.5 0.37
3(5): Background + Arrival 0 0 0 0 0 1.62 1.26 0 0 0.45 0.72 0.72 0 0.45 94.8

Table 9: Confusion matrix of an RNN with 1*256 LSTM units trained on pre-segmented
data and tested on streaming data (i.e Configuration ii).

1(1) 1(2) 1(3) 1(4) 1(5) 2(1) 2(2) 2(3) 2(4) 2(5) 3(1) 3(2) 3(3) 3(4) 3(5)
1(1): Shout + Stand-by 9.88 0.27 0 27.2 0 57.3 2.91 0 0.03 0.98 0.3 0 0 0.07 1.02
1(2): Shout + Departure 0 5.84 0 25.6 0 16.6 15.4 0 1.57 7.3 0 24.6 0 0 3.14
1(3): Shout + Comp. - - - - - - - - - - - - - - -
1(4): Shout + Cruise 5.93 0.07 0 68 0 0 0 0 9.12 0.52 0 1.33 0 14.5 0.52
1(5): Shout + Arrival 6.17 18.2 0 11.6 0 0 5.66 0 0.26 33.2 0 0.51 0 0 24.4
2(1): Speech + Stand-by 1.65 0.52 0 3.64 0 81.4 0.79 0.04 3.99 1.96 2.89 0.5 0.03 2.42 0.15
2(2): Speech + Departure 0 0.05 0 0 0 10.3 39.2 2.24 2.69 0.25 1.57 29.6 1.82 6.26 5.91
2(3): Speech + Comp. 0 0 0 0 0 43.1 0 15.4 0 0 8.95 0 32.6 0 0
2(4): Speech + Cruise 0 0.09 0 4.61 0 1.09 1.02 0 61.2 0.44 0 0.74 0 30.4 0.36
2(5): Speech + Arrival 0 0 0 0 0 4.92 0.35 0 19.7 55.5 0.1 0.1 0 4.09 15.2
3(1): Background + Stand-by 0.43 0 0 0 0 25.7 0.46 0.07 2.39 0.72 60 0.87 0.46 3.91 4.97
3(2): Background + Departure 0 0 0 0.18 0 1.93 11.3 0.4 0 0.31 12.1 58.6 1.7 4.76 8.75
3(3): Background + Comp. 0 0 0 0 0 26.7 5.44 0 1.04 0 38.6 0 28.2 0 0
3(4): Background + Cruise 0 0.1 0 5.06 0 0.29 0.13 0 21.7 0.01 0.01 0.84 0 71.5 0.32
3(5): Background + Arrival 0 0 0 0 0 0.99 3.85 0 8.92 7.49 1.76 0.33 0 22.2 54.4

The averaged results (averaged across background sound classes, see Sec-
tion 5.1) are shown in Table 10(left) for Configuration i, and in Table 10(right)
for Configuration ii. They show that in Configuration i, splitting the environ-
ment into several subclasses was beneficial in terms of classification accuracy,
both on average (with an increase in total accuracy from 80.5% to 83%) but
also for two classes out of three (shout and background), while the nega-
tive impact on the third class (speech) was limited to an accuracy decrease
of 1.5%. However, in Configuration ii, directly addressing the 3-class prob-
lem seemed to be significantly more efficient, since the scores for all classes
in Table 10(right) are lower than in Table 7(left), with a decrease in total
accuracy from 83.4% to 74.24%. This can be explained by the fact that
our double-labeling scheme (into 15 classes) resulted in a finer partition of
the audio dataset and therefore in smaller individual events. Thus, when
the test dataset was processed in streaming mode, the number of resulting
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Table 10: Merged detection results using pre-segmented events and streaming.

context pre-segmented (config i) streaming (config ii)
1 2 3 1 2 3

1: Shout 81.0 12.3 6.7 52.4 35.4 12.2
2: Speech 1.4 80.5 18.1 4.3 76.5 19.2
3: Background 0.7 10.8 88.5 2.7 23.6 73.7
Total 83.0 74.24

segments comprising cross-event boundaries turned out to be significantly
higher than with the 3-class experiment, leading to more difficulty for the
classifier. This speaks to the difficulty of the streaming mode for AED in
general. More efforts will be put in the future to improve the system in this
difficult configuration.

