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with Heavy-Tailed Innovations∗
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Abstract

We study convergence in law of partial sums of linear processes with
heavy-tailed innovations. In the case of summable coefficients neces-
sary and sufficient conditions for the finite dimensional convergence
to an α-stable Lévy Motion are given. The conditions lead to new,
tractable sufficient conditions in the case α ≤ 1. In the functional set-
ting we complement the existing results on M1-convergence, obtained
for linear processes with nonnegative coefficients by Avram and Taqqu
(1992) and improved by Louhichi and Rio (2011), by proving that
in the general setting partial sums of linear processes are convergent
on the Skorokhod space equipped with the S topology, introduced by
Jakubowski (1997).

Keywords: limit theorems, functional convergence, stable processes,
linear processes.

MSC2000: 60F17, 60G52

1 Introduction and announcement of results

Let {Yj}j∈Z be a sequence of independent and identically distributed random
variables. By a linear process built on innovations {Yj} we mean a stochastic
process

Xi =
∑

j∈Z

cjYi−j, i ∈ Z, (1)

where the constants {cj}j∈Z are such that the above series is P-a.s. conver-
gent. Clearly, in non-trivial cases such a process is dependent, stationary
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and due to the simple linear structure many of its distributional character-
istics can be easily computed (provided they exist). This refers not only to
the expectation or the covariances, but also to more involved quantities, like
constants for regularly varying tails (see e.g. [21] for discussion) or mixing
coefficients (see e.g. [10] for discussion).

There exists a huge literature devoted to applications of linear processes
in statistical analysis and modeling of time series. We refer to the popular
textbook [6] as an excellent introduction to the topic.

Here we would like to stress only two particular features of linear pro-
cesses.

First, linear processes provide a natural illustration for phenomena of
local (or weak) dependence and long-range dependence. The most striking
results go back to Davydov ([9]), who obtained a rescaled fractional Brow-
nian motion as a functional weak limit for suitable normalized partial sums
of {Xi}’s.

Another important property of linear processes is the propagation of big
values. Suppose that some random variable Yj0 takes a big value, then this
big value is propagated along the sequence Xi (everywhere, where Yj0 is
taken with a big coefficient ci−j0). Thus linear processes form the simplest
model for phenomena of clustering of big values, what is important in models
of insurance (see e.g. [21]).

In the present paper we shall deal with heavy-tailed innovations. More
precisely, we shall assume that the law of Yi belongs to the domain of strict
attraction of a non-degenerate strictly α-stable law µα, i.e.

Zn =
1

an

n∑

i=1

Yi −→
D

Z, (2)

where Z ∼ µα.
Let us observe that by the Skorokhod theorem ([25]) we also have

Zn(t) =
1

an

[nt]∑

i=1

Yi −→
D

Z(t), (3)

where {Z(t)} is the stable Lévy process with Z(1) ∼ µα, and the convergence
holds on the Skorokhod space D([0, 1]), equipped with the Skorokhod J1
topology.

Recall, that if the variance of Z is infinite, then (2) implies the existence
of α ∈ (0, 2) such that

P(|Yj| > x) = x−αh(x), x > 0, (4)
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where h is a function that varies slowly at x = +∞, and also

lim
x→∞

P(Yj > x)

P(|Yj | > x)
= p and lim

x→∞

P(Yj < −x)

P(|Yj| > x)
= q, p+ q = 1. (5)

The norming constants an in (3) must satisfy

nP(|Yj| > an) =
nh(an)

aαn
→ C > 0, (6)

hence are necessarily of the form an = n1/αg(n1/α), where the slowly varying

function g(x) is the de Bruijn conjugate of
(
C/h(x)

)1/α
(see [5]). Moreover,

if α > 1, then EYj = 0 and if α = 1, then p = q in (5).
Conversely, conditions (4), (5) and

E
[
Yj

]
= 0, if α > 1, (7)

{Yj} are symmetric, if α = 1, (8)

imply (3).
If an is chosen to satisfy (6) with C = 1, then µα is given by the charac-

teristic function

µ̂(θ) =





exp
( ∫

R1(e
iθx − 1)fα,p,q(x) dx

)
if 0 < α < 1,

exp
( ∫

R1(e
iθx − 1)f1,1/2,1/2(x) dx

)
if α = 1,

exp
( ∫

R1(e
iθx − 1− iθx)fα,p,q(x) dx

)
if 1 < α < 2,

(9)

where
fα,p,q(x) =

(
p I(x > 0) + q I(x < 0)

)
α|x|−(1+α).

We refer to [12] or any of contemporary monographs on limit theorems for
the above basic information.

Suppose that the tails of |Yj | are regularly varying, i.e. (4) holds for some
α ∈ (0, 2), and the (usual) regularity conditions (7) and (8) are satisfied. It
is an observation due to Astrauskas [1] (in fact: a direct consequence of
the Kolmogorov Three Series Theorem - see Proposition 6.1 below) that the
series (1) defining the linear process Xi is P-a.s. convergent if, and only if,

∑

j∈Z

|cj |
αh(|cj |

−1) < +∞. (10)

Given the above series is convergent we can define

Sn(t) =
1

bn

[nt]∑

i=1

Xi, t ≥ 0, (11)
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and it is natural to ask for convergence of Sn’s, when bn is suitably chosen.
Astrauskas [1] and Kasahara & Maejima [16] showed that fractional stable
Lévy Motions can appear in the limit of Sn(t)’s, and that some of the limiting
processes can have regular or even continuous trajectories, while trajectories
of other can be unbounded on every interval.

In the present paper we consider the important case of summable coef-
ficients: ∑

j∈Z

|cj | < +∞. (12)

In Section 2 we give necessary and sufficient conditions for the finite
dimensional convergence

Sn(t) =
1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t), (13)

where the constants an are the same as in (2), A =
∑

j∈Z cj and {Z(t)} is an
α-stable Lévy Motion such that Z(1) ∼ Z. The obtained conditions lead to
tractable sufficient conditions, which in case α < 1 are new and essentially
weaker than condition

∑

j∈Z

|cj |
β < +∞, for some 0 < β < α,

considered in [1], [8] and [16]. See Section 4 for details. Notice that in
the case A = 0 another normalization bn is possible with a non-degenerate
limit. We refer to [22] for comprehensive analysis of dependence structure
of infinite variance processes.

Section 3 contains strengthening of (13) to a functional convergence in
some suitable topology on the Skorokhod space D([0, 1]). Since the paper
[2] it is known that in non-trivial cases (when at least two coefficients are
non-zero) the convergence in the Skorokhod J1 topology cannot hold. In
fact none of Skorokhod’s J1, J2, M1 and M2 topologies is applicable. This
can be seen by analysis of the following simple example ([2], p. 488). Set
c0 = 1, c1 = −1 and ci = 0 if j 6= 0, 1. Then Xi = Yi − Yi−1 and (13) holds
with A =

∑
j cj = 0, i.e.

Sn(t) −→
P

0, t ≥ 0.

But we see that
sup
t∈[0,1]

Sn(t) = max
k≤n

(
Yk − Y0

)
/an
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converges in law to a Fréchet distribution. This means that supremum is
not a continuous (or almost surely continuous) functional, what excludes
convergence in Skorokhod’s topologies in the general case.

For linear processes with nonnegative coefficients ci partial results were
obtained by Avram and Taqqu [2], where convergence in the M1 topology
was considered. Recently these results have been improved and developed
in various directions in [20] and [3]. We use the linear structure of processes
and the established convergence in the M1 topology to show that in the
general case, the finite dimensional convergence (13) can be strengthen to
convergence in the so-called S topology, introduced in [13]. This is a se-
quential and non-metric, but fully operational topology, for which addition
is sequentially continuous.

Section 5 is devoted to some consequences of results obtained in previous
sections. We provide examples of functionals continuous in the S topology.
In particular we show that for every γ > 0

1

naγn

n∑

k=1

( k∑

i=1

(∑

j

ci−jYj

)
−AYi

)γ
−→
P

0.

We also discuss possible extensions of the theory to linear sequences built
on dependent summands.

The Appendix contains technical results of independent interest.

