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Introduction

A classical problem in Statistics is the nonparametric estimation of the regression function of a response variable Y given an explanatory variable X, i.e, estimating the function g defined by g(t) = E(Y |X = t), based on the observations of (X i , Y i ) 1≤i≤n which are independent copies of (X, Y ). These observations are often modeled as follows: Y i = g(t i )+ε i where g is the unknown regression function to be estimated, the {t i , i = 1, • • • , n} is the sampling design and {ε i , i = 1, • • • , n} are centered errors. Typically when (ε i ) i are i.i.d. the estimation of g has been extensively investigated by several authors. We mention, among others, the work of Priestly and Chao [START_REF] Priestly | Nonparametric function fitting[END_REF], Benedetti [START_REF] Benedetti | On the Nonparametric estimation of the regression function[END_REF] and Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF]. However, considering that the observations are independent is not always a realistic assumption. In pharmacokinetics for instance, one wishes to estimate the concentrationtime of some injected medicine in the organism, based on the observation of blood tests over a period of time. It is clear that the observations provided from the same individual are correlated. For this, we shall investigate in this paper the nonparametric regression estimation problem where the observations are correlated.
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We consider the so-called fixed design regression model with repeated measurements, i.e.,

Y j (t i ) = g(t i ) + ε j (t i ) for i = 1, • • • , n and j = 1, • • • , m, (1) 
where {ε j , j = 1, • • • , m} is a sequence of i.i.d. centered error processes with the same distribution as a process ε. Such models are well known in growth curve analysis and dose response curves. They can be obtained, as noted by Azzalini [START_REF] Azzalini | Estimation and hypothesis testing for collections of autoregressive time series[END_REF], from m individual being observed on a period of time. Generally, observations between different individuals will be uncorrelated. Hence, it is of interest to relax the assumption of correlation between the experimental units.

Müller [START_REF] Müller | Optimal designs for nonparametric kernel regression[END_REF] considered Model [START_REF] Priestly | Nonparametric function fitting[END_REF] for m = 1 (observations on one experimental unit) and he supposed that, for s = t, the covariance Cov(ε j (t), ε j (s)) tends to 0 as n tends to infinity, which is not a realistic assumption, as indicated by Hart and Wherly [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF], in the growth curve problems. They investigated the estimation of g in Model [START_REF] Priestly | Nonparametric function fitting[END_REF] with a stationary error process. They used the estimator proposed by Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF], and they showed that, in order to obtain the consistency of the kernel estimator in the presence of correlations, it is necessary to take m experimental units and let m tends to infinity.

The stationarity assumption is however restrictive, for instance, in the previous pharmacokinetics example, it is clear that the concentration of the medicine will be high at the beginning then decreases with time. For this, we shall investigate the estimation of g in Model [START_REF] Priestly | Nonparametric function fitting[END_REF] where ε is a nonstationary error process. This case was partially investigated by Ferreira et al. [START_REF] Ferreira | Kernel regression estimates of growth curves using nonstationary correlated errors[END_REF] and Benhenni and Rachdi [START_REF] Benhenni | Nonparametric estimation of average growth curve with general nonstationary error process[END_REF], where the Gasser and Müller estimator was used.

In this paper, we propose a new estimator for the regression function g as an approximation of the kernel estimator based on continuous observations in the whole interval [0, 1] constructed through a stochastic integral. See, for instance, Blanke and Bosq [START_REF] Blanke | Regression estimation and predection in continuous time[END_REF], Didi and Louani [START_REF] Didi | Asymptotic results for the regression function estimate on continuous time stationary and ergodic data[END_REF]. When only discrete observations are available, we use the "best" approximation of the stochastic integral, which is obtained by using the trapezoidal rule based on discrete observations at appropriate n sampling points generated by a sampling density in the interval [0,[START_REF] Priestly | Nonparametric function fitting[END_REF].

This estimator has a relatively simpler expression than the kernel estimator proposed by Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF]. Moreover, since this last one depends on n integrals of a kernel at middle samples; and may be subject to numerical (computational) instability, for instance when a Gaussian kernel is used, whereas the proposed estimator depends only on the observations and the values of the kernel at the sampling points.

In addition to its simple expression, the proposed estimator allows to bring an answer to another important and open statistical problem under correlated errors, which is the optimal design problem. For instance, in the previous pharmacokinetic example, one wishes to find the best moments for the blood testing to be made in order to have a better estimate of the concentration curve.

The optimal design problem has been extensively studied in parametric regression. We mention the work of Sacks and Ylvisaker [START_REF] Sacks | Designs for regression problems with correlated errors[END_REF], Belouni and Benhenni [START_REF] Belouni | Optimal and robust designs for estimating the concentration curve and the AUC[END_REF] and more recently Dette et al. [START_REF] Dette | Optimal designs in regression with correlated errors[END_REF] among others. In the nonparametric case, Müller [START_REF] Müller | Optimal designs for nonparametric kernel regression[END_REF] introduced the optimal design points when the errors are asymptotically independent. He used a regular design sequence generated by a density function f , i.e, t i = F -1 ( i n ), where F is the distribution function associated to f . He derived the optimal design generated by a density that minimizes the asymptotic Integrated Mean Squared Error (IMSE). To the best of our knowledge, there exists no result concerning the problem of optimal design for nonparametric regression estimation in models under more general class of error processes.

We also investigate the problem of the asymptotic optimal bandwidth. We mention, for the nonparametric case, the work of Hart and Wherly [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF] and Benhenni and Rachdi [START_REF] Benhenni | Nonparametric estimation of average growth curve with general nonstationary error process[END_REF]. For results on the break down of some data based methods for bandwidth selection in the presence of correlation, for instance the cross validation, and other alternative methods, the reader is referred to Chiu [START_REF] Chiu | Bandwidth selection for kernel estimation with correlated noise[END_REF], Altman [START_REF] Altman | Kernel smoothing of data with correlated errors[END_REF], Hart [START_REF] Hart | Kernel regression estimation with time series errors[END_REF], and Hart [START_REF] Hart | Automated kernel smoothing of dependent data by using time series cross validation[END_REF] among others.

