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The strong geodetic number, sg(G), of a graph G is the smallest number of vertices such that by fixing one geodesic between each pair of selected vertices, all vertices of the graph are covered. In this paper, the study of the strong geodetic number of complete bipartite graphs is continued. The formula for sg(K n,m ) is given, as well as a formula for the crown graphs S 0 n . Bounds on sg(Q n ) are also discussed.

Introduction

The three mainly studied variations of covering vertices of a graph with shortest paths (also called geodesics) are the geodetic problem [START_REF] Brešar | On the geodetic number and related metric sets in Cartesian product graphs[END_REF][START_REF] Brešar | Minimum k-path vertex cover[END_REF][START_REF] Bueno | On the hardness of finding the geodetic number of a subcubic graph[END_REF][START_REF] Chartrand | Geodetic sets in graphs[END_REF][START_REF] Dourado | Some remarks on the geodetic number of a graph[END_REF][START_REF] Hansen | On pitfalls in computing the geodetic number of a graph[END_REF][START_REF] Harary | The geodetic number of a graph[END_REF][START_REF] Jiang | Geodesic convexity and Cartesian products in graphs[END_REF][START_REF] Pan | Isometric path numbers of graphs[END_REF][START_REF] Soloff | Products of geodesic graphs and the geodetic number of products[END_REF], the isometric path problem [START_REF] Clarke | The ultimate isometric path number of a graph[END_REF][START_REF] Fisher | The isometric path number of a graph[END_REF][START_REF] Fitzpatrick | The isometric path number of the Cartesian product of paths[END_REF], and the strong geodetic problem. The latter aims to determine the smallest number of vertices needed, such that by fixing one geodesic between each pair of selected vertices, all vertices of a graph are covered. More formally, the problem is introduced in [START_REF] Manuel | Strong geodetic problem in networks[END_REF] as follows.

Let G = (V, E) be a graph. Given a set S ⊆ V , for each pair of vertices {x, y} ⊆ S, x = y, let g(x, y) be a selected fixed shortest path between x and y. We set I(S) = { g(x, y) : x, y ∈ S} , and V ( I(S)) = P ∈ I(S) V ( P ). If V ( I(S)) = V for some I(S), then the set S is called a strong geodetic set. For a graph G with just one vertex, we consider the vertex as its unique strong geodetic set. The strong geodetic problem is to find a minimum strong geodetic set of G. The cardinality of a minimum strong geodetic set is the strong geodetic number of G and is denoted by sg(G). Such a set is also called an optimal strong geodetic set.

In the first paper on the topic [START_REF] Manuel | Strong geodetic problem in networks[END_REF], the strong geodetic number of complete Apollonian networks is determined and it is proved that the problem is NP-complete in general. Also, some comparisons are made with the isometric path problem. The problem has also been studied on grids and cylinders [START_REF] Klavžar | Strong geodetic problem in grid like architectures[END_REF], and on Cartesian products in general [START_REF] Iršič | Strong geodetic problem on Cartesian products of graphs[END_REF]. Additional results about the problem on Cartesian products, as well as a notion of a strong geodetic core, has been recently studied in [START_REF] Gledel | Strong geodetic cores and Cartesian product graphs[END_REF]. Along with the strong geodetic problem, an edge version of the problem was also introduced in [START_REF] Manuel | Strong edge geodetic problem in networks[END_REF].

The strong geodetic problem appears to be difficult even on complete bipartite graphs. Some initial investigation is done in [START_REF] Iršič | Strong geodetic number of complete bipartite graphs and of graphs with specified diameter[END_REF], where the problem is presented as an optimization problem and the solution is found for balanced complete bipartite graphs. Some more results have been very recently presented in [START_REF] Iršič | Strong geodetic problem on complete multipartite graphs[END_REF], where it is proved that the problem is NP-complete on general bipartite graphs, but polynomial on complete bipartite graphs. The asymptotic behavior of the strong geodetic problem on them is also discussed.

In this paper we continue the study on bipartite graphs, specifically on the complete bipartite graphs, crown graphs, and hypercubes. In Section 2, we determine the explicit formula for complete bipartite graphs. In Section 3, we discuss the strong geodetic number of crown graphs. In the last section, an upper and lower bound for the strong geodetic number of hypercubes are investigated.

