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Abstract

The strong geodetic number, sg(G), of a graph G is the smallest number of
vertices such that by fixing one geodesic between each pair of selected vertices,
all vertices of the graph are covered. In this paper, the study of the strong
geodetic number of complete bipartite graphs is continued. The formula for
sg(Kn,m) is given, as well as a formula for the crown graphs S0

n. Bounds on
sg(Qn) are also discussed.
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1 Introduction

The three mainly studied variations of covering vertices of a graph with shortest
paths (also called geodesics) are the geodetic problem [4, 3, 6, 7, 9, 14, 15, 21, 27, 29],
the isometric path problem [8, 10, 11], and the strong geodetic problem. The latter
aims to determine the smallest number of vertices needed, such that by fixing one
geodesic between each pair of selected vertices, all vertices of a graph are covered.
More formally, the problem is introduced in [24] as follows.

Let G = (V,E) be a graph. Given a set S ⊆ V , for each pair of vertices
{x, y} ⊆ S, x 6= y, let g̃(x, y) be a selected fixed shortest path between x and y. We
set

Ĩ(S) = {g̃(x, y) : x, y ∈ S} ,
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and V (Ĩ(S)) =
⋃

P̃∈Ĩ(S) V (P̃ ). If V (Ĩ(S)) = V for some Ĩ(S), then the set S is
called a strong geodetic set. For a graph G with just one vertex, we consider the
vertex as its unique strong geodetic set. The strong geodetic problem is to find a
minimum strong geodetic set of G. The cardinality of a minimum strong geodetic
set is the strong geodetic number of G and is denoted by sg(G). Such a set is also
called an optimal strong geodetic set.

In the first paper on the topic [24], the strong geodetic number of complete
Apollonian networks is determined and it is proved that the problem is NP-complete
in general. Also, some comparisons are made with the isometric path problem. The
problem has also been studied on grids and cylinders [22], and on Cartesian products
in general [18]. Additional results about the problem on Cartesian products, as well
as a notion of a strong geodetic core, has been recently studied in [12]. Along with
the strong geodetic problem, an edge version of the problem was also introduced
in [25].

The strong geodetic problem appears to be difficult even on complete bipartite
graphs. Some initial investigation is done in [17], where the problem is presented as
an optimization problem and the solution is found for balanced complete bipartite
graphs. Some more results have been very recently presented in [19], where it is
proved that the problem is NP-complete on general bipartite graphs, but polyno-
mial on complete bipartite graphs. The asymptotic behavior of the strong geodetic
problem on them is also discussed.

In this paper we continue the study on bipartite graphs, specifically on the com-
plete bipartite graphs, crown graphs, and hypercubes. In Section 2, we determine
the explicit formula for complete bipartite graphs. In Section 3, we discuss the
strong geodetic number of crown graphs. In the last section, an upper and lower
bound for the strong geodetic number of hypercubes are investigated.

To conclude this section we state some basic definitions. Recall that a crown
graph S0

n is a complete bipartite graph Kn,n without a perfect matching. Recall also
that a hypercube Qn is a graph on the vertex set {0, 1}n, where two vertices are
adjacent if and only if they differ in exactly one bit.

2 Complete bipartite graphs

Strong geodetic number of complete bipartite graphs has been widely studied, as
mentioned in Section 1. For completeness we state some already known results.
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Theorem 2.1 ([17], Theorem 2.1). If n ≥ 6, then

sg(Kn,n) =


2

⌈
−1 +

√
8n + 1

2

⌉
, 8n− 7 is not a perfect square,

2

⌈
−1 +

√
8n + 1

2

⌉
− 1, 8n− 7 is a perfect square.

Note also that sg(K1,m) = m for all positive integers m, as K1,m is a tree with
m leaves. Hence, in the following results, this case is omitted.

To determine sg(Kn,m), we will need the following definitions and notation. We
will denote the extension of an integer valued function ϕ to the real values by ϕ̃. Let
3 ≤ n ≤ m be integers. Define g(p) = m−

(
p
2

)
for p ∈ {0 . . . , n} and g̃(p) = m−

(
p
2

)
for p ∈ R as a continuous extension of g.

For p ∈ {0, 1, . . . , n} define f(p) = min{q ∈ Z :
(
q
2

)
≥ n− p} and its continuous

extension f̃(p) =
1+
√

1+8(n−p)
2

, the solution of
(
q
2

)
= n− p, where p, q ∈ R. Observe

that for p < n, f(p) = df̃(p)e, but 0 = f(n) 6= df̃(n)e = 1.
Define also F (k) = k + f(k), G(k) = k + g(k) and s(k) = max{F (k), G(k)}, for

all k ∈ {0, 1, . . . , n}. Note that whenever the functions defined above are used, the
integers n and m will be clear from the context.

