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Abstract.
This paper focuses on tomographic reconstruction for nuclear medicine imaging,

where the classical approach consists to maximize the likelihood of Poisson distributed
data using the iterative Expectation Maximization algorithm. In this context and
when the quantity of acquired data is low and produces low signal-to-noise ratio in the
images, a step forward consists to incorporate a total variation a priori on the solution
into a MAP-EM formulation. The novelty of this paper is to propose a convergent and
efficient numerical scheme to compute the MAP-EM optimizer, based on a splitting
approach which alternates an EM step and a dual-TV-minimization step. The main
theoretical result is the proof of stability and convergence of this scheme. Moreover,
we also present some numerical experiments in which our algorithm appears at least
as efficient and accurate as some other reference algorithms from the literature.

Keywords: image reconstruction, total variation, Poisson noise, tomography, MAP-EM,
MLEM, dual approach

1. Introduction

Emission tomography works by detecting radiation emitted from within the patient,
enabling clinicians to identify the position and size of tumours, to control the quality of
a treatment or to conduct diagnostic procedures such as coronary perfusion. Important
issues relating to the invasive character of this type of imaging is the reduction of the
tracer dosage and acquisition time. As a consequence, the clinical emission data uses to
be strongly affected by Poisson noise. This noise propagates through the tomographic
reconstruction process and leads to images with low signal-to-noise ratio. Early stopping
of the iterations or post-smoothing reduces variance of the noise but also blurs the edges
and may mask small sources. Moreover, it is known that early stopping of the iterations
conducts to biased images and that the variance of the noise is intensity-dependent,
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making it difficult to choose the smoothing kernel. Finally, stopping the iterations
does not ensure that the reconstructed image will have the desired properties from the
point of view of the user’s a priori information, and post-smoothing is likely to reduce
concordance between solution and data.

An appealing alternative is to include a priori information in the reconstruction
process, a priori which ensures a best compromise between smoothness and agreement
to the data. The likelihood being shift-variant, shift invariant priors give unsatisfactory
results in terms of bias and resolution. Shift-variant quadratic priors were proposed
e.g., in [1] and [2] and were shown to give better results. More recently priors based on
the total variation norm have been introduced but encountered strong computational
difficulties due to the more complex and non-differentiable expression of the total
variation norm. However the use of the total variation prior is appealing when one
attempts to obtain images with smooth regions separated by sharp edges. The resolution
of linear inverse problems with total variation regularization was tackled in the context
of the Gaussian noise and `2-norm (see e.g., [3]) but is still an issue when the data is
Poisson distributed and thus a Kullback-Leibler distance is better suited. In this work
we address the last topic, and we propose a solution in which the classical maximum
likelihood expectation maximization algorithm is used in conjunction with a custom-
designed total-variation regularization.

1.1. Principle of MLEM algorithm

The volume containing the source of gamma photons is divided in J spatial locations
called pixels or voxels, indexed on j = 1, . . . , J . The emission counts at the various
locations are independent and the value xj of the jth pixel is a realization of a Poisson
random variable with mean value λj. The values x cannot be observed directly with
a detector placed outside the object. For a given pixel j and a given detector element
i, tij is the probability that a photon emitted at pixel j will be detected at detector
i. The system matrix of the detection system (also called transition matrix) is then
T = (tij). The element sj, where j = 1, . . . , J , of the sensitivity vector s is defined as
the probability of a photon emitted at pixel j to be detected somewhere in the camera.
For each pixel j, we obviously have the relation:

sj =
I∑
i=1

tij. (1)

For i = 1, . . . , I, the numbers yi of events detected by the detector elements also follow
Poisson distributions with mean values µi and the observations are independent. The
vector y of detected events approximately matches Tx, more precisely the means verify
the equation

µ = Tλ. (2)
In [4] the non observable variable x is called complete data and the observed y are called
incomplete data. The aim of the MLEM algorithm is to estimate the means λ of the
complete data from the observed values y of the incomplete data.
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Given the observations y = (yi)i=1,...,I , an estimator of the vector λ = (λj)j=1,...,J is
the solution of the maximum of the log-likelihood function

`(λ|y) = −
I∑
i=1

J∑
j=1

tijλj +
I∑
i=1

yi ln
 J∑
j=1

tijλj

− I∑
i=1

ln(yi!). (3)

The elements of the Hessian matrix H`(λ|y) of ` are
∂2`

∂λj∂λk
(λ|y) = −

I∑
i=1

tijtikyi
µ2
i

(4)

and for all u ∈ RJ ,

uTH`(λ|y)u = −
I∑
i=1

√yi
µi

J∑
j=1

tijuj

2

≤ 0. (5)

The concavity of the log-likelihood implies that its maximum is global. When rank(T ) =
J , the linear application of matrix T is injective and thus the Hessian is negative definite.
The likelihood has then a strict maximum and an unique maximum solution. When
rank(T ) < J , the Hessian is negative semi-definite and there may be multiple solutions
for the maximum.

In practice, an iterative method is called to approximate the minimum, and often
the Expectation Maximization (EM) algorithm from [4] is used. One thus obtain the
maximum likelihood expectation maximization algorithm that was proposed for nuclear
imaging applications in [5, 6]. Starting from an arbitrary vector λ(0) ∈ (R∗+)J , the
(n+ 1)th estimation of the maximum likelihood is given by:

λ
(n+1)
j = λ

(n)
j

1
sj

I∑
i=1

tij
yi

J∑
k=1

tikλ
(n)
k

, (6)

and the EM algorithm always decreases the value of the likelihood function. The
convergence of the algorithm to the maximum of the likelihood was proved in [5] for
strictly concave likelihood function and was proved in the general case in [7].

