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Calculations of charged systems in periodic boundary conditions are problematic be-

cause there are spurious interactions between the charges in different periodic images

that can affect the physical picture. In addition, the intuitive limit of Coulomb inter-

actions decaying to zero as the interacting charges are placed at infinite separation

no longer applies, and for example total energies become undefined. Leveraging sub-

system DFT (also known as density embedding) we define an appropriate impurity

model that embeds a finite neutral or charged subsystem within an extended (infinite)

surrounding subsystem. The combination of the impurity model and an appropriate,

consistent choice of the Coulomb reference provides us with an algorithm for evalu-

ating the ionization potential of liquid water. We obtain an average vertical IP for

liquid water of 10.5 eV, which compares favorably with experiments (9.9–10.06 eV)

and very recent simulations based on the GW approximation (10.55 eV). In addition,

our calculations show that the IP distribution of liquid water is much broader than

the one of gas phase water. This is plausible, and we find it to be similar to the

comparison of the optical spectrum of liquid and gas phase water.
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I. INTRODUCTION

Atomistic models of extended systems (such as solids and liquids) typically prescribe the

use of periodic boundary conditions (PBC). Once PBC are invoked, Coulomb interactions

should no longer be evaluated in real space. Namely, if r, r′ ∈ R3 then Coulomb kernel for

a finite system is w(r, r′) = 1
|r−r′| . When working in PBC, instead, Coulomb interactions

should be evaluated in reciprocal space. Namely, G ∈ R3 then Coulomb kernel becomes

w(G) = 4π
|G|2 . The physical behavior of the kernel is to decay to zero when the interacting

charges are at an infinite distance from each other. However, in PBC distance is not a well

defined quantity1 and the physical kernel is only the one represented in reciprocal space.

This does not seem to be problematic because, although 4π
|G|2 is singular for G = 0, the

total charge density ρ(G) is zero for G = 0. The neutrality of the charge density is the only

physical choice in PBC, because otherwise one would need to admit an infinitely-charged

system in the realm of the physical world. Clearly, it is not possible.

In practical calculations, PBC are often employed even if the systems of interest is not

be periodic per se simply as a matter of convenience. For example, this occurs in DFT

simulations of defects, where the physical system is intrinsicly nonperiodic2. However, due

to the practical advantages of simulating only a small simulation cell, leading to manage-

able computational requirements, has led to considering employing PBC even for simulating

charged systems (i.e., systems where the electronic and the nuclear charges do not cancel

out). Two avenues have been so far explored to allow such a model: (1) Correcting the

potential so that its long-ranged part is truncated at the boundaries of the simulation cell

making use of numerical Fourier transforms with the minimum image convention3, or allign-

ing the potential averages in the bulk with the one of semi-infinite versions of the system

allowing, e.g., comparison of electronic band energies4–10 ; and (2) adding a “neutralizing”

constant background charge density. The latter has several drawbacks. Energies need to

be corrected11–14 due to the inherent tin-foil boundary conditions chosen (i.e., the fact that

adding a neutralizing background charge is equivalent to wrapping the almost infinitely

extended system by a conductor that nullifies the average potential inside the system) .

In this work, we present an impurity model with the following important qualities:

• The charged periodic system is replaced by a nonperiodic one which is still truly

extended (i.e., of infinite size).
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• The potentials of the neutral and the charged systems are pegged to a common refer-

ence.

While achieving the latter simply requires finding an appropriate choice for the G = 0

component of the Coulomb kernel, achieving the former requires an ad hoc mapping of the

infinite system onto a collection of finite subsystems and an extended (infinite) subsystem.

Thus, in formulating such a map we will make use of a formally exact density embedding

method, subsystem DFT15.

II. THEORETICAL BACKGROUND

A. Mapping an extended system onto a collection of finite subsystems and

one extended subsystem

Consider a supersystem composed of two subsystems one being finite with charge density

ρI for which the Coulomb potential can be safely defined in real space, and the other with

charge density ρ− ρI with ρ being fully periodic on a given lattice.

The total electron density is then taken to be the sum of the finite subsystem and the

extended subsystem

ρ(r) = ρI(r) +

(
ρ(r)− ρI(r)

)
. (1)

Following the prescrition of subsystem DFT, the total energy is given by

Etot = E[ρI ] + E[ρ− ρI ] + Eint[ρI , ρ− ρI ] (2)

The interaction energy can be decomposed as follows15–17

Eint = Eint
H + V int

eN + T nads + Enad
xc , (3)

where the two Coulombic terms, Eint
H and V int

eN , regard electron–electron and electron–nuclear

interactions, respectively; the nonadditive terms, T nads and Enad
xc , represent interactions re-

lated among others to exchange, van der Waals and Pauli repulsion and are all bifunctionals

of the two subsystem densities18.

