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Abstract. Software-defined networks (SDN) offer a high degree of pro-
grammability for handling and forwarding packets. In particular, they al-
low network administrators to combine different security functions, such
as firewalls, intrusion detection systems, and external services, into se-
curity chains designed to prevent or mitigate attacks against end user
applications. These chains can benefit from formal techniques for their
automated construction and verification. We propose in this paper a rule-
based system for automating the composition and configuration of such
chains for Android applications. Given the network characterization of an
application and the set of permissions it requires, our rules construct an
abstract representation of a custom security chain. This representation
is then translated into a concrete implementation of the chain in Pyretic,
a domain-specific language for programming SDN controllers. We prove
that the chains produced by our rules satisfy a number of correctness
properties such as the absence of black holes or loops, and shadowing
freedom, and that they are coherent with the underlying security policy.

Keywords: Security Management · Software-Defined Networking · An-
droid · Rule-Based Programming.

1 Introduction

Software Defined Networking (SDN) is a recent paradigm in the field of network
management and security that promises to improve network programability by
decoupling the data and control planes. In this context, the data plane consists
in virtual switches and equipment responsible for forwarding traffic across the
network, whereas the control plane consists in a single or multiple controllers,
responsible for dynamically adjusting the configuration of the data plane in
response to network events. The communication between the two planes is sup-
ported by a dedicated protocol, typically OpenFlow. SDN is oftenly used in
conjunction with Network Function Virtualization (NFV) for supporting the
automated deployment of more advanced security functions running in virtual
machines in addition to virtual switches.

Based on these new networking paradigms, researchers proposed the con-
cept of chains of security functions for protecting end user applications against
attacks. These chains are composed of different security mechanisms such as
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intrusion detection systems (IDS) or firewalls in cloud infrastructures for the
protection of end users. The programmability introduced by software defined
networks helps greatly for automating the configuration, adjustment, and de-
ployment of chains of security functions. Programming SDN controllers is made
simpler by the introduction of domain-specific programming languages such as
Pyretic designed for implementing chains of security functions at a high level of
abstraction before compiling them into low-level OpenFlow configuration rules.
Nevertheless, the validation of chains of security functions remains non-trivial:
the complexity of their internal security functions makes it incredibly easy to
introduce misconfigurations and security holes that can then be exploited by
attackers targeting these networks and their users.

There exist several approaches for formally verifying chains of security func-
tions a posteriori (cf. section 2). In this paper we propose an inference system
based on Horn clauses for synthesizing chains of security functions in an auto-
mated manner, ensuring that the generated chains satisfy elementary correctness
requirements. We specifically target the protection of network traffic generated
by Android applications, taking into account security requirements derived from
the observed networking behavior of an application and the set of operating-
system level requirements that the application requires. We rely on our previous
work [21] for characterizing the networking behavior by learning a finite Markov
chain that represents the network flows observed by a dedicated network probe.
Using an inference system in order to construct a high-level representation of the
security chain, we obtain a declarative description of the generation process that
simplifies reasoning about the properties it guarantees, such as the consistency
of the deployed security rules and the absence of loops.

Our contributions are threefold: (i) we design a system of Horn clauses for the
inference of chains of security functions that ensure certain correctness properties
and that can be translated directly into Pyretic implementations, (ii) we propose
a new representation of security requirements of Android end users, (iii) we have
implemented a prototype of our method in Prolog.

The remainder of this paper is organized as follows. Section 2 gives an
overview of existing related work. Section 3 introduces background on network
security. Section 4 describes the system of Horn clauses used for synthesizing
SDN based chains of security functions. Section 5 discusses the correctness prop-
erties that are guaranteed by our solution. Section 6 concludes and points out
future research perspectives.

2 Related work

Much work has been directed towards the detection of attacks: most approaches
rely on packet analysis for detecting attacks [1,9,6]: these methods provide good
accuracy; nevertheless the increasing mass of traffic to analyze in modern net-
work require more efficient detection methods. In her PhD thesis, Anna Sper-
otto proposed to base the detection of attack on flow records instead of packet
traces [22]: the objective of her work is to configure IDS depending on observed
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traces of attacks. Nevertheless, she does not consider data transmitted during
exchanges and does not explore the possibility of deploying other security func-
tions than IDS. Comparing detection methods requires dedicated datasets such
as the CTU 13 [13] which contains botnet traces, but further datasets are nec-
essary in order to capture other types of attacks such as DOS, port scanning or
worm attacks.