Conventions and notations. Throughout the paper, in order to avoid
permanent repetition of standard assumptions and conditions we adopt the
following conventions. We will say that {Yj}’s satisfy the usual conditions
if they are independent identically distributed and (4), (5), (7) and (8) hold.
When we write Xi it is always the linear process given by (1) and is well-
defined, i.e. satisfies (10). Similarly the norming constants {an} are defined
by (6) and the normalized partial sums Sn(t) and Zn(t) are given by (11)
with bn = an and (3), respectively, where Z is the limit in (2) and Z(t) is
the stable Lévy Motion such that Z(1) ∼ Z.

2 Convergence of finite dimensional distributions

for summable coefficients

We begin with stating the main result of this section followed by its impor-
tant consequence.
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Theorem 2.1 Let {Yj} be an i.i.d. sequence satisfying the usual conditions.
Suppose that ∑

j

|cj | < +∞.

Then

Sn(t) =
1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t), where A =
∑

j

cj ,

if, and only if,

0∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞,

∞∑

j=n+1

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞,

(14)

where

dn,j =

n−j∑

k=1−j

ck, n ∈ N, j ∈ Z.

Corollary 2.2 Under the assumptions of Theorem 2.1, define

Ui =
∑

j

|ci−j |Yj , X+
i =

∑

j

c+i−jYj, X−
i =

∑

j

c−i−jYj, (15)

where c+ = c ∨ 0, c− = (−c) ∨ 0, c ∈ R1, and set

Tn(t) =
1

an

[nt]∑

i=1

Ui, T+
n (t) =

1

an

[nt]∑

i=1

X+
i , T−

n (t) =
1

an

[nt]∑

i=1

X−
i . (16)

Then
Tn(t) −→

f.d.d.
A|·| · Z(t), where A|·| =

∑

j

|cj |,

implies

T+
n (t) −→

f.d.d.
A+ · Z(t), where A+ =

∑

j

c+j ,

T−
n (t) −→

f.d.d.
A− · Z(t), where A− =

∑

j

c−j ,

Sn(t) = T+
n (t)− T−

n (t) −→
f.d.d.

A · Z(t), where A =
∑

j

cj .
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Proof of Corollary 2.2. In view of Theorem 2.1 it is enough to notice that

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
= P

(∣∣∣
n−j∑

k=1−j

ck

∣∣∣ · |Yj| > an

)
≤ P

(( n−j∑

k=1−j

|ck|
)
· |Yj| > an

)
.

Proof of Theorem 2.1. Using Fubini’s theorem, we obtain that

Sn(t) =
1

an

[nt]∑

i=1

∑

j∈Z

ci−jYj =
∑

j∈Z

1

an




[nt]−j∑

k=1−j

ck


Yj =

∑

j∈Z

1

an
d[nt],jYj . (17)

Further, we may decompose

∑

j∈Z

1

an
d[nt],jYj =

0∑

j=−∞

1

an
d[nt],jYj

+

[nt]∑

j=1

1

an
d[nt],jYj

+

∞∑

j=[nt]+1

1

an
d[nt],jYj

=S−
n (t) + S0

n(t) + S+
n (t).

(18)

Let us consider the partial sum process:

Zn(t) =
1

an

[nt]∑

i=1

Yi, t ≥ 0.

First we will show

Lemma 2.3 Under the assumptions of Theorem 2.1 we have for each t > 0

S0
n(t)−A · Zn(t) −→

P
0. (19)

In particular,
S0
n(t) −→

D
A · Z(t). (20)
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Proof of Lemma 2.3 Define

V 0
n =

[nt]∑

j=1

(
A− d[nt],j

)

an
Yj = A · Zn(t)− S0

n(t). (21)

To prove that V 0
n −→P 0 we apply Proposition 6.2. We have to show that

[nt]∑

j=1

∣∣A− d[nt],j
∣∣α

aαn
h
( an∣∣A− d[nt],j

∣∣
)

=

[nt]∑

j=1

P
(∣∣A− d[nt],j

∣∣ · |Yj| > an

)
→ 0, as n → ∞.

(22)

Since an → ∞ and
∣∣A− d[nt],j

∣∣ ≤ ∑
k∈Z |ck|, we have

max
1≤j≤[nt]

P
(∣∣A− d[nt],j

∣∣ · |Yj | > an
)
→ 0. (23)

We need a simple lemma.

Lemma 2.4 Let {an,j ; 1 ≤ j ≤ n, n ∈ N} be an array of numbers such
that

max
1≤j≤n

|an,j| → 0, as n → ∞.

Then there exists a sequence jn → ∞, jn = o(n), such that

jn∑

j=1

|an,j| → 0.

Proof of Lemma 2.4 For each m ∈ N there exists Nm > max{Nm−1,m
2}

such that for n ≥ Nm
m∑

j=1

|an,j| <
1

m
.

Set jn = m, if Nm ≤ n < Nm+1. By the very definition, if Nm ≤ n < Nm+1

then

jn∑

j=1

|an,j| <
1

m
and

jn
n

≤
jn
Nm

=
m

Nm
≤

m

m2
=

1

m
.
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By the above lemma and (23) we can find a sequence jn → ∞, jn = o(n),
increasing so slowly that still

jn∑

j=1

P
(∣∣A− d[nt],j

∣∣ · |Yj| > an
)
+

[nt]∑

j=[nt]−jn+1

P
(∣∣A− d[nt],j

∣∣ · |Yj | > an
)
→ 0.

For the remaining part we have

max
jn<j≤[nt]−jn

∣∣A− d[nt],j
∣∣ = max

jn<j≤[nt]−jn

∣∣A−

[nt]−j∑

k=1−j

ck
∣∣ = δn → 0,

hence for δ ≥ δn

[nt]−jn∑

j=jn+1

P
(∣∣A− d[nt],j

∣∣ · |Yj | > an
)
≤

[nt]−jn∑

j=jn+1

P

(
|δn||Yj | > an

)

≤

[nt]∑

j=1

P

(
|δn||Yj | > an

)

≤ [nt]
δα

aαn
h(an/δ)

= [nt]δα
h(an)

aαn

h(an/δ)

h(an)
.

Since na−α
n h(an) = nP(|Y | > an) → 1 and h varies slowly we have

[nt]δα
h(an)

aαn

h(an/δ)

h(an)
∼ [nt]δα

1

n
→ tδα, as n → ∞.

But δ > 0 is arbitrary, hence we have proved (22) and

V 0
n = A · Zn(t)− S0

n(t) −→
P

0.

Since
A · Zn(t) −→

D
A · Z(t),

Lemma 2.3 follows.
In the next step we shall prove

Lemma 2.5 Under the assumptions of Theorem 2.1 the following items (i)-
(iii) are equivalent.

9



(i)
Sn(1) −→

D
A · Z(1), (24)

(ii)
S−
n (1) + S+

n (1) −→
P

0. (25)

(iii) For every t ∈ [0, 1]

Sn(t)−A · Zn(t) −→
P

0. (26)

Proof of Lemma 2.5 By Lemma 2.3 we know that S0
n(1)−A ·Zn(1) −→P 0

and S0
n(1) −→D A ·Z(1). Since Sn(1) = S−

n (1)+S0
n(1)+S+

n (1), (26) implies
(25) and the latter implies (24).

So let us assume (24). By regular variation of an we have for each
t ∈ (0, 1]

Sn(t) =
1

an

[nt]∑

i=1

Xi =
a[nt]

an

1

a[nt]

[nt]∑

i=1

Xi −→
D

t1/αA · Z(1) ∼ A · Z(t).

It follows that

E
[
eiθSn(t)

]
= E

[
eiθS

0
n(t)

]
E
[
eiθ

(
S−

n (t)+S+
n (t)

)]
→ E

[
eiθA·Z(t)

]
, θ ∈ R1.

Since also
E
[
eiθS

0
n(t)

]
→ E

[
eiθA·Z(t)

]
, θ ∈ R1,

and E
[
eiθA·Z(t)

]
6= 0, θ ∈ R1 (for Z(t) has infinitely divisible law), we

conclude that

E
[
eiθ

(
S−

n (t)+S+
n (t)

)]
→ 1, θ ∈ R1.

Thus S−
n (t)+S+

n (t) −→P 0 and by Lemma 2.3 also S0
n(t)−A ·Z(t) −→P 0.