In the following, we consider ways to evaluate the interaction part of the energy ex-

pression. This is the term that requires most care, as ρI may be the density of a charged

system19.
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B. Evaluating the Coulomb part of Eint

For sake of simplicity, we treat here only the Hartree term of the interaction energy. The

electron–nuclear interaction can be treated in an equivalent way. The Hartree interaction

energy between the finite and the infinite electronic systems is given by

Eint
H =

∫
R3

dr

∫
Ω

dr′
1

|r− r′|

[
ρ(r)− ρI(r)

]
ρI(r

′). (4)

The integral in dr is carried out over the entire space because the density ρ−ρI is extended.

Conversely, the integral over dr′ is carried out only over a finite volume Ω (typically the

simulation cell) because we expect ρI(r) = 0 when r /∈ Ω.

We thus have two simingly equivalent methods to compute the interaction.

1. Method I: Finite potential interacting with a periodic charge

Defining the finite potential (denoted by an overbar) as being the potential with ρI as

source, we find

v̄[ρI ](r) =

∫
Ω

dr′
1

|r− r′|
ρI(r

′), (5)

where, once again, there is no need to extend the domain of integration to outside Ω because

the integrand is identically zero outside the Ω domain.

The interaction becomes:

Eint
H =

∫
R3

dr v̄[ρI ](r)

[
ρ(r)− ρI(r)

]
. (6)

The inconvenience is the need to represent the finite potential, v̄[ρI ](r), also outside Ω. How-

ever, The following approximate expression for the interaction can be employed in practical

calculations

E ′ intH (Ω′) =

∫
Ω′

dr v̄[ρI ](r)

[
ρ(r)− ρI(r)

]
. (7)

In this sense, Ω′ can be used as a convergence parameter because of the following limit,

lim
Ω′→R3

E ′ intH (Ω′) = Eint
H . (8)

In practical calculations, we expect to require only Ω′ of manageable, sizes. For example,

Ω′ = Ω, the simulation cell. This leads to fast algorithms as the potential outside Ω is

smooth and can be represented on extremely coarse grids20.
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In principle, the value of the limit in Eq.(8) depends on how the limit is taken due to

the conditional convergence of the integral in Eq.(7). However, it generally leads to a term

linear in the charge density involving dipole and quadrupole terms3,4,14,21–23.

2. Method II: Periodic potential interacting with a finite charge

An alternative way is to compute the potential generated by the periodic system and use

that in the computation of Eint,

Eint =

∫
Ω

dr

[
v[ρ](r)− v̄[ρI ](r)

]
ρI(r). (9)

Although this may seem equivalent to the previous case, there is an ambiguity because

the boundary conditions employed to solve the Poisson equation for the ρ → v[ρ](r) differ

from the ones employed in ρI(r)→ v̄[ρI ](r).

FIG. 1. Dashed line: Coulomb kernel of the periodic system. The Coulomb interaction extrends

outside the simulation cell with the characteristic 1
r decay. Full line: Coulomb kernel of the finite

system which periodically repeats itself so that interactions between spurious periodic images of

the finite charge density are completely removed3. Dotted line: the Coulomb kernel for the periodic

system referenced to the same G = 0 value as the nonperiodic one. In this way, interaction energies

computed with the periodic and the nonperiodic kernels are compatible.

In this work, we circumvent the above ambiguity by imposing the G = 0 value of the
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periodic Coulomb kernel to match the same limit of the Coulomb kernel of a reference system

(see Figure 1). As of Figure 1 suggests, the reference system can be a finite subsystem, or

it can be another system for which total energies or interactions are compared against.

In all calculations presented in this work, we employ Method II. As we will report on

ionization potentials, it is enough for us to refer the periodic potential to have the same

G = 0 component for the potential for the ρ − ρI subsystem in the ionized and neutral

species.

C. Mapping an impurity

Let us now imagine that a subsystem, say J , undergoes some sort of chemical transfor-

mation only at one lattice point while all other lattice points have ρJ . That is:

ρJ(r)→ Chemical Transformation → ρ′J(r) at one lattice point,

ρJ(r)→ No Transformation → ρJ(r) anywhere else.

We call ρ′J an impurity.

The Coulomb potential of an impurity can then be computed by the application of a new

screening potential, ∆vscreen to the periodic Coulomb potential of the impurity calculation.

Namely,

∆vscreen[ρJ , ρ
′
J ](r) = vscreen[ρJ ](r)− vscreen[ρ′J ](r), (10)

where

vscreen[ρJ ](r) = v[ρJ ](r)− v̄[ρJ ](r), (11)

where once again we indicate with an overbar the potential evaluated with the Coulomb

kernel in real space. In practical calculations, as we still make use of an auxiliary reciprocal

space, we adopt the method by Martyna and Tuckerman3.