This article is organized as follows. In Section 2, we present the new estimator of the regression function g in Model [START_REF] Priestly | Nonparametric function fitting[END_REF] where ε is a centered error process. In Section 3, we give the asymptotic expressions of the bias, the variance and the IMSE. We then derive the asymptotic optimal bandwidth with respect to the asymptotic IMSE. In addition, we obtain the optimal design density with respect to the asymptotic IMSE. We also prove the asymptotic normality of the proposed estimator. In Section 4, we conduct a simulation study to investigate the performance of the new estimator and then to compare it with that of Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF]. Since the classical cross validation criteria turned out to be inefficient in the presence of correlation, we use the bandwidth that minimizes the exact IMSE, the comparison is performed for different numbers of experimental units and different numbers of design points. Finally, Section 5 is dedicated to the proofs of our theoretical results.

Model and estimator

We consider m experimental units, each of them having n different measurements of the response (say

0 ≤ t 1 < t 2 < • • • < t n ≤ 1)
. The so-called fixed design regression model is defined as follows:

Y j (t i ) = g(t i ) + ε j (t i ) where j = 1, . . . , m and i = 1, . . . , n, (2) 
where g is the unknown regression function on [0, 1] and {ε j (t), t ∈ [0, 1]} j is a sequence of error processes. We assume that g ∈ C 2 ([0, 1]) and that (ε j ) j are i.i.d. processes with the same distribution as a centered second order process ε. We denote by R its autocovariance function.

Simple estimator and sampling design

In order to motivate the construction of our new estimator, we consider the regression model using m continuous experimental units, i.e,

Y j (t) = g(t) + ε j (t) for t ∈ [0, 1] and j = 1, • • • , m. (3) 
A continuous kernel estimator of g in Model (3) is given for any x ∈ [0, 1] by,

ĝ[0,1] (x) = 1 0 ϕ x,h (t)Y (t) dt with Y (t) = 1 m m j=1 Y j (t), (4) 
where ϕ x,h (t) = 1 h K x-t h for a kernel K and a bandwidth h. For details on the Kernel estimation of the regression function based on continuous observations see Blanke and Bosq [START_REF] Blanke | Regression estimation and predection in continuous time[END_REF] and Didi and Louani [START_REF] Didi | Asymptotic results for the regression function estimate on continuous time stationary and ergodic data[END_REF].

In the practical case where we only have access to discrete observations, we apply the trapezoidal rule to approximate the continuous Kernel estimator given by (4). We construct then a new simple estimator of the regression function that we shall call the trapezoidal estimator.

Before introducing the proposed estimator, we begin with defining a sequence of designs which will be used in its construction. This class of designs was considered by Sacks and Ylvisaker [START_REF] Sacks | Designs for regression problems with correlated errors III[END_REF].

Definition 1 Let F be a distribution function of some density f satisfying inf

t∈[0,1] f (t) > 0 and sup t∈[0,1] f (t) < ∞.
The so-called regular sequence of designs generated by a density f is defined by,

T n = t i,n = F -1 i n , i = 1, . . . , n. for n ≥ 1.
Such a sequence of designs verifies the next useful lemma. 

Lemma 1 For n ≥ 1 let T n = (t i,n ) i=1,•
= Card (T n ∩[x-h, x+h]). Suppose that N Tn = 0 and that nh ≥ 1. Then, sup 0≤j≤n (t j+1,n -t j,n ) = O 1 n and N Tn = O(nh). (5) 
We shall now give the definition of the trapezoidal estimator, obtained from a discrete approximation of the continuous estimator ĝ[0,1] given by (4).

Definition 2

The trapezoidal estimator of the regression function g based on the observations

(t i,n , Y j (t i,n )) 1≤i≤n 1≤j≤m
, where T n = (t i,n ) 1≤i≤n is a regular sequence of designs generated by a density function f of support intersecting [x -h, x + h] is given, for any x ∈ [0, 1], by,

ĝtrap n (x) = 1 2n N Tn -1 k=1 ϕ x,h f Y (t x,k ) + ϕ x,h f Y (t x,k+1 ) , (6) 
where

t x,1 < • • • < t x,N Tn are the points of T n in [x -h, x + h], ϕ x,h (t) = 1 h K x-t h , Y is given in (4), K is a kernel of support [-1, 1] and h = h(n, m) is a bandwidth with 0 < h < 1.
In order to derive our asymptotic results, the following assumptions on the autocovariance function R and the kernel K are required. (B) At the diagonal (when t = s in the unit square), R has continuous left and right first-order derivatives, that is: The jump function along the diagonal α(t) ∆ = R (0,1) (t, t -) -R (0,1) (t, t + ) is assumed to be continuous and not identically equal to zero.

Assumptions

R (0,
(C) Off the diagonal (when t = s in the unit square), R is assumed to have continuous mixed partial derivatives up to order two and,

A (i,j) ∆ = sup 0≤t =s≤1 |R (i,j) (t, s)| < ∞ for i, j such that 0 ≤ i + j ≤ 2. (D) The Kernel K is even at least in C 2 ([-1, 1]) and K is Lipschitz on [-1,1].
Examples of processes with autocovariances satisfying Assumptions (A), (B) and (C) are given as follows.

Example 1

1. The Wiener process with autocovariance function R(s, t) = σ 2 min(s, t), has a constant jump function α(t) = σ 2 and R (i,j) (s, t) = 0 for all i, j such that i + j = 2 and s = t.

2. The Ornstein-Uhlenbeck process with a stationary autcovariance R(s, t) = σ 2 exp(-λ|s-t|) for σ > 0 and λ > 0. For this process α(t) = 2σ 2 λ and R (0,2) (s, t) = σ 2 λ 2 exp(-λ|s-t|).