Hence (26) follows.
Let us observe that by Proposition 6.2 (25) holds if, and only if,

0∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
+

∞∑

j=n+1

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞, (27)

i.e. relation (14) holds. Therefore the proof of Theorem 2.1 will be complete,
if we can show that convergence of one-dimensional distributions implies the
finite dimensional convergence. But this is obvious in view of (26):

(
Sn(t1), Sn(t2), . . . , Sn(tm)

)
−A ·

(
Zn(t1), Zn(t2), . . . , Zn(tm)

)
−→
P

0,
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and the finite dimensional distributions of stochastic processes A ·Zn(t) are
convergent to those of A · Z(t).

Remark 2.6 Observe that for one-sided moving averages the two conditions
in (14) reduce to one (the expression in the other equals 0). This is the
reason we use in Theorem 2.1 two conditions replacing the single statement
(27).

Remark 2.7 In the proof of Proposition 6.2 we used the Three Series Theo-
rem with the level of truncation 1. It is well known that any r ∈ (0,+∞) can
be chosen as the truncation level. Hence conditions (14) admit an equivalent
reformulation in the “r-form”

0∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
(r · an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

∞∑

j=n+1

∣∣dn,j
∣∣α

aαn
h
(r · an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

3 Functional convergence

3.1 Convergence in the M1 topology

As outlined in Introduction (see also Section 5.2 below), the convergence
of finite dimensional distributions of linear processes built on heavy-tailed
innovations cannot be, in general, strengthened to functional convergence in
any of Skorokhod’s topologies J1, J2,M1,M2.

The general linear process {Xi} can be, however, represented as a dif-
ference of linear processes with non-negative coefficients. Let us recall the
notation introduced in Corollary 2.2:

X+
i =

∑

j

c+i−jYj, T+
n (t) =

1

an

[nt]∑

i=1

X+
i ,

X−
i =

∑

j

c−i−jYj, T−
n (t) =

1

an

[nt]∑

i=1

X−
i .

Notice, that in general X±
i (ω) is not equal to

(
Xi(ω)

)±
and that we have

Sn(t) = T+
n (t)− T−

n (t). (28)
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The point is that both T+
n (t) and T−

n (t) are partial sums of associated
sequences in the sense of [11] (see e.g. [7] for the contemporary theory) and
thus exhibit much more regularity.

Theorem 1 of Louhichi and Rio [20] can be specified to the case of linear
processes considered in our paper in the following way.

Proposition 3.1 Let the innovation sequence {Yj} satisfies the usual con-
ditions. Let

cj ≥ 0, j ∈ Z, and
∑

j

cj < +∞. (29)

If the linear process {Xi} is well-defined and

Sn(t) −→
f.d.d.

A · Z(t),

then also functionally
Sn −→

D
A · Z

on the Skorokhod space D([0, 1]) equipped with the M1 topology.

Remark 3.2 The first result of this type was obtained by Avram and Taqqu
[2]. They required however more regularity on coefficients (e.g. monotonicity
of {cj}j≥1 and {c−j}j≥1).

3.2 M1-convergence implies S-convergence

Let us turn to linear processes with coefficients of arbitrary sign. Given
decomposition (28) and Proposition 3.1 the strategy is now clear: choose
any linear topology τ on D([0, 1]) which is coarser than M1, then

Sn(t) −→
f.d.d.

A · Z(t),

should imply
Sn −→

D
A · Z

on the Skorokhod space D([0, 1]) equipped with the topology τ . Since con-
vergence of càdlàg functions in the M1 topology is bounded and implies
pointwise convergence outside of a countable set, there are plenty of such
topologies. For instance any space of the form Lp

(
[0, 1], µ

)
, where p ∈ [0,∞)

and µ is an atomless finite measure on [0, 1], is suitable. The point is to
choose the finest among linear topologies with required properties, for we
want to have the maximal family of continuous functionals on D([0, 1]),

12



Although we are not able to identify such an “ideal” topology, we believe
that this distinguished position belongs to the S topology, introduced in
[13]. This is a non-metric sequential topology, with sequentially continuous
addition, which is stronger than any of mentioned above Lp(µ) spaces and
is functional in the sense it has the following classic property (see Theorem
3.5 of [13]).

Proposition 3.3 Let Q ⊂ [0, 1] be dense, 1 ∈ Q. Suppose that for each
finite subset Q0 = {q1 < q2 < . . . < qm} ⊂ Q we have as n → ∞

(Xn(q1),Xn(q2), . . . ,Xn(qm)) −→
D

(X0(q1),X0(q2), . . . ,X0(qm)),

where X0 is a stochastic process with trajectories in D[0, 1]). If {Xn} is
uniformly S-tight, then

Xn −→
D

X0,

on the Skorokhod space D([0, 1]) equipped with the S topology.

For readers familiar with the limit theory for stochastic processes the
above property may seem obvious. But it is trivial only for processes with
continuous trajectories. It is not trivial even in the case of the Skorokhod
J1 topology, since the point evaluations

πt : D([0, 1]) → R1, πt(x) = x(t),

can be J1-discontinuous at some x ∈ D([0, 1]) (see [26] for the result corre-
sponding to Proposition 3.3). In the S topology the point evaluations are
nowhere continuous (see [13], p. 11). Nevertheless Proposition 3.3 holds
for the S topology, while it does not hold for the linear metric spaces Lp(µ)
considered above. It follows that the S topology is suitable for the needs
of limit theory for stochastic processes. It admits even such efficient tools
like the a.s Skorokhod representation for subsequences [14]. On the other
hand, since D([0, 1]) equipped with S is non-metric and sequential, many
of apparently standard reasonings require special tools and careful analysis.
This will be seen below.

Before we define the S topology we need some notation. Let V([0, 1]) ⊂
D([0, 1]) be the space of (regularized) functions of finite variation on [0, 1],
equipped with the norm of total variation ‖v‖ = ‖v‖(1), where

‖v‖(t) = sup
{
|v(0)| +

m∑

i=1

|v(ti)− v(ti−1)|
}
,
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and the supremum is taken over all finite partitions 0 = t0 < t1 < . . . <
tm = t. Since V([0, 1]) can be identified with a dual of (C([0, 1]), ‖ · ‖∞),
we have on it the weak-∗ topology. We shall write vn ⇒ v0 if for every
f ∈ C([0, 1]) ∫

[0,1]
f(t)dvn(t) →

∫

[0,1]
f(t)dv0(t).

Definition 3.4 (S-convergence and the S topology) We shall say that
xn S-converges to x0 (in short xn →S x0) if for every ε > 0 one can find
elements vn,ε ∈ V([0, 1]), n = 0, 1, 2, . . . which are ε-uniformly close to xn’s
and weakly-∗ convergent:

‖xn − vn,ε‖∞ ≤ ε, n = 0, 1, 2, . . . , (30)

vn,ε ⇒ v0,ε, as n → ∞. (31)

The S topology is the sequential topology determined by the S-convergence.

Remark 3.5 This definition was given in [13] and we refer to this paper
for detailed derivation of basic properties of S-convergence and construction
of the S topology, as well as for instruction how to effectively operate with
S. Here we shall stress only that the S topology emerges naturally in the
context of the following criteria of compactness, which will be used in the
sequel.

Proposition 3.6 (2.7 in [13]) For η > 0, let Nη(x) be the number of η-
oscillations of the function x ∈ D([0, 1]), i.e. the largest integer N ≥ 1, for
which there exist some points

0 ≤ t1 < t2 ≤ t3 < t4 ≤ . . . ≤ t2N−1 < t2N ≤ 1,

such that
|x(t2k)− x(t2k−1)| > η for all k = 1, . . . , N.

Let K ⊂ D. Assume that

sup
x∈K

‖x‖∞ < +∞, (32)

sup
x∈K

Nη(x) < +∞, for each η > 0. (33)

Then from any sequence {xn} ⊂ K one can extract a subsequence {xnk
} and

find x0 ∈ D([0, 1]) such that xnk
−→S x0.

Conversely, if K ⊂ D([0, 1]) is relatively compact with respect to −→S,
then it satisfies both (32) and (33).
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Corollary 3.7 (2.14 in [13]) Let Q ⊂ [0, 1], 1 ∈ Q, be dense. Suppose
that {xn} ⊂ D([0, 1]) is relatively S-compact and as n → ∞

xn(q) → x0(q), q ∈ Q.

Then xn → x0 in S.