New perspectives for the protection of end users are introduced by the SDN
paradigm: one possible approach consists in composing different security func-
tions into chains [16,15]. There exists various work in the literature that addresses
the formal verification of such chains. For instance, Vericon [3] is a framework
in which properties to be guaranteed by network policies can be expressed and
verified. Al-Shaer and Hamed [2] propose another approach for the discovery of
anomalies in distributed firewalls, targeting in particular contradictions in large
firewall policies. Those approaches focus on the verification of the data plane of
chains of security functions but do not cover the validation of aspects related to
the control plane. In addition, while these approaches are useful for validating a
posteriori the correctness of policies w.r.t. pre-established criteria, they do not
generate a policy according to these criteria, and they may miss configuration
errors that are not covered by the specified properties.

We previously [20] introduced the Synaptic checker for the verification of both
control and data plane properties of an SDN policy. This checker relies on the
Pyretic programming language [11], part of the Frenetic family of languages for
programming SDN controllers [12]. Pyretic is implemented as a domain-specific
language embedded in Python for describing chains of rules at a level of abstrac-
tion well above that of actual SDN protocols, but from which OpenFlow rules
can be compiled. Pyretic is complemented by an extension, called Kinetic, for de-
scribing control plane policies; Kinetic also offers formal verification techniques
based on model checking [17]. Synaptic extends this formalism for verifying the
correctness of both the control and data planes of Pyretic policies, before their
deployment in the network. We also proposed [21] an extension of the Synaptic
checker with features for automatically learning network behaviors, represented
as a Markov chain, of Android applications using their network flow traces. Our
present paper is based on this technique and exploits it for the automatic gener-
ation of SDN policies satisfying the security requirements corresponding to such
an application.

Most methods for the validation of chains of security functions consider their
correctness a posteriori, using techniques such as model checking [8,10] or SMT
solving [5]. In this paper, we suggest a declarative technique for the automatic
synthesis of such chains, expressed at a high level of abstraction. We express our
technique in terms of Horn clauses and have prototypically implemented it in
Prolog. This representation makes it easy to modify the rules in order to take into
account varying end-user requirements, rather than hard-coded policies defined
by operators. It also helps for formally establishing a priori certain properties
that the generated chains ensure.
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3 Background on network security

We introduce some background regarding network security, with respect to the
attacks we consider, network programmability, and Android environments.

3.1 Network flows and considered attacks

Our work is centered on the inference of chains of security functions based on a
characterization of end-user applications in terms of network flows. According to
RFC 5101 [7], network flows can be defined as “collections of IP packets passing
through an observation point in the network during a certain interval”. They
are generally described by different properties such as IP version, source and
destination IP addresses (srcaddr and dstaddr), source and destination ports
(srcport and dstport), network protocol (protocol), and the numbers of packets
and bytes (packets and bytes). In our context, they are collected directly on
end-user devices [18], and are extended with a timestamp (timestamp) and the
name of the source application (appname). We furthermore complement this
information with the name of the organization (orgname) responsible for the
network that contains the destination IP address. As highlighted in [22], network
flows are widely used for the detection of different categories of attacks, especially
denial of service, port scanning, worms and botnets.

A denial of service (DoS) attack is characterized by “one or more machines
targeting a victim and attempting to prevent the victim from doing useful
work” [14]. In our context, we will consider DoS attacks that are observable
from a networking point of view, such as SYN flood attacks where a high num-
ber of SYN packets are sent to the same host in order to overload the TCP stack
with open connections that will never been closed. In a port scanning attack,
an application initiates connections with a wide range of ports of a machine (or
several machines) in order to detect which ports are open. We will consider port
scanning techniques such as those generated by the nmap port scanner, available
on standard Linux platforms. A worm is a program that can run independently,
will consume the resources of its host in order to maintain itself, and can propa-
gate a complete working version of itself to other machines [19]. Worms replicate
by exploiting the vulnerabilities of applications and operating systems or by so-
cial engineering methods. We will consider worms that scan a certain port on
many different machines in order to exploit a specific vulnerability on operating
systems. A (potentially) malicious bot is a program that is installed on a system
in order to enable that system to automatically (or semi-automatically) perform
a task (or a set of tasks) typically under the command and control of a remote
administrator, called “bot master” [4]. These bots can be detected based on the
high volume of traffic they exchange with their controller or possibly by the use
of network protocols that are not commonly observed in a given context.