Both simple and efficient, the MLEM is widely used and sometimes even when the
data are not Poisson distributed. Its convergence speed is related to the system matrix.
When the system matrix only accounts for the geometry of detection the convergence
may be relatively fast and the result noisy. For this reason the iterations must be
stopped before too much high frequencies are introduced. On the contrary, when the
system matrix also models some convolution introduced by e.g., the detectors or the
attenuation in the patient, the convergence is slow and the higher frequencies are hardly
recoverable.

Introduction of a priori information helps in both cases to obtain a smooth and
precise image in a reasonable time. This a priori information can be added easily in the
Bayesian formalism and leads to maximum a posteriori (MAP) algorithms. When the
prior is a smooth function, the proof of convergence of the algorithm naturally fits the
EM developments from [4]. This is not any more the case when the prior is not smooth.
Moreover, numerical algorithms are needed to solve for the MAP estimator.
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1.2. A priori information and discrete total variation

Total variation denoising is known to promote smoothness in images while still
conserving sharp edges. It tends to produce almost homogeneous regions separated
by sharp frontiers, which makes that the images have a cartoon aspect. This type of
regularization has a strong interest in particular for low dose acquisitions where the goal
is to identify the shape of the objects in the volume.

To facilitate the presentation and without loss of generality, all the developments
hereafter are presented for the two-dimensional case. The three-dimensional case can
then be easily derived and the results remain true with minor changes that we will
specify when necessary.

Let Ω be an open subset of R2. The standard total variation is defined for functions
u ∈ L1(Ω) by

TV (u) = sup
{∫

Ω
u(x)div (ϕ(x))dx : ϕ ∈ C1

c (Ω;R2), |ϕ(x)| ≤ 1 ∀x ∈ Ω
}
. (7)

In particular, it is well known ([8]) that the functional TV is finite if and only if the
distributional derivative Du of u is a finite measure on Ω. Moreover, if u has a gradient
∇u ∈ L1(Ω), then TV (u) =

∫
Ω |∇u(x)|dx. An other interesting particular case is

u = χQ the characteristic function of a smooth set Q, when TV (u) can be identified to
the perimeter of Q : TV (u) =

∫
∂Q 1dσ.

From the discrete point of view, we assume that the image u is a 2-dimensional
matrix of size J = N ×N and we then denote by X the Euclidean space RN×N = RJ .
The discrete total variation of u is then defined by

TV (u) =
∑

1≤i,j≤N
|(∇u)i,j|, (8)

where |y| :=
√
y2

1 + y2
2 for all y = (y1, y2) ∈ R2. Here, the discrete gradient ∇u is a

vector in Y = X ×X given by (∇u)i,j = ((∇u)1
i,j, (∇u)2

i,j) with

(∇u)1
i,j =

{
ui+1,j − ui,j, if i < N

0, if i = N
and (∇u)2

i,j =
{
ui,j+1 − ui,j, if j < N

0, if j = N
.

Notice that an equivalent definition of TV (u) is
TV (u) = sup {〈ϕ,∇u〉Y : ϕ ∈ Y such that |ϕi,j| ≤ 1, i, j = 1, . . . , N}(9)

where 〈p,q〉Y = ∑
i,j(p1

i,jq
1
i,j + p2

i,jq
2
i,j). Finally, let us remark that 〈ϕ,∇u〉Y =

−〈divϕ,u〉Y as soon as the discrete divergence divϕ is defined by

(divϕ)i,j =


ϕ1
i,j − ϕ1

i−1,j, if 1 < i < N

ϕ1
i,j, if i = 1

−ϕ1
i−1,j, if i = N

+


ϕ2
i,j − ϕ2

i,j−1, if 1 < j < N

ϕ2
i,j, if j = 1

−ϕ2
i,j−1, if j = N

.

Let us also introduce the proximal operator prox τTV [u] defined by

prox τTV [u] = (I + τ∂TV )−1(u) = arg min
v∈X

{ 1
2τ ‖u− v‖2

X + TV (v)
}
,

where ∂TV is the sub-gradient of the TV function. Its value can be approximated for
instance using the efficient dual approach proposed and analyzed by Chambolle in [8].
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1.3. State-of-the art of numerical methods for Total Variation regularization for
Poisson distributed data

In a recent work, Anthoine et al. [9] proposed some proximal methods for tomographic
inverse problem with Poisson intensity and total variation regularization. Their idea
consists to use some classical proximal methods to minimize an energy F in the form
of:

F (λ) = L(λ) +G(λ), (10)

where L is the negative log-likelihood function (from which we withdraw the constant
term) given in (3), that we re-express as:

L(λ) = −`(λ|y)− 〈log(y!),1〉 = 〈Tλ− y log(Tλ),1〉 (11)

and G is a total variational regularization term

G(λ) = αTV (λ). (12)

The operations on vectors from (11) are performed component-wise and the vector 1
is the vector of ones having the dimension of the data vector y. A natural approach
consists to apply the Chambolle-Pock [10] optimization algorithm that does not require
the differentiability of the two operands. Denoting H the application given for all
µ ∈ (R+)I by

H(µ) = 〈µ− y log(µ),1〉, (13)

that also verifies for all λ the equation L(λ) = H(Tλ), the algorithm reads:
µ(n+1) = (I + σ∂H∗)−1(µ(n) + σTλ(n))
λ

(n+1) = (I + τ∂G)−1(λ(n) − τT ∗µ(n+1))
λ(n+1) = 2λ(n+1) − λ(n)

, (14)

and the sequence (λ(n)) converges to a minimum of F when the descent steps τ and σ

verify τσ‖T‖2 < 1. As F is well defined for λ > 0, addition of a positivity constraint
is also examined in [9]. Even if algorithms as (14) give interesting reconstructions,
our approach is different in the sense that we want to exploit the idea and the good
behaviour of the MLEM algorithm on highly noisy data.