Lemma 2.2. If 3 ≤ n ≤ m, then sg(Kn,m) = min{s(k) : 0 ≤ k ≤ n, k ∈ Z}.

Proof. Let (X, Y ), |X| = n, |Y | = m, be the bipartition of Kn,m. Let Sk be a
minimal strong geodetic set of the graph, which has exactly k vertices in X. Denote
l = |Sk ∩ Y |. As Y must be covered, l ≥ m−

(
k
2

)
= g(k) (vertices of Y are covered

by being in a strong geodetic set or by a geodesic of length two between two vertices
in the strong geodetic set in X).

As X must also be covered, l must be such that
(
l
2

)
≥ n− k. Thus by definition

of f , l ≥ f(k).
If l ≥ g(k) and l ≥ f(k), then both X and Y are covered. Hence by the

minimality of Sk, we have l = max{f(k), g(k)}.
Thus

sg(Kn,m) = min{|Sk| : 0 ≤ k ≤ n}
= min{k + max{f(k), g(k)} : 0 ≤ k ≤ n}
= min{s(k) : 0 ≤ k ≤ n} .

The main idea behind the following result is that sg(Kn,m) is probably close to

the value of min{max{k + f̃(k), k + g̃(k)} : 0 ≤ k ≤ n}. But before we state the
more general result, consider the case n = 2, which has already been studied in [19,
Corollary 2.3].
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Proposition 2.3. If m ≥ 2, then sg(K2,m) =

{
3; m = 2,

m; m ≥ 3.

Theorem 2.4. If 3 ≤ n ≤ m, then

sg(Kn,m) =


m; n− 3 ≥

(
m−3
2

)
,

m + n−
(
n
2

)
; m ≥

(
n
2

)
,

n;
(
n
2

)
> m ≥ 3 +

(
n−3
2

)
,

min {G(dx∗e − 1), F (dx∗e)} ; otherwise ,

where 3 ≤ x∗ ≤ n− 3 is a solution of m−
(
x
2

)
=

1+
√

1+8(n−x)
2

.

Observe that the first case simplifies to (n,m) ∈ {(3, 3), (3, 4), (4, 4), (4, 5),
(5, 5), (6, 6)} and that the “otherwise” case appears if and only if m ≥ n ≥ 7
and m ≤ 3 +

(
n−3
2

)
. Note that the second case is indeed a known result from [19,

Corollary 2.3], but here we present a different proof for it.
As the proof consists of some rather technical details, we shall first prove some

useful lemmas.

Lemma 2.5. For 3 ≤ k ≤ n, the function G(k) is strictly decreasing. Moreover, we
have G(0) = G(3) = m and G(1) = G(2) = m + 1. The same holds for the function
g̃(k).

Proof. It follows from the fact that k −
(
k
2

)
is strictly decreasing for k ≥ 3.

Lemma 2.6. For 0 ≤ k ≤ n − 1, F (k) and f̃(k) are increasing (not necessarily
strictly). Additionally, we have F (n− 1) = n + 1 and F (n) = n. Moreover, |F (k +
1)− F (k)| ≤ 1 for all 0 ≤ k ≤ n− 1.

Proof. The claim follows from the fact that if 0 ≤ p ≤ n − 1 and f(p) = q, then
f(p + 1) ∈ {q, q − 1} by definition of f .

Lemma 2.7. If n − 3 <
(
m−3
2

)
, m − 3 ≤

(
n−3
2

)
and n ≥ 3, then the functions f̃

and g̃ intersect exactly once on [3, n − 3]. The condition is equivalent to (n,m) ∈
{(n,m) : n ≥ 7, n ≤ m ≤ 3 +

(
n−3
2

)
}.

Proof. The simplification of the conditions can be checked by a simple calculation.
Moreover, the first condition implies f̃(3) ≤ g̃(3), and the second implies f̃(n−

3) ≥ g̃(n − 3). As f̃ is increasing and g̃ is strictly decreasing on [3, n − 3] (and

n ≥ 7), it follows that f̃ and g̃ intersect exactly once on [3, n− 3].