3.2 Network programmability with Pyretic

Pyretic is a domain-specific programming language embedded in Python for
the configuration of SDN controllers. It is based on fundamental blocks (called
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policies) that can be combined for generating more complex policies. In the
remainder of this paper we will consider the following primitive policies and
composition operators:

– identity : forward all packets;
– drop: block all packets;
– match(x1 = y1, . . . , xn = yn): forward those packets whose header fields xi

contain the values yi;
– modify(x1 = y1, . . . , xn = yn): forward all packets but modifies their header

fields xi to the values yi;
– count packets(x1 = y1 , . . . , xn = yn): count the number of packets whose

header fields xi contain the values yi;
– LimitFilters(k, x1 = y1, . . . , xn = yn): forward a maximum of k packets

whose header fields xi contain the values yi;
– RegexpQuery(pattern): forward packets whose payload matches the given

pattern (a regular expression);
– sequential(p1, . . . , pn): compose the policies {p1, . . . , pn} in sequence, also

written p1 � p2 for n = 2;
– parallel(p1, . . . , pn): compose the policies {p1, . . . , pn} in parallel, also written
p1 + p2 for n = 2;

– negate(p): forward packets that are blocked by the policy p, and block those
that are forwarded by p, also written ∼ p.

This language and its primitives will serve as a support for building and
composing security functions for software-defined networks.

3.3 Focus on Android environments

We will target the protection of Android devices and their applications. In partic-
ular, we will rely on the Flowoid probe [18] dedicated to Android devices and will
use it for exporting network flow records of applications running on these devices.
Given its position as the market-leading operating system for smart devices and
the limited effectiveness of preventive methods for proactively detecting malware
applications, Android is particularly exposed to security attacks. For instance
in 2016, Kaspersky Lab identified more than 3.5 million malware apps on the
Google market store. In addition to the network flows previously mentioned, we
will take into account the permissions that an application holds for accessing re-
sources. An Android application must explicitly state the permissions it requires
in its manifest file, and the security system of Android distinguishes between
normal and (potentially) dangerous permissions. The former represents accesses
to resources considered as non-critical, and they are automatically granted when
requested. Dangerous permissions provide access to critical information such as
user contacts, and they must be granted manually, when the application is in-
stalled. An application holding such a permission could use it to leak sensitive
data to remote malicious servers. Therefore, the security chains that we generate
include specific checks to prevent such attacks from occurring.
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3.4 Automated network profiling of Android applications

We proposed in [21] an algorithm for automatically learning a Markov model of
the networking behavior of Android applications: this model is based on trace
logs of the flows generated by an application, collected directly on the device by
using a dedicated agent [18] that can associate flows with applications depending
on the name of the package producer. These flow records are then transmitted to
a centralized platform by using the NetFlow protocol in order to learn the com-
munication pattern of the application: the first stage of our learning algorithm
consists in aggregating destination IP addresses of flows depending on common
owning organizations. This information is obtained in the result of whois re-
quests in the field called orgname or possibly in the field netname. Once flows
have been completed by this information we build our Markov model of the
application in the following manner: states are computed as collections of flows
sharing the same orgname / netname; transitions are computed depending on
the successions of orgname / netname in the input log; finally, probabilities are
computed depending on the number of flow records in the input state and on
the number of occurrences of the transition in the input log.

4 Automated synthesis of chains of security functions

We propose in this paper a strategy based on rule-based programming for the
automated inference of chains of security functions, based on a characterization
of an Android application in terms of its network behavior and the permissions
it holds. Our approach consists in classifying the network traffic generated by
an application, then to use logic programming for deriving the functional speci-
fication of the security chain to be deployed, and finally to generate an instance
of such a chain using the Pyretic language for programming SDN controllers.
Our work is presented in the context of Android protection, although it can
be extended to any systems using similar permissions for protecting user data.
Similarly, it is possible to consider other formats or implementations for the
generation of chains of security functions, for instance by exploiting Network
Function Virtualization (NFV) facilities.