With the same purpose, Sawatzky et al. [11] proposed to successively apply:

• The (EM) step from (6), which can be expressed in matrix form as:

λ(n+1/2) = λ(n)

T ∗1
T ∗
[ y
Tλ(n)

]
, (15)

• A weighted TV step

λ(n+1) = λ(n+1/2) − ω(n)∂TV (λ(n+1)), with ω(n) = α
λ(n)

T ∗1
. (16)

Indeed, the gradient of `(λ|y) satisfies

∇λ`(λ|y) = T ∗1− T ∗
[ y
Tλ

]
(17)
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and the Euler equation associated to the minimization of L+G reads as

0 ∈ T ∗1− T ∗
[ y
Tλ

]
+ α∂TV (λ). (18)

The inclusion of the positivity constraint as Karush-Kuhn-Tucker conditions then gives:

λ ∈ λ

T ∗1
T ∗
[ y
Tλ

]
− α λ

T ∗1
∂TV (λ). (19)

According to this equality, Sawatzky et al. consider the iterative scheme

λ(n+1) = λ(n)

T ∗1
T ∗
[ y
Tλ(n)

]
− αλ

(n)

T ∗1
∂TV (λn+1), (20)

which appears to be equivalent to the previous weighted-TV one. Additionally, the
authors explain how the weighted-TV step can be solved by minimizing the functional

λ(n+1) = prox ω(n)TV (λ(n+1/2))
= arg min

λ

{1
2‖
√
ω(n)(λ− λ(n+1/2))‖2 + TV (λ)

}
,

(21)

using a slightly modified version of the Chambolle’s algorithm ([8]) where λ(n+1) =
λ(n+1/2) − ω(n)divϕ and ϕ is calculated iteratively as

ϕ(k+1) =
ϕ(k) + τ∇

(
ω(n)divϕ(k) − λ(n+1/2)

)
1 + τ |∇

(
ω(n)divϕ(k) − λ(n+1/2)

)
|
, (22)

with the descent step τ verifying 0 < τ <
1

4‖ω(n)‖∞
. To simplify the presentation

we extended the notation | · | to vectors ϕ ∈ Y , where |ϕ| is the vector of X with
components |ϕj|, j = 1, . . . , J .

As we will see later, even if some numerical experiments show that (λ(n))n≥0 seems
to decrease the value of H, it is not clear from a theoretical point of view if this is true
or not and if the convergence can be asymptotically attained.

1.4. Outline of the paper

Our motivation in this work is to introduce an algorithm which is similar to the one
from Sawatzky et al., but using a variational point of view that allows to establish the
convergence of the sequence of iterates to a minimizer of F . More precisely, we show in
section 2 that an iterative sequence (λ(n))n≥0 defined by

λ(n+1) ∈ arg min
u
{〈u, s〉 − 〈log(u), sλ(n+1/2)〉+G(u)}, (23)

and λ(0) > 0 convergences to a minimizer of F . Here, as in Sawatzky et al., λ(n+1/2) is
the result of the EM step (15) and we note s = T ∗1 which is assumed to satisfy

min
j
sj = smin > 0. (24)

In section 3, we focus on the numerical computation of a solution of (23). In
particular, we introduce a descent algorithm based on a dual approach and prove its
stability under classical assumptions on the step size.
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Finally, in the last section, we give numerical comparisons of our algorithm with
the ones proposed by Anthoine et al. [9] and Sawatzky et al. [11]. We will see in
particular that our approach gives better results in the sense that the energy F attains
lower values and decreases faster.

2. General variational framework for the Expectation Maximization
approach with smooth or non smooth a priori

In this section we adapt the general framework of the Expectation Maximization
algorithm introduced in [4] to non-smooth posterior distributions. The case of
exponential families to which the Poisson distributions belong is then derived as a
particular case.

Let q(x|φ) be the family of sampling densities depending on parameter φ ∈ X

characterizing the complete data, p(y|φ) the sampling density of the incomplete data
and k(x|y,φ) the conditional density of x given y and φ. As in [4] we denote

P (φ) = log(p(y|φ), (25)
Q(φ′|φ) = E(log q(x|φ′)|y,φ), (26)
K(φ′|φ) = E(log k(x|y,φ′)|y,φ), (27)

which implies that

Q(φ′|φ) = P (φ′) +K(φ′,φ). (28)

Assume that the log-likelihood P of the complete data, described in our tomographic
application by equation (6), is differentiable, concave and that its negative −P is
coercive,

lim
‖φ‖→+∞

P (φ) = +∞. (29)

From the Jensen’s inequality it follows that

∀(φ,φ′) ∈ X ×X K(φ′|φ) ≤ K(φ|φ). (30)

and we also suppose that for all φ ∈ X, the application φ′ 7→ Q(φ′|φ) is concave and
bounded above.

Instead of searching for an estimation of φ as the maximum of the likelihood P , our
strategy here consists to calculate the maximum a posteriori associated to some prior
density whose negative log-likelihood is G. Equivalently, we search for the minimum of

F = −P +G, (31)

where G is assumed to be a continuous convex function possibly non smooth.
The idea of the maximum a posteriori Expectation Maximization (MAP-EM)

algorithm is to iteratively reach a maximum of F by solving a sequence of minimization
problems

φ(n+1) ∈ arg min
φ∈X

{U(φ|φ(n))}, (32)
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relaxed versions of (31), where the criterion is

U(φ′|φ) = F (φ′)−K(φ′|φ) = G(φ′)−Q(φ′|φ). (33)

Hereafter we show that the sequence (φ(n)) converges to a minimum of F . For this we
revisit the proof given to a similar result in [4], using the non-smooth convex analysis
formalism.

2.1. Convergence of the iterative sequence produced by a GEM algorithm

The following lemma characterizes the solution of the minimum of function F from (31).