4



Lemma 2.8. For m ≥ n ≥ 7 and m ≤ 3 +
(
n−3
2

)
, let f̃ and g̃ intersect in x∗ ∈

[3, n− 3]. Then it holds:
(i) F (dx∗e) ≥ G(dx∗e),
(ii) G(dx∗e − 1) ≥ F (dx∗e − 1).

Proof. As we are on the interval [3, n− 3] it suffices to prove both properties for f̃

and g̃ instead of F and G, as f(dxe) = f̃(dxe) for x ∈ [3, n− 3] and similarly for g
and g̃.

(i) As f̃ is increasing, g̃ is strictly decreasing, f̃(x∗) = g̃(x∗), and x∗ ≤ dx∗e, it

follows that f̃(dx∗e) ≥ g̃(dx∗e).
(ii) As f̃ is increasing, g̃ is strictly decreasing, f̃(x∗) = g̃(x∗), and dx∗e− 1 ≤ x∗,

it follows that f̃(dx∗e − 1) ≤ f̃(x∗) = g̃(x∗) < g̃(dx∗e − 1).

Proof of Theorem 2.4. Recall that by Lemma 2.2, sg(Kn,m) = min{s(k) : 0 ≤ k ≤
n, k ∈ Z} = min{max{F (k), G(k)} : 0 ≤ k ≤ n, k ∈ Z}.

Case 1: Let n − 3 ≥
(
m−3
2

)
. The only possibilities are (n,m) ∈ {(3, 3), (3, 4),

(4, 4), (4, 5), (5, 5), (6, 6)}. For all of them we can easily check that the optimal
value is m.

Case 2: Let m ≥
(
n
2

)
. Thus, G(n) ≥ F (n). As n ≥ 3 and G is strictly

decreasing, it also holds G(n − 1) ≥ F (n − 1). If n = 3, then f(0) = f(3) = 3
and f(4) = f(5) = 4. Thus the minimum is attained in either k = 0 or k = n, but
the value is the same in both cases and equals m + n −

(
n
2

)
= m. If n ≥ 4, then

G(k) ≥ F (k) for all 0 ≤ k ≤ n (by the properties of F and G) and the minimum is
attained in k = n, hence the value is m + n−

(
n
2

)
.

Case 3: Let
(
n
2

)
> m ≥ 3 +

(
n−3
2

)
. Thus G(n) < F (n) and G(n− 3) ≥ F (n− 3).

Hence by the properties of G and F , the minimum is attained in k = n, hence the
value is F (n) = n.

Case 4: Lastly, we study the “otherwise” case, i.e. the case when m ≥ n ≥ 7 and
m ≤ 3+

(
n−3
2

)
. By Lemma 2.7, there exists an x∗ ∈ [3, n−3] such that f̃(x∗) = g̃(x∗).

Clearly, min max{f̃ , g̃} on [0, n] is attained in x∗. But as x∗ is not necessarily an
integer, we must further investigate the properties of F and G on integer values
close to x∗. By Lemma 2.8(i), F (dx∗e) ≥ G(dx∗e), thus also F (k) ≥ G(k) for all
k ≥ dx∗e. By Lemma 2.8(ii), G(dx∗e − 1) ≥ F (dx∗e − 1), thus G(k) ≥ F (k) for all
k ≤ dx∗e − 1. Hence,

min{max{F (k), G(k)} : 0 ≤ k ≤ n, k ∈ Z} = min {G(dx∗e − 1), F (dx∗e)} .

As already mentioned, asymptotic behavior of sg(Kn,m) is presented in [19, The-
orem 2.5]. Two special cases of this behavior are a direct consequence of the second
and third case in the above Theorem 2.4, but determining the asymptotic behavior
for a general case is not trivial even with the result of Theorem 2.4.
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3 Crown graphs

In the following we determine sg(S0
n), using similar techniques as in the proof of

Theorem 2.1 [17].

Lemma 3.1. Let T = T1 ∪ T2 be a strong geodetic set of S0
n, n ≥ 2, with bipartition

(X, Y ), where T1 ⊆ X, T2 ⊆ Y and ti = |Ti| for all i ∈ {1, 2}. If |t1 − t2| ≥ 2, then
there exists a strong geodetic set T ′ = T ′1 ∪T ′2, T ′1 ⊆ X, T ′2 ⊆ Y , such that |T ′| = |T |
and |t′1 − t′2| < |t1 − t2|, where t′i = |T ′i | for i ∈ {1, 2}.