Remark 3.8 The S topology is sequential, i.e. it is generated by the conver-
gence −→S. By the Kantorovich-Kisyński recipe [17] xn → x0 in S topology
if, and only if, in each subsequence {xnk

} one can find a further subsequence
xnkl

−→S x0. This is the same story as with a.s. convergence and conver-
gence in probability of random variables.

According to our strategy, we are going to prove that Skorokhod’s M1-
topology is stronger than the S topology or, equivalently, that xn −→M1 x0
implies xn −→S x0. We refer the reader to the original Skorohod’s article
[24] for the definition of the M1 topology, as well as to Chapter 12 of [28]
for a comprehensive account of properties of this topology.

The M1-convergence can be described using a suitable modulus of con-
tinuity. We define for x ∈ D([0, 1]) and δ > 0

wM1(x, δ) := sup
0∨(t2−δ)≤t1<t2<t3≤1∧(t2+δ)

H
(
x(t1), x(t2), x(t3)

)
, (34)

where H(a, b, c) is the distance between b and the interval with endpoints a
and c:

H(a, b, c) = (a ∧ c− a ∧ c ∧ b) ∨ (a ∨ c ∨ b− a ∨ c).

Proposition 3.9 (2.4.1 of [24]) Let (xn)n≥1 and x0 be arbitrary elements
in D([0, 1]). Then

xn −→
M1

x0

if, and only if, for some dense subset Q ⊂ [0, 1] containing 0 and 1,

xn(t) → x(t), t ∈ Q, (35)

and
lim
δ→0

lim sup
n→∞

wM1(xn, δ) = 0. (36)

In particular, if xn −→M1 x0, then

xn(t) → x0(t)

for t = 1 and at every point of continuity of x0.
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Lemma 3.10 For any a, b, c, d ∈ R1

|a− b| ≤ |c− d|+H(c, a, d) +H(c, b, d).

Proof. If c ≤ a ≤ b ≤ d, then b− a ≤ d− c = d− c+H(c, a, d) +H(c, b, d).
If a ≤ c ≤ b ≤ d then b − a = b − c + c − a ≤ d − c + H(c, a, d) =
d − c + H(c, a, d) + H(c, b, d). If a ≤ c ≤ d ≤ b then b − a = b − d +
d − c + c − a = H(c, b, d) + d − c + H(c, a, b). If a ≤ b ≤ c ≤ d, then
b−a ≤ |b−c|+ |c−a| = H(c, b, d)+H(c, a, d) ≤ H(c, b, d)+H(c, a, d)+d−c.
The other cases can be reduced to the considered above. �

Corollary 3.11 Let x ∈ D([0, 1]). For any 0 ≤ s ≤ u < v ≤ t ≤ 1,

|x(u) − x(v)| ≤ |x(s)− x(t)|+H(x(s), x(u), x(t)) +H(x(s), x(v), x(t)).

Lemma 3.12 Let x ∈ D([0, 1]). For 0 ≤ s < t ≤ 1, define

β = sup
s≤u<v<w≤t

H(x(u), x(v), x(w)).

If η > 2β then

Nη(x; [s, t]) ≤
|x(t)− x(s)|+ β

η − β
,

where Nη(x; [s, t]) denotes the number of η-oscillations of x in the interval
[s, t].

Proof. Let s ≤ t1 < t2 ≤ t3 < t4 ≤ . . . ≤ t2N−1 < t2N ≤ t be such that

|x(t2k)− x(t2k−1)| > η for all k = 1, . . . , N.

Assume first that x(t2)− x(t1) > η. We claim that

x(t3) ≥ x(t2)− β and x(t4)− x(t3) > η.

To see this, suppose that x(t3) < x(t2)−β. Then the distance between x(t2)
and the interval with endpoints x(t1) and x(t3) is greater than β, which is
a contradiction. Hence x(t3) ≥ x(t2)− β. On the other hand, if we assume
that x(t4)− x(t3) < −η, we obtain that

x(t1) = x(t1)− x(t2) + x(t2)− x(t3) + x(t3) < −η + β + x(t3) < x(t3)− β,

which means that the distance between x(t3) and the interval with endpoints
x(t1) and x(t4) is greater than β, again a contradiction.
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Repeating this argument, we infer that:

x(t2k)− x(t2k−1) > η, for all k = 1, . . . , N

and
x(t2k+1)− x(t2k) > −β for all k = 1, . . . , N − 1.

Taking the sum of these inequalities, we conclude that:

x(t2N )− x(t1) > Nη − (N − 1)β = N(η − β) + β. (37)

On the other hand, by Corollary 3.11, we have:

|x(t2N )− x(t1)| ≤ |x(t)− x(s)|+ 2β. (38)

Combining (37) and (38), we obtain that

N ≤
|x(t)− x(s)|+ β

η − β
,

which is the desired upper bound.
Assuming that x(t2) − x(t1) < −η we come in a similar way to the

inequality

x(t2N )− x(t1) < −Nη + (N − 1)β = −N(η − β)− β

or
|x(t2N )− x(t1)|N(η − β) + β.

This again allows us to use Corollary 3.11 and gives the desired bound for
N �

The following result was stated without proof in [13]. A short proof
can be given using Skorohod’s criterion 2.2.11 (page 267 of [24]) for the
M1-convergence, expressed in terms of the number of upcrossings. This
proof has a clear disadvantage: it refers to an equivalent definition of the
M1-convergence, but the equivalence of both definitions was not proved in
Skorokhod’s paper. In the present article we give a complete proof.

Theorem 3.13 The S topology is weaker than the M1 topology (and hence,
weaker than the J1 topology). Consequently, a set A ⊂ D([0, 1]) which is
relatively M1-compact is also relatively S-compact.
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Proof. Let xn −→M1 x0. By Proposition 3.9

xn(t) → x0(t),

on the dense set of points of continuity of x0 and for t = 1. Suppose we
know that K = {xn} satisfies conditions (32) and (33). Then by Proposition
3.6 {xn} is relatively S-compact and by Corollary 3.7 xn → x0 in S. Thus
it remains to check conditions

Ksup = sup
n

‖xn‖∞ < +∞, (39)

Kη = sup
n

Nη(xn) < ∞, η > 0. (40)

First suppose that x0(1−) = x0(1). Then D([0, 1]) ∋ x 7→ ‖x‖∞ is M1-
continuous at x0. Consequently, xn −→M1 x0 implies ‖xn‖∞ → ‖x0‖∞ and
(39) follows.

If x0(1−) 6= x0(1) we have to proceed a bit more carefully. Consider (36)
and take δ > 0 and n0 such that w(xn, δ) ≤ 1, n ≥ n0. Find t0 ∈ (1 − δ, 1)
which is a point of continuity of x0. Then

sup
t∈[0,t0]

|xn(t)| → sup
t∈[0,t0]

|x0(t)|,

hence supn supt∈[0,t0] |xn(t)| < +∞. We also know that xn(t0) → x0(t0) and
xn(1) → x0(1). Choose n ∈ N and u ∈ (t0, 1). By the very definition of the
modulus H

|xn(u)| ≤ |xn(t0)|+ |xn(1)| +H
(
xn(t0), xn(u), xn(1)

)

≤ sup
n

|xn(t0)|+ sup
n

|xn(1)| + 1, n ≥ n0.

It follows that also
sup
n

sup
t∈(t0,1]

|xn(t)| < +∞,

and so (39) holds.
In order to prove (40) choose η > 0 and 0 < ε < η/2. By Proposition

3.9, there exist some δ > 0 and an integer n0 ≥ 1 such that wM1(xn, δ) <
ε, n ≥ n0. Next we find a partition 0 = t0 < t1 < . . . < tM = 1 consisting
of points of continuity of x0 and such that

tj+1 − tj < δ, j = 0, 1, . . . ,M − 1.

Again by Proposition 3.9, there exists an integer n1 ≥ n0 such that for any
n ≥ n1

|xn(tj)− x(tj)| < ε, j = 0, 1, . . . ,M. (41)
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Fix an integer n ≥ n1. Suppose that Nη(xn) ≥ N , i.e. there exist some
points

0 ≤ s1 < s2 ≤ s3 < s4 ≤ . . . ≤ s2N−1 < s2N ≤ 1, (42)

such that

|xn(s2k)− xn(s2k−1)| > η, for all k = 1, 2, . . . , N. (43)

The proof of (40) will be complete once we estimate the number N by a
constant independent of n.