Lemma 1. A vector φ∗ is a minimum of F if and only if

φ∗ ∈ arg min {U(φ|φ∗) : φ ∈ X}. (34)

Proof. Let φ∗ be a minimum of F . From (30) we know that for all φ ∈ X, K(φ|φ∗) ≤
K(φ∗|φ∗) thus U(φ|φ∗) ≥ U(φ∗|φ∗) and equation (34) is verified. Conversely, if φ∗

verifies (34) then 0 ∈ ∂U(· |φ∗)(φ∗) = ∂F (φ∗)−∇K(·|φ∗)(φ∗), where ∇K(·|φ∗)(φ∗) is
the gradient of K(·|φ∗) at φ∗. From Lemma 2 of [4], ∇K(·|φ)(φ) = 0 for all φ and in
particular for φ = φ∗, thus 0 ∈ ∂F (φ∗) and φ∗ is a minimum of F .

Hereafter we re-use but also re-define the term Generalized Expectation
Maximization (GEM) algorithm from Dempster et al. [4].

Definition 1. For an application U bounded above and such that for all φ ∈ X, the
mapping φ′ ∈ X 7→ U(φ′|φ) is concave, we call Generalized Expectation Maximization
(GEM) algorithm a continuous mapping M : X → X such that if

φ /∈ arg min {U(φ′|φ) : φ′ ∈ X}, (35)

then M(φ) should verify

U(M(φ)|φ) < U(φ|φ), (36)

otherwise M(φ) = φ.

The next theorem shows that each iteration of a GEM algorithm decreases the value
of the cost function F except when the minimum is already attained, and establishes
the link between the minima of F and the fixed points of the GEM algorithm.

Theorem 1. For any GEM algorithm the following properties hold.

(i) For all φ /∈ arg min {U(φ′|φ) : φ′ ∈ X} we have F (M(φ)) < F (φ).
(ii) A vector φ∗ is a fixed point of M if and only if

φ∗ ∈ arg min {U(φ|φ∗) : φ ∈ X}. (37)

(iii) The set of fixed points of M coincides with the set of points where F attains its
minimum:

∀φ∗ ∈ X [M(φ∗) = φ∗ ⇔ φ∗ ∈ arg min {F (φ) : φ ∈ X}] . (38)
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Proof. (i) From (33) and (30) it follows that

F (M(φ)) = U(M(φ)|φ)+K(M(φ)|φ) ≤ U(M(φ)|φ)+K(φ|φ).(39)

Then from (36) and again (33) we obtain the result.
(ii) If φ∗ is a fixed point of M then U(M(φ∗)|φ∗) = U(φ∗|φ∗). Equation (37) follows

from definition 1. The reciprocal is obvious by the definition of GEM.
(iii) This property immediately follows from (ii) and Lemma 1.

Let (φ(n))n∈N be a sequence produced by a GEM algorithm, i.e., for all n ∈ N∗,
φ(n+1) = M(φ(n)) and φ(0) is some given initial value in X. We show now that the
sequence (φ(n))n∈N converges to a minimizer of F at least when F is strictly convex.
Note that the strict convexity of F was not required in the seminal paper [4], but the
proof given therein is flawed. To the best of our knowledge there is no general proof of
convergence for the MAP-EM algorithm, and the proof given for the particular case of
the Poisson-MLEM algorithm by A.N. Iusem in [7] cannot be adapted easily to MAP.
However, the theoretical strict convexity could be obtained by addition of a second
regularization term with a very small coefficient that makes its numerical influence on
the result negligible.

Theorem 2. For any sequence (φ(n))n∈N produced by a GEM algorithm the following
properties hold.

(i) The sequence (F (φ(n))) is non-increasing and converges to the minimum of F .
(ii) If (φ(nk)) is a convergent sub-sequence of (φ(n)) with limit φ∗, then φ∗ ∈

arg min {F (φ) : φ ∈ X}.
(iii) If F is strictly convex,

lim
n→+∞

φ(n) = arg min {F (φ) : φ ∈ X}.

Proof. (i) The fact that the sequence (F (φ(n))) is non-increasing is a direct consequence
of theorem 1 (i). It is clear that a GEM sequence is bounded. Indeed, if this would not
be the case, a sub-sequence (φ(nk)) such that limk→+∞ ‖φ(nk)‖ = +∞ may be extracted.
Since F is coercive, the sequence (F (φ(nk))) would not be bounded either, which comes
in contradiction with the fact that (F (φ(n))) is non-increasing and bounded below by
the minimum of F . Let (φ(nk)) be a convergent sub-sequence of (φ(n)) with limit φ∗.
Then the sub-sequence (φ(nk+1)) is also convergent and tends to M(φ∗). The sequence
(F (φ(n))) being non-increasing and bounded bellow, it converges and

lim
n→+∞

F (φ(n)) = lim
k→+∞

F (φ(nk)) = lim
k→+∞

F (φ(nk+1)),

thus F (M(φ∗)) = F (φ∗). From theorem 1 (i) we then deduce that

φ∗ ∈ arg min {U(φ|φ∗) : φ ∈ X},
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and from the same theorem it results that φ∗ is a fixed point of M and φ∗ ∈
arg min {F (φ) : φ ∈ X}. Thus

lim
n→+∞

F (φ(n)) = F (φ∗) = min{F (φ) : φ ∈ X}.

(ii) As an immediate consequence of the proof of (i) we have:

F (φ∗) lim
k→+∞

F (φ(nk)) = lim
n→+∞

F (φ(n)) = min{F (φ) : φ ∈ X}.

(iii) If F is strictly convex there is an unique φ∗ ∈ arg min {F (φ) : φ ∈ X}. From
(ii), any convergent sub-sequence of (φ(n)) has to converge to φ∗, thus the sequence
converges to the same limit.

A MAP estimator of the parameter φ of the complete data density function can thus
be obtained by choosing some initial value φ(0) ∈ X and then constructing a sequence
of minimizers following the recursive relation (32). This condition, corresponding to the
(M) step of the EM algorithm, is stronger than the GEM algorithm since it requires

U(φ(n+1)|φ(n)) ≤ U(φ|φ(n)) (40)

for all φ ∈ X and not only for φ = φ(n). However, when the solution of (32) is too
difficult to obtain exactly, an approximate solution that verifies the GEM condition is
sufficient to ensure the convergence of (F (φ(n))) to the minimum value of F .