Proof. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and xi ∼ yi for i ∈ [n] be a removed
perfect matching. Without loss of generality, we assume t1 ≥ t2 and let t1 − t2 =
k ≥ 2, T1 = {x1, . . . , xt2+k} and T2 = {y1, . . . , yt2}. Note that geodesics between
xt2+k and T2 are just edges.

First consider the case t2 = 0. As T is a strong geodetic set, t1 = n. Consider
T ′ = (X −{xn})∪ {y1}. Clearly, |T ′| = |T | and n− 2 = |t′1− t′2| < |t1− t2| = n. To
see that T ′ is a strong geodetic set, fix the following geodesics: x1 ∼ y2 ∼ xn ∼ y1
and x1 ∼ yi+1 ∼ xi for all 2 ≤ i ≤ n− 1.

Next consider the case t2 = min{t1, t2} ≥ 1. Define T ′ = T ′1 ∪ T ′2 where T ′1 =
T1−{xt2+k} and T ′2 = T2∪{yt2+1}. As t2 ≥ 1, we have 0 ≤ t′i ≤ n. Clearly, |T ′| = |T |
and |t′1−t′2| < |t1−t2|. In the following we prove that T ′ is a strong geodetic set. First
cover xt2+k−1 by a geodesic y1 ∼ xt2+k ∼ yt2+1 (as t2 ≥ 1 and k ≥ 2). Next fix the
following geodesics: xi ∼ yt2+k+i ∼ xt2+k+i+1 ∼ yi for i ∈ [t2−1] and xt2 ∼ yt2+k+t2 ∼
xt2+k+1 ∼ yt2 , and

(
t2
2

)
geodesics between vertices in {x1, . . . , xt2} and also between

{y1, . . . , yt2} to cover vertices {xt2+k+t2+1, . . . , xt2+k+t2+(t2
2 )}∪{yt2+k+t2+1, . . . , yt2+k+t2+(t2

2 )}.
If n < t2 + k + t2 +

(
t2
2

)
, fix geodesics in a similar manner (but in this case not all

are needed). On the other hand, t2 + k +
(
t2
2

)
+ t2 ≥ n as T1 ∪ T2 is a strong geode-

tic set and thus covers X. The only uncovered vertices are then {yt2+2, . . . , yt2+k},
hence k − 1 vertices in Y . They can be covered by the (not yet used) geodesics
x1 ∼ yi+1 ∼ xi for i ∈ {t2 + 1, . . . , t2 + k − 1}.

Theorem 3.2. If n ≥ 2, then

sg(S0
n) =


2

⌈
−3 +

√
8(n + 1) + 1

2

⌉
, 8n + 1 is not a perfect square,

2

⌈
−3 +

√
8n + 1

2

⌉
+ 1, 8n + 1 is a perfect square.

For an optimal strong geodetic set S = S1 ∪ S2 it holds |S1| = |S2| =
⌈
−3+

√
8n+9

2

⌉
, if

8n + 1 is not a perfect square, otherwise |S1| =
⌈
−3+

√
8n+1

2

⌉
and |S2| = |S1|+ 1.
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Proof. Let S = S1 ∪ S2 be a strong geodetic set of S0
n where |S| = sg(S0

n) and S1,
S2 each lie in one part of the bipartition. Let p = |S1| and q = |S2|. Without loss
of generality, p ≤ q.

As S is a strong geodetic set and the geodesics in S0
n are either edges (between

a vertex in S1 and a vertex in S2), paths of length 2 (between two vertices in Si) or
paths of length 3 (between unconnected vertices in S1 and S2), it holds:

n ≤ p +

(
q

2

)
+ p ,

n ≤ q +

(
p

2

)
+ p .

From Lemma 3.1 it follows that we can assume |p − q| ≤ 1. Hence, we distinguish
two cases.

Case 1: Let p = q. The inequalities simplify to n ≤ 2p+
(
p
2

)
for 0 ≤ p ≤ n, which

is equivalent to p ≥ −3+
√
8n+9

2
. Hence, the optimal value is p = q =

⌈
−3+

√
8n+9

2

⌉
and

|S| = 2p.
Case 2: Let q = p + 1. The inequalities simplify to n ≤ 2p +

(
p+1
2

)
= 3p +

(
p
2

)
and n ≤ 2p + 1 +

(
p
2

)
. As n ≥ 2, we have p ≥ 1, so the second inequality gives a

stronger constraint. Hence, p ≥ −3+
√
8n+1

2
. The optimal value is p =

⌈
−3+

√
8n+1

2

⌉
,

q = p + 1 and |S| = 2p + 1.
Next, we determine the strong geodetic number of S0

n, i.e. determine which case

gives rise to a smaller value of p+q. Let a =
⌈
−3+

√
8n+9

2

⌉
, b =

⌈
−3+

√
8n+1

2

⌉
, sga = 2a

and sgb = 2b + 1. We distinguish two cases: 8n + 1 is a perfect square or not.
Case 1: If 8n + 1 is a perfect square. There exists an integer m such that