The η-oscillations of xn determined by (42) can be divided into two (dis-
joint) groups. The first group (Group 1) contains the oscillations for which
the corresponding interval [s2k−1, s2k) contains at least one point tj′. Since
the number of points tj is M ,

the number of oscillations in Group 1 is at most M. (44)

In the second group (Group 2), we have those oscillations for which the
corresponding interval [s2k−1, s2k) contains no point tj, i.e.

tj ≤ s2k−1 < s2k ≤ tj+1 for some j = 0, 1, . . . ,M − 1. (45)

We now use Lemma 3.12 in each of intervals [tj , tj+1], j = 0, 1, . . . ,m.
Note that

βn,j := sup
tj≤u<v<w≤tj+1

H
(
xn(u), xn(v), xn(w)

)
≤ wM1(xn, δ) < ε,

hence,

Nη(xn, [tj , tj+1]) ≤
|xn(tj+1)− xn(tj)|+ βn,j

η − βn,j
<

2Ksup + ε

η − ε
.

Since there are M intervals of the form [tj, tj+1], we conclude that

the number of oscillations in Group 2 is at most M ·
2Ksup + ε

η − ε
(46)

Summing (44) and (46), we obtain that

N ≤ M

(
1 +

2Ksup + ε

η − ε

)
= M

2Ksup + η

η − ε
,

which does not depend on n. Theorem 3.13 follows. �

For the sake of completeness, we provide also a typical example of a
sequence (xn)n≥1 in D[0, 1] which is S-convergent, but does not converge in
the M1 topology.
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Example 3.14 Let x = 0 and

xn(t) = 1[1/2−1/n,1](t)− 1[1/2+1/n,1](t) =

{
1 if 1

2 −
1
n ≤ t < 1

2 + 1
n

0 otherwise

Then xn −→S x. To see this, we take vn,ε = xn. Then vn,ε ⇒ vε = 0 since
for any f ∈ C[0, 1],

∫ 1

0
f(t)dvn(t) = f

(
1

2
−

1

n

)
− f

(
1

2
+

1

n

)
→ 0.

The fact that (xn)n≥1 cannot converge in M1 follows by Proposition 3.9 since
if t1 <

1
2 −

1
n < t2 <

1
2 +

1
n < t3, then H

(
xn(t1), xn(t2), xn(t3)

)
= 1.

3.3 Convergence in distribution in the S topology

Now we are ready to specify results on functional convergence of stochastic
processes in the S topology, which are suitable for needs of linear processes.
They follow directly from Proposition 3.6 and Proposition 3.3.

Proposition 3.15 (3.1 in [13]) A family {Xγ}γ∈Γ of stochastic processes
with trajectories in D([0, 1]) is uniformly S-tight if, and only if, the families
of random variables {‖Xγ‖∞}γ∈Γ and {Nη(Xγ)}γ∈Γ, η > 0, are uniformly
tight.

Proposition 3.16 Let {Xn}n≥0 and {Yn}n≥0 be two sequences of stochastic
processes with trajectories in D([0, 1]) such that as n → ∞

(
Xn(q1) + Yn(q1),Xn(q2) + Yn(q2), . . . ,Xn(qk) + Yn(qk)

)

−→
D

(
X0(q1) + Y0(q1),X0(q2) + Y0(q2) . . . ,X0(qk) + Y0(qk)

)
,

for each subset Q0 = {0 ≤ q1 < q2 < . . . < qk} of a dense set Q ⊂ [0, 1],
1 ∈ Q.

If {Xn} and {Yn} are uniformly S-tight, then

Xn + Yn −→
D

X0 + Y0

on the Skorokhod space D([0, 1]) equipped with the S topology.

Proof of Proposition 3.16 According to Proposition 3.3, it is enough to
establish the uniform S-tightness of Xn + Yn. This follows immediately
from Proposition 3.15 and from the inequalities ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞
and

Nη(x+ y) ≤ Nη/2(x) +Nη/2(y),

valid for arbitrary functions x, y ∈ D[0, 1] and η > 0.
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Remark 3.17 In linear topological spaces the algebraic sum K1 + K2 =
{x1 + x2 ; x1 ∈ K1, x2 ∈ K2} of compact sets K1 and K2 is compact. It
follows directly from the continuity of the operation of addition and trivializes
the proof of uniform tightness of sum of uniformly tight random elements.
In D([0, 1]) equipped with S we are, however, able to prove that the addition
is only sequentially continuous, i.e. if xn −→S x0 and yn −→S y0, then
xn+yn −→S x0+y0. In general it does not imply continuity (see [13], p. 18,
for detailed discussion). Sequential continuity gives a weaker property: the
sum K1+K2 of relatively S-compact K1 and K2 is relatively S-compact. For
the uniform tightness purposes we also need that the S-closure of K1+K2 is
again relatively S-compact. This is guaranteed by the lower-semicontinuity
in S of ‖ · ‖∞ and Nη (see [13], Corollary 2.10).

3.4 The main result

Theorem 3.18 Let {Yj} be an i.i.d. sequence satisfying the usual condi-
tions and

∑
j |cj | < +∞. Let Sn(t) be defined by (11) and Tn(t) by (16).

Then
Tn(t) −→

f.d.d.
A|·| · Z(t), where A|·| =

∑

j

|cj |,

implies

Sn −→
D

A · Z, where A =
∑

j

cj ,

on the Skorokhod space D([0, 1]) equipped with the S topology.

Proof. By Corollary 2.2

T+
n (t) =

1

an

[nt]∑

i=1

X+
i −→

f.d.d.
A+ · Z(t), T−

n (t) =
1

an

[nt]∑

i=1

X−
i −→

f.d.d.
A− · Z(t),

where A+ =
∑

i∈Z c+i and A− =
∑

i∈Z c−i . It follows from Proposition 3.1
that T+

n −→D A+ ·Z on D([0, 1]) equipped with the M1 topology. A similar
result holds for T−

n . Since the law of every càdlàg process is M1-tight, Le
Cam’s theorem [19] (see also Theorem 8 in Appendix III of [4]) guarantees
that both sequences {T+

n } and {T−
n } are uniformly M1-tight. By Theorem

3.13 we obtain the uniform S-tightness of both {T+
n } and {T−

n }. Again by
Corollary 2.2

Sn(t) = T+
n (t)− T−

n (t) −→
f.d.d.

A · Z(t).

Now a direct application of Proposition 3.16 completes the proof of the the-
orem. �
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4 Discussion of sufficient conditions

Conditions (14) do not look tractable. In what follows we shall provide three
types of checkable sufficient conditions. In both cases the following slight
simplification (47) of (14) will be useful. As in proof of Lemma 2.3, we can
find a sequence jn → ∞, jn = o(n), such that

0∑

j=−jn+1

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

n+jn−1∑

j=n+1

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

Hence it is enough to check

−jn∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

+∞∑

j=n+jn

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

(47)

The advantage of this form of the conditions consists in the fact that

sup
j≤−jn

∣∣dn,j
∣∣ → 0, as n → ∞,

sup
j≥n+jn

∣∣dn,j
∣∣ → 0, as n → ∞.

(48)

We will write −→D(S) when convergence in distribution with respect
to the S topology takes place.

Corollary 4.1 Under the assumptions of Theorem 2.1, if there exists 0 <
β < α, β ≤ 1 such that ∑

j∈Z

|cj |
β < +∞, (49)

then
Sn(t) −→

D(S)
A · Z(t).
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Proof. We have to check (47). By simple manipulations and taking into
account that due to (6) K = supn na

−α
n h(an) < +∞ we obtain

−jn∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)

=
1

n

−jn∑

j=−∞

∣∣
n−j∑

k=1−j

ck
∣∣β nh(an)

aαn

∣∣dn,j
∣∣α−β 1

h(an)
h
( an∣∣dn,j

∣∣
)

≤ K
1

n

−jn∑

j=−∞

n−j∑

k=1−j

|ck|
βΨα−β

(
an,

an∣∣dn,j
∣∣
)
,

where

Ψα−β(x, y) =
(x
y

)α−β h(y)

h(x)
.

Let

h(x) = c(x) exp
( ∫ x

a

ǫ(u)

u
du

)
,

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ ǫ(x) = 0, be the Karamata
representation of the slowly varying function h(x) (see e.g. Theorem 1.3.1
in [5]). Take 0 < γ < min{α− β, c} and let L > a be such that for x > L

ǫ(x) ≤ γ and c− γ < c(x) < c+ γ.