We showed that a minimizing sequence for F can thus be obtained from (32) where
U is defined by the law of the complete data and the regularization term. In the next
subsection we apply this result to the particular case of tomography with low number of
photons and data following Poisson distributions, a model largely employed in nuclear
medicine imaging.

2.2. Application to tomography with counted photons

In emission tomography, the low emission rates makes that the photons are detected
individually and their number follows a Poisson law. The same holds at emission level
and the likelihood of the complete data belongs to an exponential family with logarithm
that may be written as (for details see e.g., [5, 6]):

log q(x|λ) = −〈λ, s〉+ 〈log(sλ), t(x)〉+ log b(x), (41)

where s = T ∗1 and the product of two vectors (sλ) is a component-wise product. The
(E) step of the EM algorithm consists to calculate its expectation conditionally on the
observations y and on the previous estimate λ(n) which is:

Q(λ|λ(n)) = −〈λ, s〉+ 〈log(s) + log(λ), sλ(n+1/2)〉+ c, (42)

where c is a constant and λ(n+1/2) corresponds to the MLEM estimation and is calculated
from λ(n) following (15). To compute the MAP-EM estimate λ(n+1) in case the minimum
was not already reached in λ(n), one must either choose

λ(n+1) ∈ arg min
u∈(R+)J

{〈u, s〉 − 〈log(u), sλ(n+1/2)〉+G(u)}, (43)
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or at least find a λ(n+1) such that U(λ(n+1)|λ(n)) < U(λ(n)|λ(n)).
Equation (43) was previously derived in [12] for the differentiable total variation

prior. The same equation results in the smooth case directly from [4] and was also
derived in [13]. Here we obtain (43) as a particular case of the MAP-EM estimation
with GEM algorithms for non-smooth priors.

Solutions for the numerical calculation of the MAP estimator were already proposed
in the literature. In [13], an explicit scheme with complexity similar to the one of
the MLEM algorithm was proposed. The (smoothed) total variation regularization
comes as a particular case and the same explicit scheme was studied in [14] and [15].
It was however observed that the explicit scheme is unstable and requires very low
regularization parameters. The semi-implicit scheme from [12] also seems unstable. A
stable explicit-implicit scheme was proposed in [11] although no proof of convergence
was provided.

In the following section, we introduce and give the stability analysis for an efficient
dual algorithm for the resolution of (43) with non-smooth total variation regularization.

3. A dual algorithm to compute the MAP-EM estimator

The objective of this section is to approximate numerically the minimizer

λ(n+1) = u∗ = arg min
u

{H(u) +G(u)} ,

where
• the function H is defined for all u ∈ (R∗+)J by

H(u) = 〈u− λ(n+1/2) log u, s〉, (44)
with s and λ(n+1/2) constants during the minimization procedure,
• the function G is the discrete total variation functional G(u) = αTV (u), with TV

defined in (9).
Some connection can be made between the functions defined by equations (44) and

(13). The role of both is to avoid the linear transform induced by the matrix T and thus
to simplify the minimization. However the two functions are fundamentally different,
since (44) is defined for variables having the dimension of the complete data and makes
use of the partial estimation λ(n+1/2), whether (13) is defined for variables having the
dimension of the incomplete data.

A first natural idea to minimize H + G consists to use a splitting approach with
implicit minimization of both H and G. More precisely, we may consider a Douglas-
Rachford splitting consisting to iterate for l > 0 :{

u(l) = prox σG[v(l)]
v(l+1) = v(l) + λl(prox σH [2u(l) − v(l)]− u(l)) (45)

Here, λl ∈ [ε, 2− ε] with ε ∈ (0, 1) can be viewed as an inertial parameter, σ > 0 is the
descent step and the initial value v(0) can be set to λ(n+1/2). Then the sequence (u(l))l≥0

is expected to converge to a minimum of H +G.
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The proximal operator prox σH [u] defined by

prox σH [u] = (I + σ∂H)−1(u) = arg min
v

{ 1
2σ‖u− v‖2 +H(v)

}
,

can be calculated explicitly as

prox σH [u] = 1
2

(
(u− σs) +

√
(u− σs)2 + 4σsλ(n+1/2)

)
(46)

and the proximal operator prox σG[u] can be computed numerically using the
Chambolle’s algorithm ([8]), prox σG[u] = u − σ divϕ with ϕ calculated iteratively
as:

ϕ(k+1) =
ϕ(k) + τ∇

(
divϕ(k) − u/σ

)
1 + τ |∇ (divϕ(k) − u/σ) | , (47)

for some descent step chosen as 0 < τ < 1/4. Even if this algorithm gives good
solutions, its algorithmic cost is important as it requires three iteration loops: one in n
for the calculation of the intermediate MLEM solution, one in l for the Douglas-Rachford
splitting and one in k for the application of the Chambolle’s algorithm.

In this paper, we propose to improve the efficiency of the method by using a
complete dual approach to minimize H + G. In particular, as we will see later, the
dual approach reduces the complexity as only the loops in n and k are necessary.

As the functionsH andG are proper convex and lower semi-continuous, the Fenchel-
Rockafellar duality theorem states that if H∗ and G∗ are the convex conjugates of H
and G,

H∗(p) = sup
u
{〈u,p〉 −H(u)} and G∗(p) = sup

u
{〈u,p〉 −G(u)} , (48)

then

inf
u
{H(u) +G(u)} = − inf

p
{H∗(−p) +G∗(p)} . (49)

If u∗ is a minimizer of H + G then there exists a solution p∗ of the dual problem such
that −p∗ ∈ ∂H(u∗) and u∗ ∈ ∂G∗(p∗). The minimizer u∗ of the primal problem should
verify u∗ > 0. Since H is differentiable for u∗ > 0, −p∗ = ∇H(u∗) and we get

u∗ = sλ(n+1/2)

s + p∗
. (50)

A minimizer u∗ of H +G can then be deduced from a minimizer p∗ of H∗ +G∗.