4.1 Representing flows, traces, and security functions

Recall that flows are collections of packets sharing certain properties. We sum-
marize a flow in a record that contains the key attributes of a flow. In the
following, N and R+ denote the sets of natural and non-negative real numbers,
Addr = {0, 1}32 and Port = {1, . . . , 65535} the sets of IP addresses and ports,
Prot = {TCP ,UDP ,ARP , ICMP , . . .} the set of networking protocols and
String the set of (ASCII) character strings.
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Definition 1. A flow f is a record that contains the following attributes and
maps them to values in the corresponding domains:

f.timestamp ∈ R+ f.srcaddr ∈ Addr

f.dstaddr ∈ Addr f.srcport ∈ Port

f.dstport ∈ Port f.bytes ∈ N
f.packets ∈ N f.protocol ∈ Prot

f.appname ∈ String f.orgname ∈ String

A flow trace is a sequence of flows such that time stamps are strictly increasing
along the sequence. By abuse of notation, we will write f ∈ t to indicate that
flow f appears as an element of the sequence t. Given two traces t1 and t2, their
merge t1 ⊕ t2 corresponds to the unique trace formed by the elements of t1 and
t2 in increasing order of time stamps, with the proviso that whenever t1 and
t2 contain flows f1 and f2 with f1.timestamp = f2.timestamp, then f1 appears
in t1 ⊕ t2 while f2 is dropped. For an application app we will note tapp a flow
trace such that f.appname = app for all flows f in the trace, and Papp the list
of permissions it requests. We let D stand for the set of Android permissions
qualified as dangerous.

Our approach aims at constructing a chain of security functions for protecting
a specific application. Security functions transform network traffic, i.e. sequences
of packets. Packets contain header fields similar to flows, except those that con-
tain aggregate information such as packets and bytes, but they also contain a
packet payload (field payload) that represents the actual information transmit-
ted in a packet. We overload the merge operation ⊕ to apply to sequences of
packets as well as to flow traces.

Security functions are built by combining in parallel basic building blocks,
called security rules, and they in turn give rise to chains by applying parallel
or sequential composition. Rules, security functions, and chains transform flow
traces, in particular through blocking certain traffic and modifying the values of
certain header fields.

Definition 2. A security function s is a function from traffic (i.e., a sequence
of packets) to traffic. For an integer n ∈ N, the function cut(t, n) returns the
prefix of traffic t consisting of at most n packets. Given a predicate pred(p) on
packets, we define the function restrict(t, pred) that returns the subsequence of
traffic t consisting of those packets satisfying pred .

Security functions can be composed in sequence (◦�) or in parallel (◦+)
where

(s1 ◦� s2)(t) = s2(s1(t))

(s1 ◦+ s2)(t) = s1(t) ⊕ s2(t)

and these operators generalize to n-ary compositions ©� and ©+.
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Fig. 1. Automaton describing the behavior of an Android application.

4.2 Classifying flows for learning security requirements

Our first objective is to classify the flows observed for an application accord-
ing to the attack types mentioned in section 3.1. As described in our previous
work [21], we construct a Markov chain from a trace tapp obtained from ob-
serving an application. The locations Lapp of the Markov chain correspond to
(not necessarily contiguous) sub-traces of tapp consisting of flows with the same
orgname attribute. Transitions Tapp of the Markov chain are triples (l, p, l′) for
locations l, l′ ∈ Lapp and a probability value p ∈ [0; 1]. Observe that for any flow
f ∈ tapp , there is a unique location l ∈ Lapp (corresponding to f.orgname) such
that f ∈ l; we denote this location as lf .

For example, Fig. 1 depicts the automaton obtained for the application Poke-
mon Go from a flow trace containing 150 flow records. It represents the connec-
tions that the application establishes to addresses associated with different or-
ganizations. The analysis of the transition probabilities, and in particular those
associated with self-loops, is at the basis of detecting potential attacks such as
denial of service, port scanning or worm traffic.