3. Sacks and Ylvisaker [START_REF] Sacks | Designs for regression problems with correlated errors[END_REF] gave another general class of convex stationary autcovariance functions of the form,

R(s, t) = 1/|t-s| 0 (1 -µ|t -s|)p(µ) dµ,
where p is a probability density and p its derivative are such that,

lim µ→∞ µ 3 p(µ) < ∞, and ∞ a (µp (µ) + 3p(µ)) 2 )µ 6 dµ < ∞,
for some finite constant a. For this autocovariance function, α(t) = 2 ∞ 0 µp(µ) dµ for all t.

The following kernels satisfy Assumption (D).

Example 2

1. The Quadratic kernel defined by K(u) = 15 16 (1 -u 2 ) 2 1 {|u|≤1} . 2. The Triweight kernel defined by K(u) = 35 32 (1 -u 2 ) 3 1 {|u|≤1} .

Asymptotic results

The following propositions give the asymptotic expressions of the bias and the variance of the trapezoidal estimator as defined by [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF]. 

Bias(ĝ trap n (x)) = 1 2 h 2 g (x)B + o(h 2 ) + O 1 n 3 h 3 , where B = 1 -1 t 2 K(t) dt.
Proposition 2 Suppose that Assumptions (A), (B), (C) and (D) are satisfied. Moreover assume that f ∈ C 2 ([0, 1]) and for any t ∈ [0, 1], f and R (0,2) (t, .) are all Lipschitz on

[0, 1]. If lim n→∞ h = 0 and lim n→∞ nh = ∞ then for any x ∈]0, 1[, Var(ĝ trap n (x)) = 1 m R(x, x) - h 2 C K α(x) + V 12mn 2 h α(x) f 2 (x) + o h m + O 1 mn 2 + 1 mn 3 h 3 , where V = 1 -1 K 2 (t) dt and C K = 1 -1 1 -1 |u -v|K(u)K(v)dudv.
Propositions 1 and 2 allow to derive the asymptotic expression of the mean squared error (MSE) of the Trapezoidal estimator [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF]. The integrated mean squared error (IMSE) is then obtained by integrating the MSE with respect to some weight function w. The results are announced, without proof, in the following theorem.

Theorem 1 If all the assumptions of Propositions 1 and 2 are satisfied then for any

x ∈]0, 1[, MSE(ĝ trap n (x)) = 1 m R(x, x) - h 2 α(x)C K + V 12mn 2 h α(x) f 2 (x) + 1 4 h 4 [g (x)] 2 B 2 + o h 4 + h m + O 1 n 3 h + 1 mn 3 h 3 + 1 mn 2 + 1 n 6 h 6 , IMSE(ĝ trap n ) = 1 m 1 0 R(x, x) - h 2 α(x)C K w(x) dx + V 12mn 2 h 1 0 α(x) f 2 (x) w(x) dx + 1 4 h 4 B 2 1 0 [g (x)] 2 w(x) dx + o h 4 + h m + O 1 n 3 h + 1 mn 3 h 3 + 1 mn 2 + 1 n 6 h 6 , ( 7 
)
where w is a continuous density function, V , B and C K are given in Propositions 1, 2.

The previous Theorem shows, the efficiency of the Trapezoidal estimator, since the IMSE tends to 0 when m → ∞, h → 0 and nh → ∞ as n → ∞.

The asymptotic optimal bandwidth is obtained by minimizing the asymptotic IMSE as given by the following proposition.

Proposition 3 (Optimal bandwidth) Suppose that the assumptions of Theorem 1 are satisfied. Moreover assume that m n = O(1) as n, m → ∞. Denote by IMSE(h) the IMSE of the trapezoidal estimator when the bandwidth h is used. Then the bandwidth,

h * = C K 1 0 α(x)w(x) dx 2B 2 1 0 [g (x)] 2 w(x) dx 1/3 m -1/3 , (8) 
is optimal in the sense that,

lim n,m→∞ IMSE(h * ) IMSE(h n,m ) ≤ 1,
for any sequence of bandwidths h n,m verifying:

lim n,m→∞
h n,m = 0 and lim n,m→∞

mh 3 n,m < +∞.
where B and C K are given in Propositions 1 and 2.

We are interested now in finding the optimal design density, i.e, f * according to the criteria f * = argmin f IMSE, where the minimum is taken with respect to the class of positive densities defined on [0, 1]. In view of Theorem 1, the asymptotic optimal design density verifies,

f * = argmin f >0, 1 0 f (x)dx=1 1 0 α(x) f 2 (x) w(x) dx.
This optimization problem is solved in the following corollary.

Corollary 1 (Optimal design) Suppose that the assumptions of Theorem 1 are satisfied. If lim n→∞ nh 2 = ∞ and lim n,m→∞ n m = ∞, then the optimal sampling density with respect to the asymptotic IMSE is given by,

f * (t) = {α(t)w(t)} 1/3 1 0 {α(s)w(s)} 1/3 ds 1 [0,1] (t). (9) 
Let ĝtrap n,f * be the Trapezoidal estimator [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF] with f = f * defined by [START_REF] Blanke | Regression estimation and predection in continuous time[END_REF]. We have,

IMSE(ĝ trap n,f * ) = 1 m 1 0 R(x, x) - 1 2 α(x)C K h w(x) dx + V 12mn 2 h 1 0 (α(x)w(x)) 1/3 dx 3 + 1 4 h 4 B 2 1 0 [g (x)] 2 w(x) dx + o h 4 + h m + O 1 n 3 h + 1 mn 3 h 3 + 1 mn 2 + 1 n 6 h 6 ,
Remark 1 Let ĝtrap n,unif be the Trapezoidal estimator (6) with a uniform density, i.e, f = f unif . The asymptotic IMSE of ĝtrap n,unif is given by,

IMSE(ĝ trap n,unif ) = 1 m 1 0 R(x, x) - 1 2 α(x)C K h w(x) dx + V 12mn 2 h 1 0 α(x)w(x) dx + 1 4 h 4 B 2 1 0 [g (x)] 2 w(x) dx + o h 4 + h m + O 1 n 3 h + 1 mn 3 h 3 + 1 mn 2 + 1 n 6 h 6 ,
The reduction of the residual IMSE,

IMSE ∆ = IMSE -σ 2
x,h /m, by using the asymptotic optimal design over the uniform design is then,

rIM SE = IMSE(ĝ trap n,unif ) -IMSE(ĝ trap n,f * ) IMSE(ĝ trap n,unif ) ∼ 1 - 1 0 (α(x)w(x)) 1/3 dx 3 1 0 α(x)w(x) dx . For instance, if R(s, t) = st min(s, t) then α(t) = t 2 . Taking w ≡ 1 gives rIM SE ∼ 35%.
Finally, the next theorem gives the asymptotic normality of the Trapezoidal estimator (6).