3.1. Formulation of the dual problem

The Fenchel-Legendre transform of H can be calculated explicitly as follows. From the
Euler equation associated to the maximization in u of 〈u,p〉 −H(u) we obtain

H∗(p) = 〈u∗[p],p〉 −H(u∗[p]) (51)

with

u∗[p] = max
{

sλ(n+1/2)

s− p
, 0
}
. (52)
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Thus H∗(p) is infinite for p ≥ s. For p < s its value is:

H∗(p) = −
〈

sλ(n+1/2)

s− p
, s− p

〉
+
〈

log sλ(n+1/2)

s− p
, sλ(n+1/2)

〉
=
〈
log(sλ(n+1/2))− 1, sλ(n+1/2)

〉
−
〈
log(s− p), sλ(n+1/2)

〉
= C −

〈
log(s− p), sλ(n+1/2)

〉
, (53)

with C independent from p. On the other side, it was shown in [8] that the Fenchel-
Legendre transform of the total variation functional G is

G∗(p) = χαK(p) =
{

0 if p ∈ αK
+∞ otherwise, (54)

where K is the set
K = {divϕ : ϕ ∈ Y, |ϕ| ≤ 1} .

Now from (53) and (54) it follows that the solution of dual problem p∗ can be
expressed as p∗ = αdivϕ∗ where ϕ∗ is defined as a solution of

inf{h(ϕ) : ϕ ∈ Y, |ϕ| ≤ 1}, (55)

where the function h is defined for ϕ such that s + αdivϕ > 0 by

h(ϕ) = H∗(−αdivϕ)− C = −〈log(s + αdivϕ), sλ(n+1/2)〉 (56)

and is infinite elsewhere. Finally, by the duality equation (52), the minimizer u∗ of the
primal problem can be obtained from the minimizer ϕ∗ of the dual problem as:

u∗ = sλ(n+1/2)

s + αdivϕ∗ . (57)

Remark 1. From a discrete point of view, note that if for all j = 1 . . . , J , |ϕj| ≤ 1, we
have ‖divϕ‖∞ ≤ 4 and then for α < smin/4 we obtain

s− αdivϕ ≥ smin − 4α > 0,

where smin is defined in (24). The functional h is thus finite on S = {ϕ ∈ Y : |ϕ| ≤ 1}.
In the rest of the paper we assume that α < smin/4. This condition is also assumed for
the proof of convergence given in theorem 3.

Remark 2. In a generalization from two-dimensional images to three-dimensional
volumes we will have ‖divϕ‖∞ ≤ 6 and the condition on the regularization parameter
becomes α < smin/6.

3.2. An iterative scheme to solve the dual problem

In this subsection we derive an algorithm to compute a solution of (55), that is

ϕ∗ = arg min
ϕ∈S

h(ϕ), (58)
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with S = {ϕ ∈ Y : |ϕ| ≤ 1}. The gradient of h is

∇h(ϕ) = α∇
(

sλ(n+1/2)

s + αdivϕ

)
. (59)

Now, given µ ∈ X the Lagrange multiplier associated to the constraint |ϕ| ≤ 1, the
Karush-Kuhn-Tuker condition reads:

α∇
(
sλ(n+1/2)

s + αdivϕ

)
+ µϕ = 0, (60)

with either |ϕj| = 1 and µj > 0, or |ϕj| < 1 and µj = 0. Moreover, as in the latter case

we also have
∣∣∣∣∣∣
(
∇
(

sλ(n+1/2)

s + αdivϕ

))
j

∣∣∣∣∣∣ = 0, we see that

µ = α

∣∣∣∣∣∇
(

sλ(n+1/2)

s + αdivϕ

)∣∣∣∣∣ . (61)

Following the idea of Chambolle’s algorithm, we consider a semi-implicit gradient
descent scheme and we show that it converges to the solution ϕ∗ of (58). With some
minimization step τ > 0 and the initial value ϕ(0) = 0 we then consider the scheme

ϕ(k+1) = ϕ(k) − τ∇
(

sλ(n+1/2)

s + αdivϕ(k)

)
− τ

∣∣∣∣∣∇
(

sλ(n+1/2)

s + αdivϕk

)∣∣∣∣∣ϕ(k+1), (62)

which can be written equivalently as

ϕ(k+1) = ϕ(k) − τz(k)

1 + τ |z(k)|
, with z(k) = ∇

(
sλ(n+1/2)

s + αdivϕ(k)

)
. (63)

Hereafter we will show the convergence of the sequence of iterates to the solution
of (58), which requires the following auxiliary result.

Lemma 2. If α < smin/4, the function h defined in (56) is convex and continuously
differentiable on its domain. Its gradient is Lipschitz on S with constant

Lh = 8α2‖sλ
(n+1/2)‖∞

(smin − 4α)2 . (64)

Proof. The first derivative of h satisfies for ϕ ∈ Y such that s +αdivϕ > 0 and ψ ∈ X
the equation:

h′(ϕ)(ψ) = −α
〈

sλ(n+1/2)

s + αdivϕ , div (ψ)
〉
,

thus

‖∇h(ϕ)−∇h(ϕ′)‖2 = sup
‖ψ‖2=1

|h′(ϕ)(ψ)− h′(ϕ′)(ψ)|

= α2 sup
‖ψ‖2=1

∣∣∣∣∣
〈

sλ(n+1/2)div (ϕ−ϕ′)
(s + αdivϕ)(s + αdivϕ′) , div (ψ)

〉∣∣∣∣∣
≤ α2‖div (ϕ−ϕ′)‖2 sup

‖ψ‖2=1

∥∥∥∥∥ sλ(n+1/2)divψ
(s + αdivϕ)(s + αdivϕ′)

∥∥∥∥∥
2
.
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As shown in [8], ‖div (ϕ−ϕ′)‖2
2 ≤ 8‖ϕ−ϕ′‖2

2 and ‖divψ‖2
2 ≤ 8, thus

‖∇h(ϕ)−∇h(ϕ′)‖2 ≤ 8α2
∥∥∥∥∥ sλ(n+1/2)

(s + αdivϕ)(s + αdivϕ′)

∥∥∥∥∥
∞
‖ϕ−ϕ′‖2.