∆vscreen can be understood as a screening function which replaces the environment of

impurity charge densities, ρ′J with an environment of pristine ρJ .

For example, when the chemical transformation is an ionization, ∆vscreen replaces the

electrostatic environment given by periodic images of the ionized subsystem J with the

nonionized (neutral) ρJ surrounding. This is the essential feature of the proposed method

– that is, using the screening potentials in Eq.(11), we can effectively create an impurity

within an extended system.
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In practical calculations, this procedure is carried out only semi-selfconsistently. This

is because vscreen[ρJ ] is imported from a calculation without impurity and vscreen is instead

calculated at every selfconsistent field (SCF) step. In the results section, we present values

obtained with selfconsistent screening and also with static screening computed only for the

neutral system and kept static also when computing the impurity.

In the following we first list the computationl details of our calculations, then we show an

example of impurity calculation of a single water molecule embedded in a lattice of replicas

of itself repeated by the imposed periodic boundary conditions. Finally, we carry out a pilot

calculation to showcase our method and compute the ionization potential of bulk water by

selecting a single snapshot of a subsystem DFT based molecular dynamics of water 64 (64

water molecules, each being one subsystem inside a simulation cell in PBC) averaging over

the set of 64 water molecules. We then close with a conclusion and future direrctions section.

III. COMPUTATIONAL DETAILS

All calculations were carried out with embedded Quantum ESPRESSO24 and were run at

the Γ-point employing ultrasoft pseudopotentials (pbe-rrkjus.UPF from the main Quantum-

Espresso pseudopotential library), 40Ry and 400Ry are the energy cutoffs for the plane wave

expansions of the molecular orbitals and the charge density, respectively.

Each water molecule considered was treated as one subsystem. The periodic box used for

the plane wave expansion of each subsystem was customized to have a lattice vector which

is 60% of that of the native box for water 64. This allowed us to reduce the number of plane

waves to expand the waves of each water molecule from 55,000 to 12,000.

We use the PBE exchange–correlation functional25 for the additive and nonadditive con-

tributions to the energy, and the revAPBEK26 nonadditive Kinetic energy functional.

IV. RESULTS AND DISCUSSION

A. An impurity gedanken experiment

As depicted in Figure 2, the impurity model prescribes combining the water molecule

system as if it was a finite system (i.e., no PBC) and subtracting the Coulomb potential due
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(a) (b)

FIG. 2. Depiction of the gedanken experiment by which a single water molecule is placed in the

center of a cubic simulation cell (squares). The simulation is carried out in PBC, thus in inset (a)

there are replicas of such a water molecule everywhere in space as denoted by the blue squares.

The impurity model is depicted in inset (b).

to this water molecule from the Coulomb potential of the same water treated in PBC.

This gedanken experiment is carried out to provide the reader with an appreciation for

the screening potential [defined in Eq.(11)] and its features. Figure 3 depicts the screening

potential associated with a single water molecule in a cubic simulation cell which is found

to have the shape of a dipole potential exerted by the surrounding periodic images onto the

impurity site.

The screening potential can be thought of as the electrostatic potential of the periodically

repeating water molecules have on a single lattice site. That is, the empty site indicated in

inset (b) of Figure 2.

In Table I, we report three contributions to the ionization potential (IP) of the single

water molecule when it is inserted in cubic simulation cells of lattice constant a of 4, 6 and

10 Å. The three contributions are defined as follows:

• Isolated: The ionization potential of the water molecule is evaluated in the absence of

the interaction with its periodic images. In practice, this is achieved employing the

Martyna-Tuckerman3 method.
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FIG. 3. Depiction of the screening potential, vscreen(r), associated with a single water molecule in

a cubic simulation cell with a = 6Å.

• Polarization: Contribution to the IP from the polarization of the water electron density

due to the interaction with its periodic images.

• Interaction: Contribution to the IP due to the interaction of the water with its periodic

images.

The trend of the three contributions to the water IP follow the expected trend. I.e., as

the auxiliary simulation cell increses in size, the interaction of the water molecule with its

periodic images weakens. Already at a = 10Å, the effect of the interaction on the water

electron density is essentially negligible. While the effect on the IP is still significant due to

the long-range nature of the interactions involved.
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TABLE I. The ionization potetential in eV of a single water molecule embedded by replicas of itself

generated by the PBC at varying cubic lattice constants (4, 5, and 10 Å).