Theorem 2 (Asymptotic normality) Suppose that the assumptions of Theorem 1 are satisfied. If

lim m→∞ √ mh 2 = 0 and lim n→∞ nh 2 = ∞ then for any x ∈]0, 1[, √ m ĝtrap n (x) -g(x) D -→ Z, with Z ∼ N (0, R(x, x)),
where D denotes the convergence in distribution and N is the normal distribution.

Simulation study

In this section, we investigate the performance of our estimator (6) in a finite sample set. We shall use the cubic growth curve, used by Benhenni and Rachdi [START_REF] Benhenni | Nonparametric estimation of average growth curve with general nonstationary error process[END_REF] and Hart and Wherly [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF],

g(x) = 10x 3 -15x 4 + 6x 5 for 0 < x < 1. (10) 
This function was mainly used due to its similarity to the logistic function which is frequently found in growth curve analysis. The sampling points are taken to be:

t i = (i -0.5)/n for i = 1, • • • , n. (11) 
The error process ε is taken to be the Wiener error process with autocovariance function R(s, t) = σ 2 min(s, t). The Kernel used here is the quadratic kernel given by

K(u) = (15/16)(1 -u 2 ) 2 I [-1,1] (u).
The bandwidth used in this study is the optimal bandwidth with respect to the exact IMSE.

We consider the mean of all estimators obtained from 100 simulations. We take σ 2 = 0.5 simulations for other values of σ 2 gave similar results. The results are given in Figure 1 for a fixed number of observations n = 100 and three different values of experimental units m = 5, 20, 100. It is clear that, the performance of the trapezoidal estimator gets better as m increases. Our aim now is to compare the trapezoidal estimator to that of Gasser and Müller [START_REF] Gasser | Kernel estimation of regression functions[END_REF] (referred by GM estimator), given for any x ∈]0, 1[ by,

ĝGM n (x) = n i=1 m i m i-1 ϕ x,h (t)dt Y (t i ), (12) 
where m 0 = 0, m n = 1 and

m i = (t i + t i+1 )/2 for i = 2, • • • , n -1, ϕ x,h (t) = (1/h)K((x - t)/h) and Y (t i ) = (1/m) m j=1 Y j (t i
). This comparison is conducted with respect to the non-asymptotic IMSE and under different types of correlation errors. We consider again the cubic regression function, the design given by [START_REF] Sacks | Designs for regression problems with correlated errors[END_REF] and the quadratic kernel. The two error processes considered here are the stationary Ornstein-Uhlenbeck process with R(s, t) = exp(-λ|s -t|), and the nonstationary Wiener process with R(s, t) = σ 2 min(s, t). We investigate various "amount" of correlation by taking different values of both σ 2 and λ.

We take the weight density w to be the uniform on [0, 1], and we compare the optimal non-asymptotic IMSE of the two estimators, i.e., inf 0<h<1 IMSE(h). The bandwidth h is chosen over a grid from 0.09 to 0.5. The results are given in Tables 123456for n = 30 and for different values of m. The tables present the integrated bias squared denoted by Ibias 2 , integrated variance denoted by Ivar and the IMSE together with the optimal bandwidth associated to the smallest non-asymptotic IMSE for each estimator.

It can be seen that the optimal bandwidth is the same for both estimators, in addition, as expected, it decreases as m increases.

Consider first the case of strong correlated errors, i.e, for a large σ 2 and a small λ. In Table 1, for the Wiener process with σ 2 = 1, it appears that the G-M estimator has a slightly smaller Ibias 2 while the trapezoidal estimator has a slightly smaller Ivar and since the Ibias 2 is too small compared to the Ivar then the trapezoidal estimator has a slightly smaller IMSE. For the Ornstein-Uhlenbeck with λ = 1 (c.f. Table 2) it can be seen that the trapezoidal extimator has a slightly better IMSE due to a better Ibias 2 and a better Ivar.

Consider now the case of moderate correlated errors. In Table 3 (for the Wiener process with σ 2 = 0.5) it seems that the G-M estimator has a slightly smaller Ibias 2 while the trapezoidal estimator has a slightly smaller Ivar and smaller IMSE. While for the Ornstein-Uhlenbeck process with λ = 25, presented in table 4, the G-M estimator has slightly better IMSE due to a better Ibias 2 and better Ivar.

Finally, consider the weakly correlated errors, i.e, for a small value of σ 2 and a large value of λ. In table 5, for the Wiener process with σ 2 = 0.06. it appears that the G-M estimator has a slightly smaller Ibias 2 while the trapezoidal estimator has a smaller Ivar and smaller IMSE. However, for the Ornstein-Uhlenbeck process with λ = 50 (c.f. Table 6) the trapezoidal estimator has a slightly smaller Ibias 2 while the G-M estimator has a slightly smaller Ivar and IMSE.

Overall, the two estimators, i.e, the trapezoidal estimator and the Gasser and Müller estimator, have "approximately" the same performance. Hence, the proposed estimator, which has a simpler expression, is as efficient as the classical Gasser and Müller estimator.