To conclude this section we state some basic definitions. Recall that a crown graph S 0 n is a complete bipartite graph K n,n without a perfect matching. Recall also that a hypercube Q n is a graph on the vertex set {0, 1} n , where two vertices are adjacent if and only if they differ in exactly one bit.

Complete bipartite graphs

Strong geodetic number of complete bipartite graphs has been widely studied, as mentioned in Section 1. For completeness we state some already known results.

Theorem 2.1 ([17], Theorem 2.1). If n ≥ 6, then sg(K n,n ) =          2 -1 + √ 8n + 1 2
, 8n -7 is not a perfect square,

2 -1 + √ 8n + 1 2 -1, 8n -7 is a perfect square.
Note also that sg(K 1,m ) = m for all positive integers m, as K 1,m is a tree with m leaves. Hence, in the following results, this case is omitted.

To determine sg(K n,m ), we will need the following definitions and notation. We will denote the extension of an integer valued function ϕ to the real values by ϕ. Let 3 ≤ n ≤ m be integers. Define g(p) = m -p 2 for p ∈ {0 . . . , n} and g(p) = m -p 2 for p ∈ R as a continuous extension of g. For p ∈ {0, 1, . . . , n} define f (p) = min{q ∈ Z : q 2 ≥ n -p} and its continuous extension

f (p) = 1+ √ 1+8(n-p) 2
, the solution of q 2 = n -p, where p, q ∈ R. Observe that for p < n, f

(p) = f (p) , but 0 = f (n) = f (n) = 1.
Define also

F (k) = k + f (k), G(k) = k + g(k) and s(k) = max{F (k), G(k)}
, for all k ∈ {0, 1, . . . , n}. Note that whenever the functions defined above are used, the integers n and m will be clear from the context.

Lemma 2.2. If 3 ≤ n ≤ m, then sg(K n,m ) = min{s(k) : 0 ≤ k ≤ n, k ∈ Z}. Proof. Let (X, Y ), |X| = n, |Y | = m,
be the bipartition of K n,m . Let S k be a minimal strong geodetic set of the graph, which has exactly k vertices in X. Denote

l = |S k ∩ Y |. As Y must be covered, l ≥ m -k 2 = g(k)
(vertices of Y are covered by being in a strong geodetic set or by a geodesic of length two between two vertices in the strong geodetic set in X).

As X must also be covered, l must be such that l

2 ≥ n -k. Thus by definition of f , l ≥ f (k).
If l ≥ g(k) and l ≥ f (k), then both X and Y are covered. Hence by the minimality of S k , we have l = max{f (k), g(k)}.

Thus

sg(K n,m ) = min{|S k | : 0 ≤ k ≤ n} = min{k + max{f (k), g(k)} : 0 ≤ k ≤ n} = min{s(k) : 0 ≤ k ≤ n} .
The main idea behind the following result is that sg(K n,m ) is probably close to the value of min{max{k + f (k), k + g(k)} : 0 ≤ k ≤ n}. But before we state the more general result, consider the case n = 2, which has already been studied in [START_REF] Iršič | Strong geodetic problem on complete multipartite graphs[END_REF]Corollary 2.3].

Proposition 2.3. If m ≥ 2, then sg(K 2,m ) = 3; m = 2, m; m ≥ 3. Theorem 2.4. If 3 ≤ n ≤ m, then sg(K n,m ) =          m; n -3 ≥ m-3 2 , m + n -n 2 ; m ≥ n 2 , n; n 2 > m ≥ 3 + n-3 2 , min {G( x * -1), F ( x * )} ; otherwise , where 3 ≤ x * ≤ n -3 is a solution of m -x 2 = 1+ √ 1+8(n-x) 2
.

Observe that the first case simplifies to (n, m) ∈ {(3, 3), [START_REF] Brešar | Minimum k-path vertex cover[END_REF][START_REF] Brešar | On the geodetic number and related metric sets in Cartesian product graphs[END_REF], (4, 4), (4, 5), (5, 5), [START_REF] Bueno | On the hardness of finding the geodetic number of a subcubic graph[END_REF][START_REF] Bueno | On the hardness of finding the geodetic number of a subcubic graph[END_REF]} and that the "otherwise" case appears if and only if m ≥ n ≥ 7 and m ≤ 3 + n-3 2 . Note that the second case is indeed a known result from [19, Corollary 2.3], but here we present a different proof for it.