Since on S we have ‖divϕ‖∞ ≤ 4 it follows that

‖∇h(ϕ)−∇h(ϕ′)‖2 ≤ 8α2‖sλ
(n+1/2)‖∞

(smin − 4α)2 ‖ϕ−ϕ
′‖2,

thus the gradient of h is Lipschitz with constant given in (64).
The second derivative of h is

h′′(ϕ)(ψ)(ψ̃) =
〈

sλ(n+1/2)

(s + αdivϕ)2 , α
2div (ψ)div (ψ̃)

〉
,

thus h is convex as

h′′(ϕ)(ψ)(ψ) =
〈

sλ(n+1/2)

(s + αdivϕ)2 , α
2div (ψ)2

〉
≥ 0.

Remark 3. When the coefficient of regularization is sufficiently small, i.e α << 1, the
constant Lh can also be approximated by

Lh ' 8α2‖λ(n+1/2)/s‖∞. (65)

We can now state the main result of this section.

Theorem 3. Let α < smin/4 and τ < α/Lh. Then the sequence (h(ϕ(k))) with ϕ(k)

defined in (63) is decreasing and converges to the minimum of h on S.

Proof. It is easy to show by induction that |ϕ(k)| ≤ 1 for all k ∈ N. As the functional
h is convex and with gradient Lh-Lipschitz on K, it follows from a classical result (see
e.g., [16]) that for all k ∈ N,

h(ϕ(k+1)) ≤ h(ϕ(k)) + 〈∇h(ϕ(k)),ϕ(k+1) −ϕ(k)〉+ Lh
2 ‖ϕ

(k+1) −ϕ(k)‖2
2.

Let us note η = (ϕ(k+1) −ϕ(k))/τ . As ∇h(ϕ(k)) = αz(k), we obtain

h(ϕ(k+1))− h(ϕ(k)) ≤ τ
(
α〈z(k),η〉+ τ

Lh
2 ‖η‖

2
2

)
,

From (62) it follows that

η = −z(k) − |zk|ϕ(k+1), with z(k) = ∇
(

sλ(n+1/2)

s + αdivϕ(k)

)
,
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which is well defined as s + αdivϕ(k) > 0. From the last two equations we then obtain

h(ϕ(k+1))− h(ϕ(k)) ≤ − α(‖z(k)‖2
2 + 〈z(k), |z(k)|ϕ(k+1)〉)

+ τ
Lh
2
(
‖z(k)‖2

2 + 2〈z(k), |z(k)|ϕ(k+1)〉+ ‖z(k)ϕ(k+1)‖2
2

)
.

Now, as ‖ϕ(k+1)‖∞ ≤ 1, it holds ‖z(k)ϕ(k+1)‖2
2 ≤ ‖z(k)‖2

2 thus

h(ϕ(k+1))− h(ϕ(k)) ≤ (−α + τLh)
(
‖z(k)‖2

2 + 〈z(k), |z(k)|ϕ(k+1)〉
)
.

Finally, as 〈z(k), |z(k)|ϕ(k+1)〉 ≥ −‖z(k)‖2
2 and α − τLh > 0, we have shown that

h(ϕ(k+1)) ≤ h(ϕ(k)) for all k ∈ N.

Let ` = limk→∞ h(ϕ(k)). The bounded sequence (ϕ(k)) has a converging subsequence
(ϕ(km)) with limit some ϕ∗ ∈ Y . The subsequence (ϕ(km+1)) also converges to some
ϕ̃ ∈ Y . Passing to the limit in (63) we get

ϕ̃ = ϕ∗ − τz∗

1 + τ |z∗|
, with z∗ = ∇

(
sλ(n+1/2)

s + αdivϕ∗

)
. (66)

With the same arguments as above it can be shown that

h(ϕ̃)− h(ϕ∗) ≤ (−α + τLh)
(
‖z∗‖2

2 + 〈z∗, |z∗|ϕ̃〉
)
≤ 0.

Moreover, as ` = limm→∞ h(ϕ(km)) = limm→∞ h(ϕ(km+1)) we deduce that h(ϕ̃) = h(ϕ∗).
Thus ‖z∗‖2

2 + 〈z∗, |z∗|ϕ̃〉 = 0, which implies that z∗ + |z∗|ϕ̃ = 0. From (66) it follows
that ϕ∗ = ϕ̃ and it satisfies the equation

∇
(

sλ(n+1/2)

s + αdivϕ∗

)
+
∣∣∣∣∣∇
(

sλ(n+1/2)

s + αdivϕ∗

)∣∣∣∣∣ϕ∗ = 0,

which is the Euler equation for the dual problem. Finally,

lim
k→∞

h(ϕ(k)) = ` = min
ϕ∈S

h(ϕ).

Remark 4. Notice that the case α > smin/4 can be treated numerically using the
following scheme

ϕ(k+1) = ϕ(k) + τz(k)

1 + τ |z(k)|
, with z(k) = ∇

(
max

{
sλ(n+1/2)

s + αdivϕ(k) , 0
})

, (67)

which seems to stabilize the previous scheme for large value of α. Indeed, this modified
dual approach can be viewed as a projection of the primal variable

u(k) = sλ(n+1/2)

s + αdivϕ(k) ,

on (R+)J (see definition of u∗[p] in (52)).
Remark 5. For the three-dimensional case, the hypotheses of theorem 3 becomes
α < smin/6 and τ ≤ α/Lh where

Lh = 12α2‖sλ
(n+1/2)‖∞

(smin − 6α)2 . (68)
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4. Numerical experiments

4.1. The algorithms

In this section, we give some numerical experiments of our global scheme which reads
as

• (EM) step from MAP-EM

λ(n+1/2) = λ(n)

T ∗1
T ∗
[ y
Tλ(n)

]
• TV minimization

λ(n+1) ∈ arg min
u∈(R+)J

{〈u, s〉 − 〈log(u), sλ(n+1/2)〉+G(u)}.