m2 = 8n + 1. Thus m is odd and m ≥ 5 (as n ≥ 2). Hence,
⌈−3+m

2

⌉
= m−3

2
and

sgb = m−2. On the other hand, m2 < 8n+9 ≤ (m+1)2, thus a ≤
⌈−3+m+1

2

⌉
= m−1

2

and sga = m− 1. In this case sgb < sga.
Case 2: If 8n + 1 is not a perfect square. There exists an integer m such that

m2 < 8n + 1 < (m + 1)2. Notice that m ≥ 4 as n ≥ 2. Thus

b =

⌈
−3 + m + 1

2

⌉
=

{
m−1
2

, m odd,
m−2
2

, m even,

and

sgb =

{
m, m odd,

m− 1, m even.
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On the other hand, 8n + 9 < (m + 1)2 + 8 < (m + 2)2 as m ≥ 4. Thus

a ≤
⌈
−3 + m + 2

2

⌉
=

{
m−1
2

, m odd,
m
2
, m even,

and

sga ≤

{
m− 1, m odd,

m, m even.

Hence, if m is odd, sga < sgb. But if m is even, then m + 1 is odd and by [17,
Lemma 2.2], there exists an integer k such that (m+ 1)2 = 8k+ 1. Clearly, 8n+ 9 ≤
(m+1)2+7, but due to the congruences modulo 8, we conclude that 8n+9 ≤ (m+1)2.
Thus a ≤

⌈−3+m+1
2

⌉
= m−2

2
and sga = m − 2. Hence in this case we also have

sga < sgb, which concludes the proof.
A very special case of a complete bipartite graph without a perfect matching

is a cube Q3
∼= S0

4 . By Theorem 3.2, sg(Q3) = 4. In the next section, we study
hypercubes more thoroughly.

4 Hypercubes

In the last section, we discuss the strong geodetic problem on another family of
bipartite graphs, namely hypercubes. It is known that the strong geodetic problem
on bipartite graphs is NP-complete [19], thus it would be optimistic to expect an
explicit formula. Recall that a hypercube Qn has 2n vertices and diameter n. First,
we consider some small hypercubes.

Clearly, sg(Q0) = 1, sg(Q1) = 2 and sg(Q2) = 3. We already know that sg(Q3) =
4. Using a computer program, we can also check that sg(Q4) = 5. For an example
of the smallest strong geodetic sets, see Figure 1.

Figure 1: Hypercubes Q3 and Q4 with their strong geodetic sets.
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We can use the result from [17, Theorem 3.1] to attain a lower bound for sg(Qn).
The result states that if G is a graph with n = n(G) and d = diam(G) ≥ 2, then

sg(G) ≥

⌈
d− 3 +

√
(d− 3)2 + 8n(d− 1)

2(d− 1)

⌉
.

Using this we obtain

Corollary 4.1. If n ≥ 2, then

sg(Qn) ≥
⌈

1√
n− 1

· 2
n+1
2

⌉
.

Proof. Using [17, Theorem 3.1], we get

sg(Qn) ≥

⌈
n− 3 +

√
(n− 3)2 + 2n+3(n− 1)

2(n− 1)

⌉
≥
⌈

1√
n− 1

· 2
n+1
2

⌉
,

which concludes the proof.

On the other hand, we present a non-trivial upper bound, stating that approxi-
mately a square root of the number of vertices is enough to form a strong geodetic
set.

Theorem 4.2. If n ≥ 1, then

sg(Qn) ≤

{
3
2
· 2n

2 , n is even,

2
n+1
2 , n is odd.

Proof. First we prove the intermediate result that for all n0, n ≥ n0 ≥ 1, it holds
that sg(Qn) ≤ 2n−n0 + 2n0−1.

Let n0 be an integer, n ≥ n0 ≥ 1. Denote 0k as a string of k zeros and 1k as a
string of k ones. A hypercube Qn consists of 2 · 2n−n0 copies of hypercubes Qn0−1.
These copies are labeled as Qb

n0−1, where b ∈ {0, 1}n−n0+1 and the vertices of the
graph Qn are of the form bc, b ∈ {0, 1}n−n0+1, c ∈ {0, 1}n0−1.