As the proof consists of some rather technical details, we shall first prove some useful lemmas.

Lemma 2.5. For 3 ≤ k ≤ n, the function G(k) is strictly decreasing. Moreover, we have G(0) = G(3) = m and G(1) = G(2) = m + 1.
The same holds for the function g(k).

Proof. It follows from the fact that k -k 2 is strictly decreasing for k ≥ 3. Lemma 2.6. For 0 ≤ k ≤ n -1, F (k) and f (k) are increasing (not necessarily strictly). Additionally, we have

F (n -1) = n + 1 and F (n) = n. Moreover, |F (k + 1) -F (k)| ≤ 1 for all 0 ≤ k ≤ n -1.
Proof. The claim follows from the fact that if 0 ≤ p ≤ n -1 and f (p) = q, then f (p + 1) ∈ {q, q -1} by definition of f . Lemma 2.7.

If n -3 < m-3 2 , m -3 ≤ n-3 2
and n ≥ 3, then the functions f and g intersect exactly once on

[3, n -3]. The condition is equivalent to (n, m) ∈ {(n, m) : n ≥ 7, n ≤ m ≤ 3 + n-3
2 }. Proof. The simplification of the conditions can be checked by a simple calculation.

Moreover, the first condition implies f (3) ≤ g(3), and the second implies f (n -3) ≥ g(n -3). As f is increasing and g is strictly decreasing on [3, n -3] (and n ≥ 7), it follows that f and g intersect exactly once on [3, n -3].

Lemma 2.8. For m ≥ n ≥ 7 and m ≤ 3 + n-3 2 , let f and g intersect in

x * ∈ [3, n -3]. Then it holds: (i) F ( x * ) ≥ G( x * ), (ii) G( x * -1) ≥ F ( x * -1).
Proof. As we are on the interval [3, n -3] it suffices to prove both properties for f and g instead of F and G, as f ( x ) = f ( x ) for x ∈ [3, n -3] and similarly for g and g.

(i) As f is increasing, g is strictly decreasing, f (x * ) = g(x * ), and x * ≤ x * , it follows that f ( x * ) ≥ g( x * ).

(ii) As f is increasing, g is strictly decreasing, f (x * ) = g(x * ), and

x * -1 ≤ x * , it follows that f ( x * -1) ≤ f (x * ) = g(x * ) < g( x * -1). Proof of Theorem 2.4. Recall that by Lemma 2.2, sg(K n,m ) = min{s(k) : 0 ≤ k ≤ n, k ∈ Z} = min{max{F (k), G(k)} : 0 ≤ k ≤ n, k ∈ Z}. Case 1: Let n -3 ≥ m-3 2 
. The only possibilities are (n, m) ∈ {(3, 3), (3, 4), (4, 4), (4, 5), [START_REF] Brešar | Geodetic sets in graphs[END_REF][START_REF] Brešar | Geodetic sets in graphs[END_REF], [START_REF] Bueno | On the hardness of finding the geodetic number of a subcubic graph[END_REF][START_REF] Bueno | On the hardness of finding the geodetic number of a subcubic graph[END_REF]}. For all of them we can easily check that the optimal value is m.

Case Case 4: Lastly, we study the "otherwise" case, i.e. the case when m ≥ n ≥ 7 and m ≤ 3+ n-3 2 . By Lemma 2.7, there exists an x * ∈ [3, n-3] such that f (x * ) = g(x * ). Clearly, min max{ f , g} on [0, n] is attained in x * . But as x * is not necessarily an integer, we must further investigate the properties of F and G on integer values close to x * . By Lemma 2.8(i),

2: Let m ≥ n 2 . Thus, G(n) ≥ F (n). As n ≥ 3 and G is strictly decreasing, it also holds G(n -1) ≥ F (n -1). If n = 3, then f (0) = f (3) = 3 and f (4) = f (5) = 4.
F ( x * ) ≥ G( x * ), thus also F (k) ≥ G(k) for all k ≥ x * . By Lemma 2.8(ii), G( x * -1) ≥ F ( x * -1), thus G(k) ≥ F (k) for all k ≤ x * -1. Hence, min{max{F (k), G(k)} : 0 ≤ k ≤ n, k ∈ Z} = min {G( x * -1), F ( x * )} .
As already mentioned, asymptotic behavior of sg(K n,m ) is presented in [19, Theorem 2.5]. Two special cases of this behavior are a direct consequence of the second and third case in the above Theorem 2.4, but determining the asymptotic behavior for a general case is not trivial even with the result of Theorem 2.4.