We also test a FISTA version. Indeed, in a certain sense, the up-mentioned scheme
can be viewed as an ISTA approach ([17]) which alternates minimization of a smooth
and non smooth energy, and could further be accelerated by adding a FISTA step. The
algorithm becomes :

• ISTA Scheme

λ̃
(n+1) ∈ arg min

u∈(R+)J

{〈u, s〉 − 〈log(u), sλ(n+1/2)〉+G(u)},

with λ(n+1/2) = λ(n)

T ∗1T
∗
[

y
Tλ(n)

]
.

• Inertial parameter step

tn+1 =
1 +

√
1 + 4t2n
2 ,

• FISTA update
λ(n+1) = λ̃

(n+1) + (tn − 1)
tn+1

(λ̃(n+1) − λ̃(n))

where t1 = 1 and λ̃(0) = 1.

4.2. Results

Ideal Radon projections of the Shepp-Logan phantom from Matlab, multiplied by 10
and sampled in 2562 pixels, were calculated for angles running from 0° to 175° in steps
of 5°. Random values for empirical projections were drawn from a multi-variate Poisson
law having mean the theoretical projections. The total number of counts is then about
3∗106. Ideal projections and their noisy counterparts are shown for comparison in figure
1. In this test, where the number of projections and the number of counts are low, the
quality of the reconstructed image is low too. For comparison, in figure 1 (c) we show
the analytic reconstruction including the Hamming filter from Matlab.
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(a) Ideal projections (b) Empirical projections

Figure 1. Sinograms for the Shepp-Logan phantom: (a) without noise, (b) with
Poisson random noise.

(a) Reference (b) Analytic (c) MLEM

Figure 2. (a) Reference, (b) The analytic reconstruction from noisy projections
including Hamming filtering, (c) MLEM solution after 50 iterations and Gaussian
smoothing with σ = 2.

We add a total variation penalty term to the negative log-likelihood and solve
numerically for the minimum of the energy with different algorithms mentioned in the
paper. Unless otherwise stated, the value of the regularization coefficient α is set to
0.025, where this value gave in a subjective analysis the best compromise between
smoothness of the homogeneous regions and image contrast. The noise realizations are
different between figures, but identical inside all of the comparison figures. As figures
of merit we plot the total energy calculated from equation (10) and the mean squared
error,

MSE(λ̂) = 1
J
‖λ̂− λ‖2. (69)

We first compare in figure 3 the proposed dual method with the Douglas-Rachford
splitting described in section §3 after 200 MLEM iterations. The two methods give very
similar results but the computing time is sensibly larger for Douglas-Rachford due to
an additional internal loop (see section §3 for details). In our numerical comparisons
the computing time was reduced by a factor of ten with the proposed dual algorithm.

The method proposed by Anthoine et al. do not use the capability of the EM
algorithm to rapidly increase the likelihood and converges slowly compared to the
proposed dual and the Sawatzky et al. methods, as it can be seen in figure 4. After 1000
iterations the reconstructed images and extracted central vertical profiles are relatively
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Figure 3. Comparison between Douglas-Rachford splitting and dual algorithm. We
show the central vertical profiles from the reconstructed images (left and center) and
the total energy curves for the two methods (right). The time necessary to run the
200 iterations is 10 times less for the dual algorithm compared to Douglas-Rachford.
The results are very similar and the mean squared error is not shown since the curves
look identical.

close to each other.

Figure 4. Figures of merit for the comparison between the proposed dual method
(blue line), Sawatzky et al. method (red line) and Anthoine et al. method (yellow
line).

In figure 6 we evaluate the influence of the FISTA acceleration technique on the
convergence speed of the dual algorithm. After 200 iterations (this number was set
arbitrarily for homogeneity with the previous comparisons) the results with and without
FISTA are the same. However, the FISTA technique allows to reach the numerical
convergence in about 30 iterations whereas it requires more than 50 iterations for the
dual method without FISTA technique.

5. Conclusions

In this paper we adapt the maximum-a-posteriori expectation maximization framework
to non-smooth convex priors, aiming to maximize an energy composed of a likelihood
function and a prior distribution. Its specificity is to split the search for the optimal
value in an expectation step that allows to move from an optimization problem in the
domain of incomplete data (in our case the projections) to a simpler one in the domain
of complete data (in our case the image), and a maximization step for the new criterion.
We then deduce consistency and convergence results for the MAP-EM algorithms. Total
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(a) Dual method (b) Sawatzky et al. method (c) Anthoine et al. method

Figure 5. Comparison between the proposed dual method, Sawatzky et al. and
Anthoine et al. methods after 1000 MLEM iterations. We recall that the noise
realization is different from figure 3 and thus the two figures should not be compared.

Figure 6. FISTA acceleration strongly improves the convergence of the dual
algorithm.

variation regularization of tomographic images calculated from Poisson distributed data
is then derived from as a particular case. For the maximization step we lean on the
Fenchel-Rockafellar duality principle and we propose a simple and effective algorithm
developed following the ideas that A. Chambolle first introduced for fidelity terms
expressed with the `2-induced distance. We then succeed to prove its convergence to
the solution at least for regularization parameters that do not exceed a given upper
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bound. The resulting MAP-EM algorithm is both consistent and relatively fast and
successfully competes experimentally with other algorithms proposed in the literature
for the resolution of the same problem. Our results also tend to show that FISTA
acceleration allows to further improve the convergence speed although we are aware
that our setup is different from the one where FISTA was originally proposed.
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