Let P = {b00n0−1 : b ∈ {0, 1}n−n0}, Q = {1n−n01c : c ∈ {0, 1}n0−1} =
V (Q1n−n0+1

n0−1 ), and S = P ∪ Q. Notice that |S| = 2n−n0 + 2n0−1. Next, we prove
that S is a strong geodetic set of Qn.

For each pair of vertices b00n0−1 ∈ P and 1n−n01c ∈ Q we fix the following
geodesic (where  denotes some shortest path between given vertices):

b00n0−1  b0c ∼ b1c 1n−n01c .
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As b and c can be any strings of zeros and ones of the appropriate length, all vertices
of the hypercube Qn are covered. Hence for all n0, n ≥ n0 ≥ 1,

sg(Qn) ≤ 2n−n0 + 2n0−1 .

Therefore, sg(Qn) ≤ min{2n−n0 + 2n0−1 : n0 ∈ N, n ≥ n0 ≥ 1}. The minimum of
this function for n0 ∈ R is attained in n0 = n+1

2
. Thus the minimum of the integer

valued function is in n+1
2

if n is odd, and in either bn+1
2
c or dn+1

2
e if n is even. If

n is odd, then the minimal value is 2
n+1
2 =

√
2 · 2n

2 . If n is even, the value in both
cases is 3

2
· 2n

2 and thus this is the minimal value.

By being more careful when selecting the geodesics, we can improve the bound
as follows.

Theorem 4.3. If n ≥ 2, then

sg(Qn) ≤

{
3
2
· 2n

2 −
(
dn+1

2
e − 2

) (
dn+1

2
e − 3

)
, n is even,

2
n+1
2 − (n−3)(n−5)

4
, n is odd.

Proof. Using the notation from the proof of Theorem 4.2, the main step is to prove
that for all n0, n ≥ n0 ≥ 4,

sg(Qn) ≤ 2n−n0 + 2n0−1 − (n0 − 2)(n0 − 3) .

From this it follows that by using n0 = dn+1
2
e, the result is obtained and the bound

from Theorem 4.2 is improved if dn+1
2
e ≥ 4, ie. n ≥ 6.

Let v, u ∈ V (Q1n−n0+1

n0−1 ) be some vertices at distance n0. Without loss of general-
ity, we take v = 1n−n0+10n0−1 and u = 1n. There is n0−1 internally disjoint shortest
paths from v to u, set P as the set of vertices they cover. Let x1, . . . , xn0−1 be the
neighbors of u on these paths and y1, . . . , yn0−1 the other neighbors of xi’s on these
paths. Let F = P − {u, v, x1, . . . , xn0−1, y2, . . . , yn0−1}.

Now let P = {b00n0−1 : b ∈ {0, 1}n−n0}, Q = {1n−n01c : c ∈ {0, 1}n0−1 − F} =
V (Q1n−n0+1

n0−1 ) − F , and S = P ∪ Q. Clearly, |S| = 2n−n0 + 2n0−1 − (n0 − 2) − (n0 −
4)(n0 − 2) = 2n−n0 + 2n0−1 − (n0 − 2)(n0 − 3). Next, we prove that S is a strong
geodetic set of Qn.

For each pair of vertices b00n0−1 ∈ P and 1n−n01c ∈ Q we fix the following
geodesic (where  denotes some shortest path between given vertices, and this
path follows P if the endpoints are appropriate):

b00n0−1  b0c ∼ b1c 1n−n01c, c ∈ Q− {x1, y2, . . . , yn0−1},

b00n0−1  1n−n010n0−1  1n−n01c, c ∈ {x1, y2, . . . , yn0−1}.
As shortest paths in P get covered with the above geodesics, and other vertices are
clearly covered, S is a strong geodetic set.
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Some values given by the Theorem are presented in Table 1. Note that asymp-
totically, the ratio between the lower and upper bound is of order 1√

n
.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sg(Qn) ≥ 3 3 4 4 6 7 9 12 16 21 28 37 51 69

sg(Qn) ≤ 10 14 18 26 36 52 76 108 162 226
sg(Qn) ≤ 2 3 4 6 8 12 16 24 32 48 64 96 128 192 256

Table 1: The lower and both upper bounds on sg(Qn) given by Corollary 4.1, The-
orem 4.3 and Theorem 4.2.

It would be interesting to have an explicit formula for sg(Qn) or at least know
the complexity of determining the strong geodetic number of Qn.
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