Crown graphs

In the following we determine sg(S 0 n ), using similar techniques as in the proof of Theorem 2.1 [START_REF] Iršič | Strong geodetic number of complete bipartite graphs and of graphs with specified diameter[END_REF].

Lemma 3.1. Let T = T 1 ∪ T 2 be a strong geodetic set of S 0 n , n ≥ 2, with bipartition (X, Y ), where T 1 ⊆ X, T 2 ⊆ Y and t i = |T i | for all i ∈ {1, 2}. If |t 1 -t 2 | ≥ 2, then there exists a strong geodetic set T = T 1 ∪ T 2 , T 1 ⊆ X, T 2 ⊆ Y , such that |T | = |T | and |t 1 -t 2 | < |t 1 -t 2 |, where t i = |T i | for i ∈ {1, 2}.
Proof. Let X = {x 1 , . . . , x n }, Y = {y 1 , . . . , y n } and x i ∼ y i for i ∈ [n] be a removed perfect matching. Without loss of generality, we assume t 1 ≥ t 2 and let t 1 -t 2 = k ≥ 2, T 1 = {x 1 , . . . , x t 2 +k } and T 2 = {y 1 , . . . , y t 2 }. Note that geodesics between x t 2 +k and T 2 are just edges.

First consider the case t 2 = 0. As T is a strong geodetic set,

t 1 = n. Consider T = (X -{x n }) ∪ {y 1 }. Clearly, |T | = |T | and n -2 = |t 1 -t 2 | < |t 1 -t 2 | = n.
To see that T is a strong geodetic set, fix the following geodesics:

x 1 ∼ y 2 ∼ x n ∼ y 1 and x 1 ∼ y i+1 ∼ x i for all 2 ≤ i ≤ n -1.
Next consider the case

t 2 = min{t 1 , t 2 } ≥ 1. Define T = T 1 ∪ T 2 where T 1 = T 1 -{x t 2 +k } and T 2 = T 2 ∪{y t 2 +1 }. As t 2 ≥ 1, we have 0 ≤ t i ≤ n. Clearly, |T | = |T | and |t 1 -t 2 | < |t 1 -t 2 |.
In the following we prove that T is a strong geodetic set. First cover x t 2 +k-1 by a geodesic y 1 ∼ x t 2 +k ∼ y t 2 +1 (as t 2 ≥ 1 and k ≥ 2). Next fix the following geodesics: 

x i ∼ y t 2 +k+i ∼ x t 2 +k+i+1 ∼ y i for i ∈ [t 2 -1] and x t 2 ∼ y t 2 +k+t 2 ∼ x t 2 +k+1 ∼ y t 2 ,
) }. If n < t 2 + k + t 2 + t 2
2 , fix geodesics in a similar manner (but in this case not all are needed). On the other hand, t 2 + k + t 2 2 + t 2 ≥ n as T 1 ∪ T 2 is a strong geodetic set and thus covers X. The only uncovered vertices are then {y t 2 +2 , . . . , y t 2 +k }, hence k -1 vertices in Y . They can be covered by the (not yet used) geodesics

x 1 ∼ y i+1 ∼ x i for i ∈ {t 2 + 1, . . . , t 2 + k -1}. Theorem 3.2. If n ≥ 2, then sg(S 0 n ) =            2 -3 + 8(n + 1) + 1 2 , 8n + 1 is not a perfect square, 2 -3 + √ 8n + 1 2 + 1, 8n + 1 is a perfect square.
For an optimal strong geodetic set

S = S 1 ∪ S 2 it holds |S 1 | = |S 2 | = -3+ √ 8n+9 2 , if 8n + 1 is not a perfect square, otherwise |S 1 | = -3+ √ 8n+1 2 and |S 2 | = |S 1 | + 1.
Proof. Let S = S 1 ∪ S 2 be a strong geodetic set of S 0 n where |S| = sg(S 0 n ) and S 1 , S 2 each lie in one part of the bipartition. Let p = |S 1 | and q = |S 2 |. Without loss of generality, p ≤ q.