Then we have for x ≥ y ≥ L

h(y)

h(x)
=

c(y)

c(x)
exp

( ∫ x

y

ǫ(u)

u
du

)
≤

c+ γ

c− γ
exp

(
γ log

(x
y

))
=

c+ γ

c− γ

(x
y

)γ
,

and so

Ψα−β(x, y) ≤ K
(y
x

)α−β−γ
, x ≥ y ≥ L.

It follows from that fact and (48) that

sup
j≤−jn

Ψα−β

(
an,

an∣∣dn,j
∣∣
)
→ 0, as n → ∞.

Hence it is sufficient to show that

sup
n

1

n

−jn∑

j=−∞

n−j∑

k=1−j

|ck|
β < +∞.

In fact, more is true.
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Lemma 4.2 If
∑∞

j=0 |bj | < +∞, then for each t > 0

1

n

∞∑

j=0

n+j∑

k=1+j

bk → 0, as n → ∞.

Proof of Lemma 4.2 We have

∣∣∣ 1
n

∞∑

j=0

n+j∑

k=1+j

bk

∣∣∣ ≤ 1

n

∞∑

j=0

n+j∑

k=1+j

|bk|

=
1

n

∞∑

k=1

(k ∧ n)|bk|

=
( 1

n

n∑

k=1

k|bk|+

∞∑

k=n+1

|bk|
)
.

The first sum in the last line converges to 0 by Kronecker’s lemma. The
second is the rest of a convergent series.

Returning to the proof of Corollary 4.1, let us notice that convergence

+∞∑

j=n+jn

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞,

can be checked the same way. �

Corollary 4.3 Under the usual conditions, if α ∈ (1, 2) and
∑

j∈Z |cj | <
+∞, then

Sn(t) −→
D(S)

A · Z(t).

Remark 4.4 Corollaries 4.1 and 4.3 were proved independently by As-
trauskas [1] and Davis and Resnick [8]. Our approach follows direct ma-
nipulations of Astrauskas, while Davis and Resnick involved point process
techniques.

Remark 4.5 For α ≤ 1 assumption (49) is unsatisfactory, for it excludes
the case of strictly α-stable random variables {Yj} with

∑
j |cj |

α < +∞, but∑
j |cj |

β = +∞ for every β < α. With our criterion given in Theorem 2.1
we can easily prove the needed result.
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Corollary 4.6 Suppose that α ≤ 1,
∑

j∈Z |cj |
α < +∞, the usual conditions

hold and h is such that

h(λx)/h(x) ≤ M, λ ≥ 1, x ≥ x0, (50)

for some constants M , x0. If the linear process {Xi} is well-defined, then

Sn(t) −→
D(S)

A · Z(t).

Proof of Corollary 4.6 First notice that
∑

j |cj | < +∞ so that A is defined.
Proceeding like in the proof of Corollary 4.1 we obtain

−jn∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)

=
1

n

−jn∑

j=−∞

∣∣∣
n−j∑

k=1−j

ck

∣∣∣
αnh(an)

aαn

1

h(an)
h
( an∣∣dn,j

∣∣
)

≤ K ·M
1

n

−jn∑

j=−∞

n−j∑

k=1−j

|ck|
α → 0,

where the convergence to 0 holds by Lemma 4.2.

Remark 4.7 As mentioned before, the above corollary covers the important
case when h(x) → C > 0, as x → ∞, i.e. when the law of Yi is in the domain
of strict (or normal) attraction. Many other examples can be produced using
Karamata’s representation of slowly varying functions. Assumption (50) is
much in the spirit of Lemma A.4 in [21]. Our final result goes in different
direction.

Remark 4.8 Notice that if α < 1, then
∑

j |cj |
αh(|cj |

−1) < +∞, with h
slowly varying, automatically implies

∑
j |cj | < +∞.

Corollary 4.9 Under the usual conditions, if α < 1, then

Sn(t) −→
D(S)

A · Z(t),

if ∑

j∈Z

|cj |
α < +∞,
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and the coefficients cj are regular in a very weak sense: there exists a con-
stant 0 < γ < α such that

maxj+1≤k≤j+n |ck|
(1−α)(α−γ)
(1−α+γ)

∑j+n
k=j+1 |ck|

α
≤ K+ < +∞, j ≥ 0. (51)

maxj−n≤k≤j−1 |ck|
(1−α)(α−γ)
(1−α+γ)

∑j−1
k=j−n |ck|

α
≤ K− < +∞, j ≤ 0. (52)

(with the convention that 0/0 ≡ 1.)

Remark 4.10 Notice that we always assume that the linear process is well
defined. This may require more than demanded in Corollary 4.9.

Proof of Corollary 4.9 As before, we have to check (47).

−jn∑

j=−∞

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)

=
1

n

−jn∑

j=−∞

∣∣∣
n−j∑

k=1−j

ck

∣∣∣
α−γ nh(an)

aαn

∣∣dn,j
∣∣γ 1

h(an)
h
( an∣∣dn,j

∣∣
)

≤ K
1

n

−jn∑

j=−∞

∣∣∣
n−j∑

k=1−j

ck

∣∣∣
α−γ

Ψγ

(
an,

an∣∣dn,j
∣∣
)
,

where Ψγ(x, y) was defined in the proof of Corollary 4.1 and

sup
j≤−jn

Ψγ

(
an,

an∣∣dn,j
∣∣
)
→ 0, as n → ∞.

Thus it is enough to prove

sup
n

1

n

−jn∑

j=−∞

∣∣∣
n−j∑

k=1−j

ck

∣∣∣
α−γ

< +∞.

We have

∣∣∣
n−j∑

k=1−j

ck

∣∣∣ ≤
n−j∑

k=1−j

|ck| ≤
( n−j∑

k=1−j

|ck|
α
)
· max
1−j≤k≤n−j

|ck|
1−α, (53)
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hence

1

n

−jn∑

j=−∞

∣∣∣
n−j∑

k=1−j

ck

∣∣∣
α−γ

=
1

n

−jn∑

j=−∞

( n−j∑

k=1−j

|ck|
α
)
∣∣∣
∑n−j

k=1−j ck

∣∣∣
α−γ

(∑n−j
k=1−j |ck|

α
)

≤
1

n

−jn∑

j=−∞

( n−j∑

k=1−j

|ck|
α
)max1−j≤k≤n−j |ck|

(1−α)(α−γ)

(∑n−j
k=1−j |ck|

α
)1−α+γ

≤
(
K+

)1−α+γ 1

n

−jn∑

j=−∞

( n−j∑

k=1−j

|ck|
α
)
→ 0.

This is again more than needed. The proof of

+∞∑

j=n+jn

∣∣dn,j
∣∣α

aαn
h
( an∣∣dn,j

∣∣
)
→ 0, as n → ∞.

goes the same way.

Example 4.11 If α < 1,

|cj | =
1

|j|1/α log(1+ε)/α |j|
, |j| ≥ 3,

and {Xi} is well-defined, then under the usual conditions

Sn(t) −→
D(S)

A · Z(t).

Remark 4.12 In our considerations we search for conditions giving func-
tional convergence of {Sn(t)} with the same normalization as {Zn(t)} (by
{an}). It is possible to provide examples of linear processes, which are con-
vergent in the sense of finite dimensional distribution with different nor-
malization. Moreover, it is likely that also in the heavy-tailed case one can
obtain a complete description of the convergence of linear processes, as it is
done by Peligrad and Sang [23] in the case of innovations belonging to the
domain of attraction of a normal distribution. We conjecture that whenever
the limit is a stable Lévy motion our functional approach can be adapted to
the more general setting.
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5 Some complements

5.1 S-continuous functionals

A phenomenon of self-cancelling oscillations, typical for the S topology, was
described in Example 3.14. This example shows that supremum cannot be
continuous in the S topology. In fact, supremum is lower semi-continuous
with respect to S, as many other popular functionals - see [13], Corollary
2.10. On the other hand addition is sequentially continuous and this prop-
erty was crucial in consideration given in Section 3.4.

Here is another positive example of an S-continuous functional.
Let µ be an atomless measure on [0, 1] and let h : R1 → R1 be a con-

tinuous function. Consider a smoothing operation sµ,h on D([0, 1]) given by
the formula

sµ,h(x)(t) =

∫ t

0
h(x(s)) dµ(s).