Another aspect we looked into in this simulation study was the use of the asymptotic optimal design in a finite sample set. We consider the autocovariance function R(s, t) = st min(s, t) for which α(t) = t 2 . We compare, for m = 5, 30 and h = 0.123 for instance, the non-asymptotic IMSE (taking w ≡ 1) of the Trapezoidal estimator (6), using both the uniform design [START_REF] Sacks | Designs for regression problems with correlated errors[END_REF], i.e., f ≡ 1 and the optimal design generated by f * given in (9), i.e.,

f * (t) = 5 3 t 2/3 1 [0,1] (t) and t * i = i n 2/3
.

The results are given in Tables 7 and8, where the reduction in the IMSE by taking the optimal design instead of the uniform design is given by,

rIM SE = IMSE(ĝ trap n,unif ) -IMSE(ĝ trap n,f * ) IMSE(ĝ trap n,unif )
.

It can be seen in Tables 7 and8 that there exists a significant reduction of the IMSE of the Trapezoidal estimator when using the optimal design, for a small values of the sampling size n. and this reduction gets smaller when n gets bigger due to the convergence of the IMSE to σ 2

x,h /m. When m gets very large, simulations yielded reductions up to 30%. In all the previous cases, it appears that Ibias 2 is always smaller than Ivar. It should be noted here that, both of the estimators have boundary problems. A modified kernel at the edges, as suggested by Hart and Wherly [START_REF] Hart | Kernel regression estimation using repeated measurements data[END_REF], was used in this simulation.

Table 1: The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Wiener error process with σ 2 = 1, for the GM and the trapezoidal estimator. Table 6: The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Ornstein-Uhlenbeck error process with λ = 50 for the GM and the trapezoidal estimator. For the sake of clarity, we omit the n in t i,n . For i = 1, • • • , n-1 the Mean Value Theorem (m.v.t) yields that there exists η i ∈]t i , t i+1 [ such that,

n = 20 m Ibias 2 Ivar IMSE h opt GM 5 2.8832×10 -3 8.4967×10 -2 8.7850×10 -2 0.411 T rap 2.8833×10 -3 8.4959×10 -2 8.7843×10 -2 0.411 GM 15 1.04816×10 -3 2.9293×10 -2 3.0341×10 -2 0.322 T rap 1.04856×10 -3 2.9276×10 -2 3.0325×10 -2 0.322 GM 30 2.7691×10 -4 1.5169×10 -2 1.5446×10 -2 0.233 T rap 2.8535×10 -4 1.5124×10 -2 1.5409×10 -2 0.233
n = 20 m Ibias 2 Ivar IMSE h opt GM 5 4.3496×10 -3 1.9905×10 -2 2.4255×10 -2 0.454 T rap 4.3494×10 -3 1.9907×10 -2 2.4257×10 -2 0.454 GM 15 2.8194×10 -3 1.8049×10 -2 2.0868×10 -2 0.408 T rap 2.8192×10 -3 1.8053×10 -2 2.0872×10 -2 0.408 GM 30 2.8194×10 -3 1.5470×10 -2 1.8290×10 -2 0.408 T rap 2.8192×10 -3 1.5474×10 -2 1.8293×10 -2 0.408
t i+1 -t i = F -1 ( i + 1 n ) -F -1 ( i n ) = 1 nf (η i ) . Since inf 0≤t≤1 f (t) > 0 then t i+1 -t i = O( 1 n ).
We shall now prove the second part of the Lemma. Since T n ∩ [x -h, x + h] = ∅, there exist i 1 , i N indexes in {1, . . . , n} such that,

N Tn ≤ i N -i 1 + 1.
From the definition of the regular sequence we have for all i = 1, ..., n,

t i = F -1 i n thus i = nF (t i ).
Using this and the m.v.t we obtain for some

x ∈]t i 1 , t i N [, N Tn ≤ n F (t i N ) -F (t i 1 ) + 1 = n(t i N -t i 1 )f ( x ) + 1,
The boundedness of f and the fact that t i N -t i 1 ≤ 2h yield,

N Tn ≤ (2 sup 0≤t≤1 f (t)) nh + 1.
This concludes the proof of the second part of Lemma 1 since 1 ≤ nh.

Proof of Proposition 1.

For h small enough and since

T n ∩ [x -h, x + h] = ∅ we take t x,1 < t x,2 < • • • < t x,N Tn the points of T n in [x -h, x + h]. Since E(Y (t i )) = g(t i ) for all i = 1, • • • , n we have, E(ĝ trap n (x)) = 1 2n N Tn -1 k=1 ϕ x,h f g (t x,k ) + ϕ x,h f g (t x,k+1 ) .
From the definition of the regular sequence of designs we have for k = 1, . . . , N Tn -1,

F (t x,k+1 ) -F (t x,k ) = 1 n ⇐⇒ t x,k+1 t x,k f (t) dt = 1 n . (13) 
Thus,

E(ĝ trap n (x)) = 1 2 N Tn -1 k=1 t x,k+1 t x,k ϕ x,h f g (t x,k ) + ϕ x,h f g (t x,k+1 ) f (t) dt.
Let,

I h (x) = x+h x-h ϕ x,h (t)g(t) dt = N Tn -1 k=1 t x,k+1 t x,k ϕ x,h (t)g(t) dt + t x,1 x-h ϕ x,h (t)g(t) dt + x+h t x,N Tn ϕ x,h (t)g(t) dt,
and write,

E(ĝ trap n (x)) = E(ĝ trap n (x)) -I h (x) + I h (x) ∆ = ∆ x,h + I h (x). (14) 
We first control ∆ x,h . Let,