As S is a strong geodetic set and the geodesics in S 0 n are either edges (between a vertex in S 1 and a vertex in S 2 ), paths of length 2 (between two vertices in S i ) or paths of length 3 (between unconnected vertices in S 1 and S 2 ), it holds:

n ≤ p + q 2 + p , n ≤ q + p 2 + p .
From Lemma 3.1 it follows that we can assume |p -q| ≤ 1. Hence, we distinguish two cases. Case 1: Let p = q. The inequalities simplify to n ≤ 2p+ p 2 for 0 ≤ p ≤ n, which is equivalent to p ≥ -3+ √ 8n+9 2

. Hence, the optimal value is p = q = -3+ . The optimal value is p = -3+ √ 8n+1 2 , q = p + 1 and |S| = 2p + 1.

Next, we determine the strong geodetic number of S 0 n , i.e. determine which case gives rise to a smaller value of p + q. Let a

= -3+ √ 8n+9 2 , b = -3+ √ 8n+1 2
, sg a = 2a and sg b = 2b + 1. We distinguish two cases: 8n + 1 is a perfect square or not.

Case 1: If 8n + 1 is a perfect square. There exists an integer m such that m 2 = 8n + 1. Thus m is odd and m ≥ 5 (as n ≥ 2). Hence, -3+m 2 = m-3 2 and sg b = m -2. On the other hand, m 2 < 8n + 9 ≤ (m + 1) 2 , thus a ≤ -3+m+1 2 = m-1 2 and sg a = m -1. In this case sg b < sg a .

Case 2: If 8n + 1 is not a perfect square. There exists an integer m such that and sg a = m -2. Hence in this case we also have sg a < sg b , which concludes the proof.

m 2 < 8n + 1 < (m + 1) 2 . Notice that m ≥ 4 as n ≥ 2. Thus b = -3 + m + 1 2 = m-1 2 , m odd, m-2 2 ,
A very special case of a complete bipartite graph without a perfect matching is a cube Q 3 ∼ = S 0 4 . By Theorem 3.2, sg(Q 3 ) = 4. In the next section, we study hypercubes more thoroughly.

Hypercubes

In the last section, we discuss the strong geodetic problem on another family of bipartite graphs, namely hypercubes. It is known that the strong geodetic problem on bipartite graphs is NP-complete [START_REF] Iršič | Strong geodetic problem on complete multipartite graphs[END_REF], thus it would be optimistic to expect an explicit formula. Recall that a hypercube Q n has 2 n vertices and diameter n. First, we consider some small hypercubes.

Clearly, sg(Q 0 ) = 1, sg(Q 1 ) = 2 and sg(Q 2 ) = 3. We already know that sg(Q 3 ) = 4. Using a computer program, we can also check that sg(Q 4 ) = 5. For an example of the smallest strong geodetic sets, see Figure 1. Some values given by the Theorem are presented in Table 1. Note that asymptotically, the ratio between the lower and upper bound is of order It would be interesting to have an explicit formula for sg(Q n ) or at least know the complexity of determining the strong geodetic number of Q n .

2 .

 2 Thus the minimum is attained in either k = 0 or k = n, but the value is the same in both cases and equals m + n -n 2 = m. If n ≥ 4, then G(k) ≥ F (k) for all 0 ≤ k ≤ n (by the properties of F and G) and the minimum is attained in k = n, hence the value is m + n -n Case 3: Let n 2 > m ≥ 3 + n-3 2 . Thus G(n) < F (n) and G(n -3) ≥ F (n -3). Hence by the properties of G and F , the minimum is attained in k = n, hence the value is F (n) = n.

Case 2 : 2 = 3p + p 2 and n ≤ 2p + 1 + p 2 .