Then sµ,h(x)(·) is a continuous function on [0, 1] and a slight modification
of the proof of Proposition 2.15 in [13] shows that the mapping

(
D([0, 1]), S

)
∋ x 7→ sµ,h(x) ∈

(
C([0, 1]), ‖ · ‖∞

)

is continuous. In particular, if we set µ = ℓ (the Lebesgue measure), h(0) =
0, h(x) ≥ 0, and suppose that xn −→S 0, then

∫ 1

0
h(xn(s)) ds → 0.

In the case of linear processes such functionals lead to the following result.

Corollary 5.1 Under the conditions of Corollaries 4.1, 4.3, 4.6 or 4.9 we
have for any β > 0

1

naβn

n∑

k=1

∣∣∣
k∑

i=1

(∑

j

ci−jYj

)
−AYi

∣∣∣
β

−→
P

0.

Proof of Corollary 5.1 The expression to be analyzed has the form

∫ 1

0
Hβ

(
Sn(t)−A · Zn(t)

)
dt,

where Hβ(x) = |x|β and by (26)

Sn(t)−A · Zn(t) −→
f.d.d.

0.
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We have checked in the course of the proof of Theorem 3.18, that {Sn} is
uniformly S-tight. By (3) {A ·Zn} is uniformly J1-tight, hence also S-tight.
Similarly as in the proof of Proposition 3.16 we deduce that {Sn − A · Zn}
is uniformly S-tight. Now an application of Proposition 3.3 gives

Sn −A · Zn −→
D

0,

on the Skorokhod space D([0, 1]) equipped with the S topology.

5.2 An example related to convergence in the M1 topology

In Introduction we provided an example of a linear process (c0 = 1, c1 = −1)
for which no Skorokhod’s convergence is possible. In this example A = 0 and
the limit is degenerate, what might suggest that another, more appropriate
norming is applicable, under which the phenomenon disappears. Here we
give an example with a non-degenerate limit showing that in the general
case M1-convergence need not hold.

Example 5.2 Let c0 = ζ > −c1 = ξ > 0. Then Xj = ζYj − ξYj−1 and
defining Zn(t) by (3) we obtain for t ∈ [k/n, (k + 1)/n)

Sn(t) =
1

an

k∑

j=1

Xj =
1

an

(
ζYk − ξY0

)
+

(
ζ − ξ)Zn((k − 1)/n).

Clearly, the f.d.d. limit {
(
ζ − ξ)Z(t)} is non-degenerate. We will show that

the sequence {Sn(t)} is not uniformly M1-tight and so cannot converge to
{
(
ζ − ξ)Z(t)} in the M1 topology.
For the sake of simplicity let us assume that Yj’s are non-negative and

P
(
Y1 > x

)
= x−α, x ≥ 1,

with α < 1. Then we can choose an = n1/α. Consider sets

Gn =
n−1⋃

j=0

{
Yj > εnan, Yj+1 > εnan

}
.

where εn = n−1/(3α). Then

P
(
Gn

)
≤ (n + 1)P

(
Yi > εnan

)2
= (n+ 1)ε−2α

n

(
n1/α

)−2α
−→ 0.

Notice that

on Gc
n there are no two consecutive values of Yj exceeding εnan. (54)
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Let us define Yn,j = Yj1I{Yj > εnan} and set for t ∈ [k/n, (k + 1)/n)

S̃n(t) =
1

an

(
ζYn,k − ξYn,0

)
+

ζ − ξ

an

k−1∑

j=1

Yn,j.

We have by (61)

E
[
sup
t∈[0,1]

∣∣Sn(t)− S̃n(t)
∣∣] ≤ ζ

an

n∑

j=0

E
[
Yj1I{Yj ≤ εnan}

]

≤ C1ζ
(n+ 1)(εnan)

1−α

an
→ 0.

It follows that {Sn(t)} are uniformly M1-tight if, and only if, {S̃n(t)} are.
Let wM1(x, δ) be given by (34). Since P

(
Gc

n

)
→ 1 we have for any δ > 0

and η > 0

lim sup
n

P
(
wM1(S̃n(·), δ) > η

)
= lim sup

n
P
(
{wM1(S̃n(·), δ) > η} ∩Gc

n

)
.

And on Gc
n, by the property (54) and if 2/n < δ we have

ω(S̃n(·), δ) ≥
1

an

(
ζ − ξ

)
max

j
Yn,j.

If η/(ζ − ξ) > εn, then

P
(
(1/an)max

j
Yn,j > η/

(
ζ − ξ

))

= P
(
(1/an)max

j
Yj > η/

(
ζ − ξ

))

−→ 1− exp
(
−

(
(ζ − ξ)/η

)α)
= θ > 0.

Hence for each δ > 0

lim inf
n

P
(
wM1(S̃n(·), δ) > η

)
≥ θ > 0,

and the sequence {S̃n(t)} cannot be uniformly M1-tight.

5.3 Linear space of convergent linear processes

We can explore the machinery of Section 4 to obtain a natural
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Proposition 5.3 We work under the assumptions of Theorem 2.1. Denote
by CY the set of sequences {ci}i∈Z such that if

Xi =
∑

j∈Z

cjYi−j, i ∈ Z,

then

Sn(t) =
1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t),

with A =
∑

i∈Z ci.
Then CY is a linear subspace of RZ.

Proof of Proposition 5.3 Closeness of CY under multiplication by a number
is obvious. So let us assume that {c′i} and {c′′i } are elements of CY . By
Theorem 2.1 we have to prove that

0∑

j=−∞

P

(∣∣
n−j∑

k=1−j

(c′k + c′′k)
∣∣|Yj | > an

)
→ 0, as n → ∞.

∞∑

j=n+1

P

(∣∣
n−j∑

k=1−j

(c′k + c′′k)
∣∣|Yj | > an

)
→ 0, as n → ∞.

(55)

But

0∑

j=−∞

P

(∣∣
n−j∑

k=1−j

(c′k + c′′k)
∣∣|Yj| > an

)

≤

0∑

j=−∞

P

(∣∣
n−j∑

k=1−j

c′k
∣∣|Yj |+

∣∣
n−j∑

k=1−j

c′′k
∣∣|Yj| > an

)

≤

0∑

j=−∞

P

(∣∣
n−j∑

k=1−j

c′k
∣∣|Yj | > an/2

)
+

0∑

j=−∞

P

(∣∣
n−j∑

k=1−j

c′′k
∣∣|Yj | > an/2

)
.

Now both terms tend to 0 by Remark 2.7. Identical reasoning can be used
in the proof of the “dual” condition in (55).

5.4 Dependent innovations

In the main results of the paper we studied only independent innovations
{Yj}. It is however clear that the functional S-convergence can be obtained
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under much weaker assumptions. In order to apply crucial Proposition 3.16
we need only that

Sn(t) −→
f.d.d.

A · Z(t),

and that
T+
n −→

D
A+ · Z, and T−

n −→
D

A− · Z,

on the Skorokhod space D([0, 1]) equipped with the M1 topology. For the
latter relations Theorem 1 of [20] seems to be an ideal tool for associated
sequences (see our Proposition 3.1). A variety of potential other possible
examples is given in [27].

6 Appendix

We provide two results of a technical character. The first one is well-known
([1]) and is stated here for completeness. Proposition 6.2 might be of inde-
pendent interest.

Proposition 6.1 Let {Yj} be an i.i.d.sequence satisfying (4), (7) and (8)
and let {cj} be a sequence of numbers. Then the series

∑
j∈Z cjYj is well

defined if, and only if,

∑

j∈Z

|cj |
αh(|cj |

−1) < +∞. (56)

Proposition 6.2 Let {Yj} be an i.i.d.sequence satisfying (4), (7) and (8).
Consider an array {cn,j ; n ∈ N, j ∈ Z} of numbers such that for each n ∈ N

∑

j∈Z

|cn,j|
αh(|cn,j |

−1) < +∞. (57)

Set Vn =
∑

j∈Z cn,jYj, n ∈ N. Then

Vn −→
P

0 (58)

if, and only if,

∑

j∈Z

|cn,j |
αh(|cn,j |

−1) → 0, as n → ∞ . (59)

In the proofs we shall need some estimates which seem to be a part of
the probabilistic folklore.
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Lemma 6.3 Assume that

P
(
|Y | > x

)
= x−αh(x),

where h(x) is slowly varying at x = ∞.