Contributions to IP a = 4Å a = 6Å a = 10Å

Isolated 12.903 13.547 13.729

Polarization -0.012 -0.002 10−5

Interaction -1.296 -0.837 -0.120

Total IP 11.594 12.707 13.609

B. Bulk water and its ionization potential

We computed vertical IPs for one snapshot of water 64 (i.e., 64 water molecules in a cubic

box reproducing the density of the liquid) which was selected randomly from a ab initio

molecular dynamics (MD) based on subsystem DFT that was carried out previously27. The

IPs were calculated in three ways: Isolated, the molecular geometries were borrowed from

the MD and each molecule was computed separately and treated as isolated; Embedded: we

employed the impurity method describe above and associated Method II to evaluate the

interaction energy. The Coulomb kernel of the ρ − ρI extended, neutral system (which is

common between neutral and ionized states), was taken as reference; Embedded non-SC:

Same as Embedded but the extended subsystem is kept frozen in the calculation of the

cationic specie to the one computed for the neutral specie.

Our results on the IP of bulk liquid water is summarized in Figure 4. From the figure

we evince that the histogram of IPs for isolated water molecules (computed with the very

same geometries as the liquid but considering each water molecule to be isolated) is peaked

around the average and only spreads by about 0.1 eV.

The histogram for the IPs of water molecules embedded in the liquid are much broader

than the case of isolated water molecules. The IP spread for liquid water is found to be

about 2 eV, or 20 times larger than the spread calculated for gas phase water molecules.

This is consistent with similar findings for the optical spectrum of water28–31, where the

environment has the effect of broadening the spectrum to the point that the Urbach tail of

the liquid is red shifted compared to the gas phase despite the fact that the first band in the

liquid peaks at higher energies than the gas phase. In this work, we find a similar behavior,

in this case, for the IP distribution.
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FIG. 4. Distribution of IPs of bulk liquid water. Left: isolated water molecules. Right: Embedded

water molecules in the bulk. The “Embedding non-SC” stands for non-selfconsistent embedding

(i.e., the embedding potential was computed from the environment of the neutral water molecule).

The “Embedding” label stands for selfconsistent embedding potential for the neutral water molecule

as well as the cation water.

We summarize the computed average IP of liquid water in Table II. There, we also

compare the result we obtain from embedding from the result obtained from a calculation

of a water molecule embedded in a continuum dielectric via the COSMO model32.

The computed IPs compare well with recent GW calculations4 carried out with classical

nuclei. While the discrepancy against the IP computed with quantum nuclei (via a path-

integral dynamics) is of about 0.2 eV. The COSMO values are higher than the computed

average. In principle, as the IPs presented here are vertical (i.e., no nuclear relaxation is

accounted for in the cationic state) it is difficult to determine the appropriate ε to use in

COSMO. Thus, we provide the reader with three choices, ε = 1.8 representing the response

of only the electrons in water, and then two additional higher dielectric constants.

We note that the non selfconsistency in the impurity screening potential has a significant

effect on the IP shifting the IP by about 0.4 eV. Thus, in future calculations of the IP of

molecular subsystems embedded by extended subsystems will need to include selfconsistency

in the screening potential used to generate the impurity model.
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TABLE II. The average vertical ionization potetential in eV of liquid water in comparison to recent

literature values and COSMO carried out with several effective dielectric constants, ε. Liquid GW

A/B: IP average form ab initio MD involving classical/quantum nuclei.

Gas phase 13.74

Liquid 10.50

Liquid non-SC 10.07

Liquid Exp33 9.9

Liquid Exp34 10.06

Liquid GW A4 10.55

Liquid GW B4 10.25

COSMO (ε = 1.8) 11.94

COSMO (ε = 3) 11.15

COSMO (ε = 10) 10.13

V. CONCLUSIONS

In sum, leveraging a density embedding description of the electronic structure of a system

in periodic boundary conditions, we were able to define appropriate impurity models that

can embed finite neutral and charged subsystems inside an extended (infinite) surrounding

subsystem. We call vscreen the potential term that realizes the impurity model.

The combination of the impurity model and an appropriate, consistent choice of the

reference for Coulomb interactions led us to compute the ionization potential of liquid water.

The average value that we compute is 10.5 eV which compares quite well with experiments

(9.9–10.06 eV) and very recent simulations based on the GW approximation (10.55 eV).

Similar to the optical spectrum of liquid water compared to the gas phase, we find that the

IP distribution of liquid water is much broader than the one of gas phase water.

Future vanilla applications of the method will involve ionic crystals – a class of systems

where the Madelung fields are very large so that the boundary of applicability of the method

are tested. Even less straightforward applications are inspired by the work of Carter and

coworkers35–37 and others38 will involve employing wavefunction methods for the computa-

tion of charged and neutral finite subsystems surrounded by extended subsystems.
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