We thus classify flows, and by extension their destination addresses, based
on the following metrics defined for a flow trace t of length n > 1:

avg interval(t) =

∑n
i=2 ti.timestamp − ti−1.timestamp

n− 1

avg size(t) =

∑n
i=1 ti.packets

n
count(x , t) = |{i ∈ 1 .. n : ti.dstaddr = x ∨ ti.dstport = x}|

ports(t) = {p ∈ Port : ∃i ∈ 1 .. n : ti.dstport = p}
protocols(t) = {p ∈ Prot : ∃i ∈ 1 .. n : ti.protocol = p}

In addition, bgp ranking(ip) denotes a value corresponding to a trust ranking
measure of the IP address ip. In practice, this value is obtained by contacting a
remote service.
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We associate the following thresholds to the above metrics; appropriate values
for these thresholds are defined by the network operators and administrators.

– attack limit : maximum probability of self looping transitions for considering
a location of the automaton as normal;

– min interval : minimum acceptable interval time between the arrival of pack-
ets in a flow;

– min size: minimum number of packets in a flow;
– ip limit : maximum number of occurrences of an IP address;
– port limit : maximum number of occurrences of a port number;
– port scan limit : minimum number of port numbers contacted in a trace for

considering it as a port scanning trace;
– unsafe threshold : maximum value of bgp ranking for considering an IP ad-

dress as safe.

At the core of our approach lies a classification of the destination addresses
a appearing in flows in tapp according to the following predicates that indicate
whether a is suspected to be the target of an attack of the various types we
consider:

dos(a) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ (lf , p, lf ) ∈ Tapp ∧
p ≥ attack limit ∧ count(a, lf ) ≥ ip limit ∧
avg interval(lf ) ≤ min interval ∧ avg size(lf ) ≤ min size

port scan(a) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ (lf , p, lf ) ∈ Tapp ∧
p ≥ attack limit ∧ count(a, lf ) ≥ ip limit ∧
avg interval(lf ) ≤ min interval ∧ avg size(lf ) ≤ min size ∧
| ports(lf ) | ≥ port scan limit

worm(a, pt) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ (lf , p, lf ) ∈ Tapp ∧
p ≥ attack limit ∧ pt = f.dstport ∧ count(pt, lf ) ≥ port limit

botnet(a, pt) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ count(a, lf ) ≥ ip limit ∧
pt = f.dstport ∧
protocols(lf ) ∩ {“tcp”, “udp”} 6= ∅ ⇒

avg interval(lf ) ≤ min interval

unsafe(a) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ bgp ranking(a) ≥ unsafe threshold

safe(a) ≡ ¬dos(a) ∧ ¬port scan(a) ∧ ¬worm(a, pt) ∧
¬botnet(a, pt) ∧ ¬unsafe(a)

danger(a, pm) ≡ f ∈ tapp ∧ a = f.dstaddr ∧ pm ∈ Pf.appname ∩ D

In words, an address is considered to be the target of a potential attack
if there exists a flow in tapp for which certain threshold values are exceeded.
Addresses that are not the target of an attack are considered safe. In addition,
the predicate danger records addresses that receive flows from an application
that holds dangerous permissions. For example, a few properties derived for the
Pokemon Go application, based on its automaton are given in Listing 1.1.
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unsafe (169.45.223.20)

unsafe (37.58.73.183)

unsafe (54.241.184.32)

unsafe (54.241.165.61)

unsafe (173.192.233.91)

Listing 1.1. Pyretic specification of a toy security chain.

4.3 Inferring a high-level representation of the chain

We now present a rule-based program for inferring the chain of security functions
that should be deployed on the basis of the observed trace, making use of the
classification of flows that occur in the trace. In a nutshell, we start by associating
elementary security rules with addresses that occur in the trace. These will be
composed in parallel to build security functions such as firewalls or intrusion
detection systems, which in turn are composed sequentially to form the entire
chain. In the present section, security functions are represented symbolically; we
will explain in section 4.4 how we translate this representation into the Pyretic
language.