∆ x,h = ∆ 1 x,h + ∆ 2 x,h , (15) 
where,

∆ 1 x,h = 1 2 N Tn -1 k=1 t x,k+1 t x,k ϕ x,h f g (t x,k )f (t) -ϕ x,h (t)g(t) dt - 1 2 t x,1 x-h ϕ x,h (t)g(t) dt - 1 2 x+h t x,N Tn ϕ x,h (t)g(t) dt. ∆ 2 x,h = 1 2 N Tn -1 k=1 t x,k+1 t x,k ϕ x,h f g (t x,k+1 )f (t) -ϕ x,h (t)g(t) dt - 1 2 t x,1 x-h ϕ x,h (t)g(t) dt - 1 2 x+h t x,N Tn ϕ x,h (t)g(t) dt. For t ∈ [x -h, t x,1 ], Taylor expansion of ϕ x,h around (x -h) yields, ϕ x,h (t) = ϕ x,h (x -h) + (t -(x -h))ϕ x,h (x -h) + 1 2 (t -(x -h)) 2 ϕ x,h (θ x,h ), (16) 
for some θ x,h ∈]x -h, t x,1 [. Recall that by definition of ϕ x,h we have,

sup 0≤t≤1 |ϕ (j) x,h (t)| ≤ c j h j+1 for j = 0, 1, 2, (17) 
for some appropriate constants c j where j = 0, 1, 2. In addition, since ϕ x,h is in C 2 and of support [x -h, x + h] then,

ϕ x,h (x -h) = ϕ x,h (x + h) = ϕ x,h (x -h) = ϕ x,h (x + h) = 0. (18) 
Using ( 18) and ( 17) in ( 16) and using Lemma (1) we obtain for t ∈ [x -h, t x,1 ],

ϕ x,h (t) = 1 2 (t -(x -h)) 2 ϕ x,h (θ x,h ) = O 1 n 2 h 3 , (19) 
Likewise, for t ∈ [t x,N Tn , x + h] we have,

ϕ x,h (t) = 1 2 (t -(x + h)) 2 ϕ x,h (θ x,h ) = O 1 n 2 h 3 , (20) 
where θ x,h ∈]t x,N Tn , x + h[. Hence,

t x,1 x-h ϕ x,h (t)g(t) dt = O 1 n 3 h 3 and x+h t x,N Tn ϕ x,h (t)g(t) dt = O 1 n 3 h 3 . Thus, ∆ 1 x,h = 1 2 N Tn -1 k=1 t x,k+1 t x,k ϕ x,h f g (t x,k ) - ϕ x,h f g (t) f (t) dt + O 1 n 3 h 3 ,

and,

∆ 2

x,h = 1 2

N Tn -1 k=1 t x,k+1 t x,k ϕ x,h f g (t x,k+1 ) - ϕ x,h f g (t) f (t) dt + O 1 n 3 h 3 .
Recall that ϕ x,h is in C 2 and f, g ∈ C 2 ([0, 1]), then for any t ∈]t x,k , t x,k+1 [ Taylor expansions of ϕ x,h f g and f around t x,k give,

∆ 1 x,h = 1 2 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k ) t x,k+1 t x,k (t x,k -t) dt - 1 2 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k ) t x,k+1 t x,k (t -t x,k ) 2 dt - 1 4 N Tn -1 k=1 ϕ x,h f g (t x,k ) t x,k+1 t x,k (t -t x,k ) 3 f (η x,k ) dt - 1 4 N Tn -1 k=1 f (t x,k ) t x,k+1 t x,k (t -t x,k ) 2 ϕ x,h f g (θ x,k ) dt - 1 4 N Tn -1 k=1 f (t x,k ) t x,k+1 t x,k (t -t x,k ) 3 ϕ x,h f g (θ x,k ) dt - 1 8 N Tn -1 k=1 t x,k+1 t x,k (t -t x,k ) 4 ϕ x,h f g (θ x,k )f (η x,k ) dt + O 1 n 3 h 3 ,
where θ x,k and η x,k are in ]t x,k , t[. Recall that the functions g (j) , f (j) for j = 0, 1, 2 are all bounded, then using [START_REF] Hart | Automated kernel smoothing of dependent data by using time series cross validation[END_REF] and Lemma 1 we get,

N Tn -1 k=1 ϕ x,h f g (t x,k ) t x,k+1 t x,k (t -t x,k ) 3 f (η x,k ) dt = O 1 n 3 h . ( 21 
) N Tn -1 k=1 f (t x,k ) t x,k+1 t x,k (t -t x,k ) 3 ϕ x,h f g (θ x,k ) dt = O 1 n 3 h 2 . ( 22 
) N Tn -1 k=1 t x,k+1 t x,k (t -t x,k ) 4 ϕ x,h f g (θ x,k )f (η x,k ) dt = O 1 n 4 h 2 . ( 23 
)
Note that, since ϕ x,h , g and f are all lipschitz then,

ϕ x,h f g (θ x,k ) = ϕ x,h f g (t x,k ) + ϕ x,h f g (θ x,k ) - ϕ x,h f g (t x,k ) = ϕ x,h f g (t x,k ) + O 1 nh 4 . (24) 
Injecting ( 21), ( 22), ( 23) and (24) in ∆ 1

x,h we have,

∆ 1 x,h = 1 2 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k ) t x,k+1 t x,k (t x,k -t) dt - 1 2 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k ) t x,k+1 t x,k (t -t x,k ) 2 dt - 1 4 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k ) t x,k+1 t x,k (t -t x,k ) 2 dt + O 1 n 3 h 3 .
Let d x,k = t x,k+1 -t x,k . We obtain by basic integration, ∆ 1

x,h = -

1 4 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k )d 2 x,k - 1 6 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k )d 3 x,k - 1 12 N Tn -1 k=1 ϕ x,h f g (t x,k )f (t x,k )d 3 x,k + O 1 n 3 h 3 . ( 25 
)
Similarly we verify that,

∆ 2 x,h = 1 4 N Tn -1 k=1 ϕ x,h f g (t x,k+1 )f (t x,k+1 )d 2 x,k - 1 6 N Tn -1 k=1 ϕ x,h f g (t x,k+1 )f (t x,k+1 )d 3 x,k - 1 12 N Tn -1 k=1 ϕ x,h f g (t x,k+1 )f (t x,k+1 )d 3 x,k + O 1 n 3 h 3 , (26) 
Summing ( 25) and (26) gives,