 2222 Let q = p + 1. The inequalities simplify to n ≤ 2p + p+1 As n ≥ 2, we have p ≥ 1, so the second inequality gives a stronger constraint. Hence, p ≥ -3+ √ 8n+1 2

Figure 1 :

 1 Figure 1: Hypercubes Q 3 and Q 4 with their strong geodetic sets.

  and t 2 2 geodesics between vertices in {x 1 , . . . , x t 2 } and also between {y 1 , . . . , y t 2 } to cover vertices {x t 2 +k+t 2 +1 , . . . , x t 2 +k+t 2 +( t 2 2 ) }∪{y t 2 +k+t 2 +1 , . . . , y t 2 +k+t 2 +( t 2 2

  On the other hand, 8n + 9 < (m + 1) 2 + 8 < (m + 2) 2 as m ≥ 4. Thus Hence, if m is odd, sg a < sg b . But if m is even, then m + 1 is odd and by [17, Lemma 2.2], there exists an integer k such that (m + 1) 2 = 8k + 1. Clearly, 8n + 9 ≤ (m+1) 2 +7, but due to the congruences modulo 8, we conclude that 8n+9 ≤ (m+1) 2 .

		a ≤	-3 + m + 2 2	=	m-1 2 , m odd, m 2 , m even,
	and			
			sg a ≤	m -1, m odd, m, m even.
	Thus a ≤ -3+m+1 2	= m-2 2	
					m even,
	and			
			sg b =	m, m -1, m even. m odd,

Table 1 :

 1 The lower and both upper bounds on sg(Q n ) given by Corollary 4.1, Theorem 4.3 and Theorem 4.2.

	1 √ n .
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We can use the result from [START_REF] Iršič | Strong geodetic number of complete bipartite graphs and of graphs with specified diameter[END_REF]Theorem 3.1] to attain a lower bound for sg(Q n ). The result states that if G is a graph with n = n(G) and d = diam(G) ≥ 2, then sg(G) ≥ d -3 + (d -3) 2 + 8n(d -1) 2(d -1) .

Using this we obtain

Proof. Using [17, Theorem 3.1], we get

, which concludes the proof.

On the other hand, we present a non-trivial upper bound, stating that approximately a square root of the number of vertices is enough to form a strong geodetic set.

n is odd.

Proof. First we prove the intermediate result that for all n 0 , n

Let n 0 be an integer, n ≥ n 0 ≥ 1. Denote 0 k as a string of k zeros and 1 k as a string of k ones. A hypercube

), and

For each pair of vertices b00 n 0 -1 ∈ P and 1 n-n 0 1c ∈ Q we fix the following geodesic (where denotes some shortest path between given vertices):

As b and c can be any strings of zeros and ones of the appropriate length, all vertices of the hypercube Q n are covered. Hence for all n 0 , n ≥ n 0 ≥ 1,

Thus the minimum of the integer valued function is in n+1 2 if n is odd, and in either n+1

If n is even, the value in both cases is 3 2 • 2 n 2 and thus this is the minimal value.

By being more careful when selecting the geodesics, we can improve the bound as follows.

4

, n is odd.

Proof. Using the notation from the proof of Theorem 4.2, the main step is to prove that for all n 0 , n

From this it follows that by using n 0 = n+1 2 , the result is obtained and the bound from Theorem 4.2 is improved if

) be some vertices at distance n 0 . Without loss of generality, we take v = 1 n-n 0 +1 0 n 0 -1 and u = 1 n . There is n 0 -1 internally disjoint shortest paths from v to u, set P as the set of vertices they cover. Let x 1 , . . . , x n 0 -1 be the neighbors of u on these paths and y 1 , . . . , y n 0 -1 the other neighbors of x i 's on these paths. Let F = P -{u, v, x 1 , . . . , x n 0 -1 , y 2 , . . . , y n 0 -1 }.

For each pair of vertices b00 n 0 -1 ∈ P and 1 n-n 0 1c ∈ Q we fix the following geodesic (where denotes some shortest path between given vertices, and this path follows P if the endpoints are appropriate): b00 n 0 -1 b0c ∼ b1c 1 n-n 0 1c, c ∈ Q -{x 1 , y 2 , . . . , y n 0 -1 }, b00 n 0 -1 1 n-n 0 10 n 0 -1 1 n-n 0 1c, c ∈ {x 1 , y 2 , . . . , y n 0 -1 }.

As shortest paths in P get covered with the above geodesics, and other vertices are clearly covered, S is a strong geodetic set.