The elementary security rules make use of the following predicates that are
defined externally:

– regexp(s, pm): true if the string s (representing the packet payload) matches
a regular expression associated with the permission pm;

– tcp check(t): true if the network traffic t is a valid TCP connection;
– udp check(t): true if the network traffic t is a valid UDP connection;
– http check(s): true if the string s (representing the packet payload) is a valid

HTTP request;
– inspect payload(s): true if the string s (representing the packet payload)

passes deep packet inspection.

Our system is based on the following elementary security rules:

forward(a, t) = restrict(t, λpk : pk.dstaddr = a)

block(a, pt, t) = restrict(t, λpk : pk.dstaddr 6= a ∧ pk.dstport 6= pt)

limit(a, n, t) = cut(forward(a, t), n)

filter(a, pm, t) = restrict(t, λpk : pk.dstaddr = a ∧ regexp(pk.payload , pm))

inspect(a, t) = restrict(t, λpk : pk.dstaddr = a ∧ inspect payload(pk.payload))

tcp(a, pt, t) =

 restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt)
if tcp check(t)

〈〉 otherwise

udp(a, pt, t) =

 restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt)
if udp check(t)

〈〉 otherwise

http(a, pt, t) = restrict(t, λpk : pk.dstaddr = a ∧ pk.dstport = pt
∧ http check(pk.payload))
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The inference system below determines which security rules to deploy for
addresses appearing in the given flow trace. For each of the elementary security
rules r above, a corresponding predicate deployr indicates if the rule is to be in-
stantiated, with additional parameters corresponding to the relevant IP address,
port etc.

deployblock (a, pt) ← worm(a, pt)

deployblock (a, pt) ← botnet(a, pt)

deploy forward(a) ← ¬worm(a, pt) ∧ ¬botnet(a, pt)

deploy limit(a, ip limit) ← dos(a)

deploy limit(a, ip limit) ← port scan(a)

deploy tcp(a, pt) ← f ∈ tapp ∧ a = f.dstaddr ∧ pt = f.dstport ∧
f.protocol = “tcp”

deployudp(a, pt) ← f ∈ tapp ∧ a = f.dstaddr ∧ pt = f.dstport ∧
pt 6= 80 ∧ pt 6= 443 ∧ f.protocol = “udp”

deployhttp(a, 80) ← f ∈ tapp ∧ a = f.dstaddr ∧ f.dstport = 80

deployhttp(a, 443) ← f ∈ tapp ∧ a = f.dstaddr ∧ f.dstport = 443

deployfilter (a, pm) ← unsafe(a) ∧ danger(a, pm)

deploy inspect(a) ← unsafe(a)

Based on the predicates deployr inferred to be true from a given trace tapp

characterizing the network behavior of the application we wish to protect, we
now construct security functions by composing elementary rules in parallel.

stateless firewall(t) = ©+{ forward(a, t) : deploy forward(a), a ∈ Addr }
◦+ ©+{ block(a, pt, t) : deployblock (a, pt), a ∈ Addr, pt ∈ Port }

ids(t) = ©+{ limit(a, n, t) : deploy limit(a, n), a ∈ Addr, n ∈ N }
stateful firewall(t) = ©+{ tcp(a, pt, t) : deploy tcp(a, pt), a ∈ Addr, pt ∈ Port }

◦+ ©+{ udp(a, pt, t) : deployudp(a, pt), a ∈ Addr, pt ∈ Port }
◦+ ©+{ http(a, pt, t) : deployhttp(a, pt), a ∈ Addr, pt ∈ Port }

dpi(t) = ©+{ inspect(a, t) : deploy inspect(a), a ∈ Addr }
dlp(t) = ©+{filter(a, pm, t) : deployfilter (a, pm), a ∈ Addr, pm ∈ D }

Continuing our example of the Pokemon Go application, we obtain a chain
containing the following security functions. (We omit the full definitions since
the inference system generated too many security rules, but show the overall
structure of each security function.)

stateless firewall(t) = forward(169 .45 .223 .16 , t) ◦+ forward(169 .45 .223 .20 , t) ◦+ . . .
stateful firewall(t) = tcp(169 .45 .223 .16 , 80 , t) ◦+ tcp(169 .45 .223 .20 , 80 , t) ◦+ . . .