∆ x,h = ∆ 1 x,h + ∆ 2 x,h = 1 4 N Tn -1 k=1 d 2 x,k ϕ x,h f g (t x,k+1 )f (t x,k+1 ) - ϕ x,h f g (t x,k )f (t x,k ) - 1 6 N Tn -1 k=1 d 3 x,k ϕ x,h f g (t x,k+1 )f (t x,k+1 ) + ϕ x,h f g (t x,k )f (t x,k ) - 1 12 
N Tn -1 k=1 d 3 x,k ϕ x,h f g (t x,k+1 )f (t x,k+1 ) + ϕ x,h f g (t x,k )f (t x,k ) + O 1 n 3 h 3 . Since ϕ x,h is in C 1 and g , f ∈ C 1 ([0, 1]), Taylor expansion of ϕ x,h f g f around t x,k yields, ϕ x,h f g f (t x,k+1 ) = ϕ x,h f g f (t x,k ) + d x,k ϕ x,h f g f (ν x,k ),
where ν x,k ∈]t x,k , t x,k+1 [. We then have,

∆ x,h = 1 4 N Tn -1 k=1 d 3 x,k ϕ x,h f g f (ν x,k ) - 1 6 N Tn -1 k=1 d 3 x,k ϕ x,h f g (t x,k+1 )f (t x,k+1 ) + ϕ x,h f g (t x,k )f (t x,k ) - 1 12 
N Tn -1 k=1 d 3 x,k ϕ x,h f g (t x,k+1 )f (t x,k+1 ) + ϕ x,h f g (t x,k )f (t x,k ) + O 1 n 3 h 3 .
From the definition of the regular sequence of designs and using the m.v.t. we obtain for k

= 1, • • • , N Tn -1, t x,k+1 t x,k f (t) dt = 1 n ⇐⇒ d x,k = 1 nf (t * x,k ) for some t * x,k ∈]t x,k , t x,k+1 [. (27) 
This equation yields,

∆ x,h = 1 4n 2 N Tn -1 k=1 d x,k 1 f 2 (t * x,k ) ϕ x,h f g f (ν x,k ) - 1 6n 2 N Tn -1 k=1 d x,k ϕ x,h f g (t x,k+1 ) f (t x,k+1 ) f 2 (t * x,k ) + ϕ x,h f g (t x,k ) f (t x,k ) f 2 (t * x,k ) - 1 12n 2 N Tn -1 k=1 d x,k ϕ x,h f g (t x,k+1 ) f (t x,k+1 ) f 2 (t * x,k ) + ϕ x,h f g (t x,k ) f (t x,k ) f 2 (t * x,k ) + O 1 n 3 h 3 .

Using the Riemann integrability of ϕ (j)

x,h , f (j) and g (j) for j = 0, 1, 2 and applying Lemma 2 in the Appendix with u(t) = 1 f 2 (t) and v(t) = ϕ x,h f g f (t) we obtain,

N Tn -1 k=1 d x,k 1 f 2 (t * x,k ) ϕ x,h f g f (ν x,k ) = x+h x-h 1 f 2 (t) ϕ x,h f g f (t) dt + O 1 nh 3 .
Similarly, taking u(t) =

ϕ x,h f g (t) and v(t) = f (t) f 2 (t)
in Lemma 2 we obtain,

N Tn -1 k=1 d x,k ϕ x,h f g (t x,k+1 ) f (t x,k+1 ) f 2 (t * x,k ) = x+h x-h ϕ x,h f g (t) f (t) f 2 (t) dt + O 1 nh 3 . Again taking u(t) = ϕ x,h f g (t) and v(t) = f (t) f 2 (t) we obtain, N Tn -1 k=1 d x,k ϕ x,h f g (t x,k+1 ) f (t x,k+1 ) f 2 (t * x,k ) = x+h x-h ϕ x,h f g (t) 1 f (t) dt + O 1 nh 3 .
Hence,

∆ x,h = 1 4n 2 x+h x-h 1 f 2 (t) ϕ x,h f g f (t) dt - 1 3n 2 x+h x-h ϕ x,h f g (t) f (t) f 2 (t) dt - 1 6n 2 x+h x-h ϕ x,h f g (t) 1 f (t) dt + O 1 n 3 h 3 .

Simple derivations yield,

∆ x,h = 1 4n 2 x+h x-h ϕ x,h f g (t) 1 f (t) dt + 1 4n 2 x+h x-h ϕ x,h f g (t) f (t) f 2 (t) dt - 1 3n 2 x+h x-h ϕ x,h f g (t) f (t) f 2 (t) dt - 1 6n 2 x+h x-h ϕ x,h f g (t) 1 f (t) dt + O 1 n 3 h 3 = 1 12n 2 x+h x-h ϕ x,h f g (t) 1 f (t) dt - 1 12n 2 x+h x-h ϕ x,h f g (t) f (t) f 2 (t) dt + O 1 n 3 h 3 = 1 12n 2 x+h x-h ϕ x,h f g 1 f (t) dt + O 1 n 3 h 3 . Finally, ∆ x,h = 1 12n 2 ϕ x,h f g 1 f (x + h) - ϕ x,h f g 1 f (x -h) + O 1 n 3 h 3 .
The last equation together with (18) yield,

∆ x,h = O 1 n 3 h 3 . ( 28 
)
The control of I h (x) is classical and it can be seen from Gasser and Müller (1984) [19] that,

I h (x) = g(x) + 1 2 h 2 g (x) 1 -1 t 2 K(t) dt + o(h 2 ). (29) 
Finally, collecting ( 14), ( 28) and (29) gives,

Bias(ĝ trap n (x)) = 1 2 h 2 g (x)B + o(h 2 ) + O 1 n 3 h 3 ,
where B = 1 -1 t 2 K(t) dt. This concludes the proof of Proposition 1.

Proof of Proposition 2.