(i) If α ∈ (0, 2), then there exists a constant C2, depending on α and the
law of Y such that

E
[
Y 2I

(
|Y | ≤ x

)]
≤ C2x

2−αh(x), x > 0. (60)

(ii) If α ∈ (0, 1), then there exists a constant C1, depending on α and the
law of Y such that

E
[
|Y |I

(
|Y | ≤ x

)]
≤ C1x

1−αh(x), x > 0. (61)

(iii) If α ∈ (1, 2), then there is x0 > 0, depending on the law of Y , such
that

E
[
|Y |I

(
|Y | > x

)]
≤ E

[
|Y | I

(
x ≤ x0

)]
+

2α

α− 1
x1−αh(x), x > 0. (62)

Proof. Take β > α. Applying the direct half of Karamata’s Theorem (Th.
1.5.11 [5]) we obtain

E
[
|Y |βI

(
|Y | ≤ x

)]
= β

∫ x

0
tβ−1

P
(
|Y | > t

)
dt−xβP

(
|Y | > t

)
∼

α

β − α
xβ−αh(x).

Hence there exists x0 such that

E
[
|Y |βI

(
|Y | ≤ x

)]
≤

2α

β − α
xβ−αh(x), x > x0.

If 0 < x ≤ x0, then

E
[
|Y |βI

(
|Y | ≤ x

)]
≤ xβ = xβ

x−αh(x)

P
(
|Y | > x

) ≤
1

P
(
|Y | > x0

)xβ−αh(x).

Setting Cβ = max{1/P
(
|Y | > x0

)
, 2α/(β − α)} one obtains both (60) and

(61).
To get (62) we proceed similarly. First, by Karamata’s Theorem

E
[
|Y |I

(
|Y | > x

)]
=

∫ ∞

x
P
(
|Y | > t

)
dt+ xP

(
|Y | > x

)
∼

α

α− 1
x1−αh(x),
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Hence for some x0 we have

E|Y |I
(
|Y | > x

)
≤

2α

α− 1
x1−αh(x), x > x0.

Since α > 1, we have E
[
|Y |

]
< +∞ and (62) follows. �

Proof of Proposition 6.1 We begin with specifying the conditions of the
Kolmogorov Three Series Theorem in terms of our linear sequences. We
have

∑

j∈Z

P
(
|cjYj| > 1

)
=

∑

j∈Z

(
1

|cj |
)−αh(|cj |

−1) =
∑

j∈Z

|cj |
αh(|cj |

−1). (63)

Applying (60) we obtain

∑

j∈Z

Var
(
(cjYj)I

(
|cjYj | ≤ 1

))
≤

∑

j∈Z

E
[(
cjYj

)2
I
(
|cjYj| ≤ 1

)]

=
∑

j∈Z

|cj |
2
E
[
Y 2
j I(|Yj | ≤ 1/|cj |)

]

≤ C2

∑

j∈Z

|cj |
2(1/|cj |)

2−αh(|cj |
−1)

= C2

∑

j∈Z

|cj |
αh(|cj |

−1).

(64)

Similarly, if α ∈ (0, 1), then by (61)

∑

j∈Z

∣∣E
[
cjYjI

(
|cjYj | ≤ 1

)]∣∣ ≤
∑

j∈Z

|cj |E
[
|Yj |I

(
|Yj | ≤ 1/|cj |

)]

≤ C1

∑

j∈Z

|cj |(1/|cj |)
1−αh(|cj |

−1)

= C1

∑

j∈Z

|cj |
αh(|cj |

−1).

(65)

If α = 1, then by the symmetry we have E
[
YjI

(
|Yj| ≤ a

)]
= 0, a > 0, and

the series of truncated expectations trivially vanishes

∑

j∈Z

E
[
cjYjI

(
|cjYj| ≤ 1

)]
= 0. (66)
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For α ∈ (1, 2) we have E
[
Xj

]
= 0 and by (62)

∑

j∈Z

|E
[
cjYjI

(
|cjYj| ≤ 1

)]
| =

∑

j∈Z

|E
[
cjYjI

(
|cjYj| > 1

)]
|

≤
∑

j∈Z

|cj |E
[
|Yj|I

(
|Yj | > 1/|cj |

)]

≤ E
[
|Y |

]
max
j∈Z

|cj |#{j ; |cj | ≥ 1/x0}

+
2α

α− 1

∑

j∈Z

|cj |(1/|cj |)
1−αh(|cj |

−1)

(67)

By (63) - (67) we obtain that
∑

j∈Z |cj |
αh(|cj |

−1) < +∞ if, and only if, all
the assumptions of the Three Series Theorem are satisfied. Hence

∑
j∈Z cjYj

is a.s. convergent if, and only if, (56) holds.

Proof of Proposition 6.2 By Proposition 6.1 all random variables Vn =∑
j∈Z cn,jYj are well-defined. Let us consider a decomposition of each Vn

into a sum of another three (convergent!) series:

Vn =
∑

j∈Z

(
cn,jYjI(|cn,jYj| ≤ 1)− E

[
cn,jYjI(|cn,jYj | ≤ 1)

])

+
∑

j∈Z

E
[
cn,jYjI(|cn,jYj| ≤ 1)

]

+
∑

j∈Z

cn,jYjI(|cn,jYj | > 1)

=Vn,1 + Vn,2 + Vn,3.

By (64) we have

Var
(
Vn,1

)
≤ C2

∑

j∈Z

|cn,j |
αh(|cn,j |

−1) → 0, as n → ∞,

if (59) holds. Similarly Vn,2 → 0 by (65) - (67). Finally, we have

P
(
Vn,3 6= 0) ≤ P

( ⋃

j∈Z

{|cn,jYj | > 1}
)

≤
∑

j∈Z

P
(
|cn,jYj| > 1

)

=
∑

j∈Z

|cn,j |
αh(|cn,j |

−1) → 0 as n → ∞.
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We have proved the sufficiency part of Proposition 6.2.
To prove the “only if” part, we show first that Vn −→P 0 implies uniform

infinitesimality of the coefficients, that is

sup
j∈Z

|cn,j | → 0, as n → ∞. (68)

Let {Ȳj} be an independent copy of {Yj}. If V̄n =
∑

j∈Z cn,jȲj , then also

Vn−V̄n −→P 0 and these are series of symmetric random variables. For each
n select some arbitrary jn ∈ Z and consider decomposition into independent
symmetric random variables

Vn − V̄n = cn,jn(Yjn − Ȳjn) +
∑

j∈Z,j 6=jn

cn,j(Yj − Ȳj) = Wn + W̃n.

Since {Vn − V̄n}n∈N is uniformly tight, so is {Wn}n∈N (it follows from the
Lévy-Ottaviani inequality, see e.g. Proposition 1.1.1 in [18]). Since the law
of Yj − Ȳj is non-degenerate we obtain

sup
n

|cn,jn | < +∞.

If along some subsequence n′ we would have cn′,jn′
→ c 6= 0, then for some

θ ∈ R1

lim
n′→∞

E
[
eiθWn′

]
= |E

[
eiθcY

]
|2 < 1.

It follows that also

lim
n′→∞

E
[
eiθ(Vn′−V̄n′ )

]
= lim

n′→∞
E
[
eiθWn′

]
E
[
eiθW̃n′

]
< 1.

This is in contradiction with Vn − V̄n −→P 0. Hence c = 0, cn,jn → 0 and
since jn was chosen arbitrary, (68) follows.

Now let us choose kn such that both

∑

|j|>kn

cn,jYj −→
P

0, as n → ∞,

and ∑

|j|>kn

P
(
|cn,jYj | > 1

)
→ 0, as n → ∞.

Then {Xn,j = cn,jYj ; |j| ≤ kn, n ∈ N} is an infinitesimal array of row-wise
independent random variables, with row sums convergent in probability to
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zero. Applying the general central limit theorem (see e.g. Theorem 5.15 in
[15]) we obtain

∑

|j|≤kn

P
(
|Xn,j | > 1

)
=

∑

|j|≤kn

P
(
|cn,jYj| > 1

)
=

∑

|j|≤kn

|cn,j|
αh(|cn,j |

−1) → 0.

This completes the proof of Proposition 6.2.
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