5.4. Limitations
For security reasons we could not record instances of shouts when the

train was in a station, which prevented a good collection of data for classes
"Shout+Arrival" and "Shout+Departure" (events for class "Shout+Stand-
by" were recorder in the warehouse. This resulted in a dataset presenting a
high level of imbalance, which mirrors the natural distribution of the classes.
Since we are dealing with discriminative systems without a prior distribu-
tion of classes, this could be a way for the classifier to deal with the natural
imbalance between the classes considered. However it is true that it could
be an issue in learning a representation of each class, the risk being that the
model ends up not being able to model under-represented classes and ignor-
ing them as a result. It appears to bar the classifier from modeling classes
"Shout+Arrival" in Table 8 and Table 9, resulting in an ’empty output class’,
where no input examples were associated to it. For class "Shout+Departure"
suggests that the classifier did not suffer from this imbalance (85.7% of ac-
curacy on this class). The important thing is that this environment labeling
can improve the performance of the system on the overall 3-way classifica-
tion, when marginalizing the results from the 14-way classification over the
background classes. Now, it appears this issue did not affect results in Con-
figuration i, which improved with the addition of background environment
information, as shown in Table 10(left), decreasing performance for Configu-
ration ii only in Table 10(right) when compared to Table 7. This emphasizes
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the difficulty of the real-life streaming conditions, which brings about even
more issues than the classical pre-segmented tasks.

Additionally, we would like to point out the fact that this study was
conducted in a single recording context (recording gear, place, environment)
and therefore the performance of the final system might change if tested in a
different context. In such a recognition/detection task, if the training dataset
can not exhibit such variability then the model needs to be adapted to new
conditions. To do so, it can be re-trained with a new set of data. Several
strategies can be used, either re-training the whole model or only part of
it, or leveraging transfer learning methods as suggested in (Pan and Yang,
2010).

6. Conclusion

This paper reported the results obtained by applying three different types
of neural networks (DNNs, CNNs and RNNs) to a specific task of scream/shout
detection in a real, embedded, (and difficult) public transportation environ-
ment. The entire database consisted in a little over an hour of live sound,
recorded inside a subway train running its usual course on the Paris Metro
network. It was manually labeled with three labels, one of which corresponds
to the target abnormal sounds.

A classifier was then trained to recognize those labels and used to classify
an incoming stream, in order to detect abnormal situations. Although all
models performed virtually equally well on the Background class with around
83 − 84.5% accuracy, and for the Shout class with around 78 − 80%,the
Speech class is what set them apart with accuracy ranging from 70% for
DNNs to 82% for RNN, with CNN performing at 75% (experiments with
pre-segmented training and test data). This attests to the temporal structure
of speech, and shows that recurrent neural networks are better adapted to
recognizing temporally structured sounds.

Other results show that explicitly taking into account the different cate-
gories of background sounds (with a two-level data labeling into composite
classes) can have a positive impact. However, this was observed on pre-
segmented classification performance. In the case of streaming test data, the
complexity of the simultaneous “segmentation and classification task” led to
more deceiving results and a need to further investigate this issue. The in-
fluence of the average length of each sound class (depending on the way the
labeling is made) and the way the neural networks react to the transition
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between sounds, especially for LSTMs, also requires further investigation.
Lastly, although it was not addressed in this study, RNNs have different
ways of handling sequences regarding the memory reset throughout the en-
tire learning process. This issue is currently being investigated and could
affect the way RNNs identify temporal structure.

Other steps towards improvement would be to gather more data or use
some data augmentation technique so as to allow for more complexity in
the models, as in (Takahashi et al., 2016). Transfer Learning in the context
of audio events can also be beneficial as shown in (Diment and Virtanen,
2017). A hierarchical model might also provide more deftness in dealing
with such a complex environment. Additionally, a more acute description
of the environment through more specific labels (mechanical noises, sounds
related to passengers activity, etc.) would help understand the instantaneous
context.
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