http(169 .45 .223 .20 , 80 , t) ◦+ . . .
dpi(t) = inspect(169 .45 .223 .16 , t) ◦+ inspect(169 .45 .223 .20 , t) ◦+ . . .
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These security functions are in turn composed into chains to be applied to
the network traffic of the different types:

safe chain = stateless firewall ◦� stateful firewall

unsafe chain = stateless firewall ◦� stateful firewall ◦� dpi ◦� dlp

dos chain = stateless firewall ◦� ids ◦� stateful firewall

port scan chain = dos chain

worm chain = stateless firewall

botnet chain = stateless firewall

These chains are deployed for filtering traffic generated by the target appli-
cation by subjecting addresses to the chains associated with the classes to which
the address belongs.

For the Pokemon Go application, we should deploy the chain corresponding
to unsafe traffic. However, given that no dangerous permission is declared in the
manifest file of this application, the DLP component of that chain is trivial and
can be omitted in order to reduce the overall complexity of flow evaluation.

4.4 Generation of a Pyretic implementation of the chain

The last step of our approach consists in generating the Pyretic code imple-
menting the abstract functions that we previously computed. Below we provide
rewriting rules to derive Pyretic implementations corresponding to the elemen-
tary security rules introduced in section 4.3. In these rewrites, the argument of
the security rules corresponding to the traffic t remains implicit in the Pyretic
translation, which is applied to the current stream of packets. The functions
DPIQuery , TCPFilter , UDPFilter , and HTTPFilter are part of our Synaptic
checker [20] using dynamic query policies that Pyretic provides. The translations
of the overall chains is then obtained by composing the Pyretic code sequentially
or in parallel using the combinators� and + of Pyretic. The following definitions
indicate the implementations of the elementary security rules;

forward(a, t) ; match(dstaddr = a)

block(a, pt, t) ; ∼match(dstaddr = a, dstport = pt)

limit(a, n, t) ; LimitFilters(n, dstaddr = a)

filter(a, pm, t) ; match(dstaddr = a)� RegexpQuery(regexp(pm))

inspect(a, t) ; match(dstaddr = a)� DPIQuery

tcp(a, pt, t) ; match(dstaddr = a, dstport = pt)� TCPFilter

udp(a, pt, t) ; match(dstaddr = a, dstport = pt)� UDPFilter

http(a, pt, t) ; match(dstaddr = a, dstport = pt)� HTTPFilter

To illustrate this last step of our inference system let us consider again our
running example, the Pokemon Go application. The security functions intro-
duced previously are converted into the following chain of security functions.
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stateless firewall = match(dstaddr = 169 .45 .223 .16 ) + match(dstaddr = 169 .45 .223 .20 ) + . . .

stateful firewall = match(dstaddr = 169 .45 .223 .16 , dstport = 80 )� TCPFilter +

match(dstaddr = 169 .45 .223 .20 , dstport = 80 )� TCPFilter + . . .+

match(dstaddr = 169 .45 .223 .20 , dstport = 80 )� HTTPFilter + . . .

dpi = match(dstaddr = 169 .45 .223 .16 )� DPIQuery+

match(dstaddr = 169 .45 .223 .20 )� DPIQuery + . . .

chain = stateless firewall � stateful firewall � dpi

5 Correctness properties of the generated chains

The construction of security chains based on a high-level representation guar-
antees certain correctness properties that we now discuss. The evaluation of the
performances of the chains generated using our inference system will be discussed
in further work.

5.1 Packet routing

Two elementary desirable properties of packet routing in networks are the ab-
sence of black holes and of loops. A black hole arises if packets are sent to a link
at which no actual routing function is installed. A loop refers to a cycle in routing
policies, so that packets may be sent back to a security function that they have
already passed. Our security functions avoid these problems by construction.

Lemma 1. The security chains generated by the approach described in section 4
are free of black holes and of loops.

Proof. In our setup, security functions are total functions on sequences of pack-
ets, and they are built up from elementary security rules using parallel and
sequential composition. In particular, every constituent of our chains is fully de-
fined before it is used, so black holes do not exist at the abstract level of the
descriptions of the chains. Similarly, the high-level definitions of chains do not
involve fixpoint operators or similar looping constructs. Finally, we rely on the
close correspondence between the abstract chains and their Pyretic implemen-
tation and on the correctness of the Pyretic translator in order to ensure that
the latter does not introduce black holes or loops.

5.2 Shadowing freedom and coherence

The two main correctness properties of chains of security functions that we are
interested in are shadowing freedom and coherence. Shadowing freedom means
that whenever two rules are composed in parallel within a chain, only one of them
actually applies. This property ensures that there is no confusion in the sense
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that two rules could be applied with potentially conflicting results. In particular,
this property implies the consistency of the rules, which requires that whenever
two rules apply, they result in the same decisions. Coherence means that the
traffic after applying the security chains satisfies the security requirements: safe
traffic passes unchanged, whereas potentially dangerous traffic is either blocked
or limited within acceptable bounds.

Lemma 2. The security chains generated by the approach described in section 4
guarantee shadowing freedom.

Proof. Elementary security rules are composed in parallel in the definitions of
the basic security functions stateless firewall , ids, stateful firewall , dpi , and dlp.
The definition of stateless firewall composes in parallel rules forward and block ,
which are potentially in contradiction. However, this is possible only if both
deploy forward(a) and deployblock (a, pt) are true for some address a and port pt,
and this is impossible due to the definitions of these predicates.

Similarly, the parallel composition of the elementary security rules tcp, udp,
and http in the definition of stateful firewall is unproblematic because the defi-
nitions of the corresponding predicates deploy tcp , deployudp , and deployhttp are
mutually exclusive.

We now show that our security chains are coherent with the security policy
determined on the basis of the trace tapp underlying their generation.

Lemma 3. Given a trace tapp characterizing the network traffic generated by an
application, the security chains generated by the approach described in section 4
transmit unchanged the traffic towards addresses considered as safe but block or
limit network traffic towards other addresses.

Proof. An address is considered as potentially not safe if tapp contains some flow
towards that adress classified as worm, botnet, dos, port scanning or unsafe. The
stateless firewall applied as the first security function in the chain will directly
block packets towards IP addresses associated with worm and botnet traffic.

Concerning traffic directed to addresses associated with DoS or port scanning
attacks, it will pass the stateless firewall and will subsequently be transmitted
to the IDS. The traffic will then be limited to a number of packets bounded by
the fixed threshold ip limit , considered to be acceptable by the security policy.

For addresses associated with unsafe flows, i.e., network traffic potentially
compromising sensitive data, the security chains contain the security functions
DPI and DLP that check the payload of packets. These apply the security policy
by blocking packets that do not match the criteria defined by the predicates
regexp (associated with Android permissions) and inspect payload .

Traffic towards addresses classified as safe is only subject to the stateless
firewall, which lets it pass unchanged.

6 Conclusions and future work

We proposed in this paper a system based on inference rules for automating
the generation of chains of security functions, based on the requirements of end
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users. This inference system is intended to protect Android applications, by tak-
ing into account both their networking behavior and the OS-level permissions
that they request. By using first-order predicates for classifying network traffic
observed in the flow trace – rather than for example finite state machines – the
composition and factorization of security chains to be applied for several appli-
cations becomes straightforward. Our system infers a high-level representation
of the security functions, which can be translated into a concrete implementation
in the Pyretic language for programming software-defined networks. We showed
that the generated chains satisfy several desirable properties such as the absence
of black holes and of loops, shadowing freedom, and that they are consistent
with the underlying security policy.

Further correctness properties of the chains can be verified using our Synaptic
checker [20] based on symbolic model checking and SMT solving. The main as-
sumption underlying our approach is that the network-level behavior of Android
applications can be characterized in terms of flow traces that are collected before
the security chains are generated, and that are analyzed offline, as described in
our previous work [21] on process learning. This assumption holds for many, but
not all Android applications, a Web browser being a typical counter-example. In
that case, network administrators must install a default security chain.

An interesting extension of our present work would be to consider which
parts of the analysis are sufficiently lightweight to be performed online. As fur-
ther perspectives, we are also planning to work on optimizing and improving
the parameterization of the security chains that are generated by our inference
system. In addition, we are interested in investigating to what extent our so-
lution is compatible with network function virtualization techniques (NFV) to
implement security functions, such as firewalls and intrusion detection systems.
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