The greatest lines of this proof are based on the work of Belouni and Benhenni [START_REF] Belouni | Optimal and robust designs for estimating the concentration curve and the AUC[END_REF]. For h small enough and since

T n ∩ [x -h, x + h] = ∅ we have, 0 ≤ t 1 < • • • < x -h ≤ t x,1 < • • • < t x,N Tn ≤ x + h < • • • < t n ≤ 1. Let, Φ(t, s) = ϕ x,h f (t)R(t, s) ϕ x,h f (s),
and,

σ 2 x,h = x+h x-h x+h x-h ϕ x,h (t)R(t, s)ϕ x,h (s) ds dt. ( 30 
)
On the one hand,

Var(ĝ trap n (x)) = 1 4mn 2 N Tn -1 i=1 N Tn -1 j=1 Φ(t x,i , t x,j ) + Φ(t x,i , t x,j+1 ) + Φ(t x,i+1 , t x,j ) + Φ(t x,i+1 , t x,j+1 )
Using ( 13) one can write,

Var(ĝ trap n (x)) = 1 4m N Tn -1 i=1 N Tn -1 j=1 t x,i+1 t x,i t x,j+1 t x,j Φ(t x,i , t x,j ) + Φ(t x,i , t x,j+1 ) + Φ(t x,i+1 , t x,j ) + Φ(t x,i+1 , t x,j+1 ) f (s) f (t) ds dt.
On the other hand we have,

σ 2 x,h = N Tn -1 i=1 N Tn -1 j=1 t x,i+1 t x,i t x,j+1 t x,j Φ(t, s)f (t) f (s) ds dt + 2 t x,1 x-h x+h t x,N Tn Φ(t, s)f (t) f (s) ds dt + x+h t x,N Tn x+h t x,N Tn Φ(t, s)f (t) f (s) ds dt + t x,1
x-h t x,1

x-h 

Φ(t, s)f (t) f (s) ds dt + 2 N Tn -1 j=1 t x,1 x-h t x,j+1 t x,j Φ(t, s)f (t) f (s) ds dt + 2
|ϕ x,h (t)| = O 1 n 2 h 3 . ( 31 
)
Since f and R are bounded, using ( 17) and ( 31) we obtain,

t x,1 x-h x+h t x,N Tn Φ(t, s)f (t) f (s) ds dt = O 1 n 6 h 6 , x+h t x,N Tn x+h t x,N Tn Φ(t, s)f (t) f (s) ds dt = O 1 n 6 h 6 , t x,1 x-h t x,1 x-h Φ(t, s)f (t) f (s) ds dt = O 1 n 6 h 6 , N Tn -1 j=1 t x,1 x-h t x,j+1 t x,j Φ(t, s)f (t) f (s) ds dt = O 1 n 3 h 3 , N Tn -1 j=1 x+h t x,N Tn t x,j+1 t x,j Φ(t, s)f (t) f (s) ds dt = O 1 n 3 h 3 . Thus, σ 2 x,h = N Tn -1 i=1 N Tn -1 j=1 t x,i+1 t x,i t x,j+1 t x,j Φ(t, s)f (t) f (s) ds dt + O 1 n 3 h 3 .
We shall control the residual variance Var(ĝ trap n (x)) -

σ 2
x,h m . For this, let, N i,j (t, s) = Φ(t x,i , t x,j ) + Φ(t x,i+1 , t x,j ) + Φ(t x,i , t x,j+1 ) + Φ(t x,i+1 , t x,j+1 ) -4Φ(t, s), (32) and put,

I i,j = 1 4m t x,i+1 t x,i t x,j+1 t x,j N i,j (t, s)f (t) f (s) ds dt. ( 33 
)
The residual variance can then be written as follows,

Var(ĝ trap n (x)) - σ 2 x,h m = N Tn -1 i=1 I i,i + N Tn -1 i =j=1 I i,j + O 1 mn 3 h 3 , (34) 
Starting with the diagonal terms I i,i . Since for any s, t ∈ [0, 1], we have N i,i (s, t) = N i,i (t, s), then we can write,

I i,i = 1 2m t x,i+1 t x,i t t x,i N i,i (t, s)f (t) f (s) ds dt. ( 35 
)
Because of Assumption (B), N i,i has left and right first order derivatives on the diagonal on [0, 1] 2 . For any s, t such that (t x,i < s ≤ t < t x,i+1 ), Taylor expansion of Φ around

(t x,i , t x,i ) gives, Φ(t, s) = Φ(t, t x,i ) + (s -t x,i )Φ (0,1) (t, t x,i ) + 1 2 (s -t x,i ) 2 Φ (0,2) (t, η (1) 
s,i ) = Φ(t x,i , t x,i ) + (t -t x,i )Φ (1,0) ( (1) t,i , t x,i ) + (s -t x,i )Φ (0,1) ( i , t x,i ) + (s -t x,i )(t -i )Φ (1,1) ( (2) t,i , t x,i ) + 1 2 (s -t x,i ) 2 Φ (0,2) (t, η (1) 
s,i ),

for some i ∈]t x,i , t x,i+1 [, some (1) 
t,i in ]t x,i , t[, some (2) 
t,i between t and i and some η

t,i in ]t x,i , s[. We have,

Φ(t, s) = Φ(t x,i , t x,i ) + (t -t x,i )Φ (1,0) ( i , t x,i ) + (s -t x,i )Φ (0,1) ( i , t x,i ) + (t -t x,i ) Φ (1,0) ( (1) t,i , t x,i ) -Φ (1,0) ( i , t x,i ) + (s -t x,i )(t -i )Φ (1,1) ( (2) t,i , t x,i ) + 1 2 (s -t x,i ) 2 Φ (0,2) (t, η (1) 
s,i ).

For l and l integers such that l + l ≤ 2, Assumption (C) yields,

sup s =t |Φ (l,l ) (t, s)| = O 1 h l+l +2 . ( 36 
)
In addition, since ϕ x,h , ϕ x,h , 1 f , R and R(•, t x,i ) are all continuous on ]t x,i , t x,i+1 [, then fo s = t in ]t x,i , t x,i+1 [ we have,

Φ (1,0) (s, t x,i ) -Φ (1,0) (t, t x,i ) = ϕ x,h f (t x,i ) R(s, t x,i ) ϕ x,h f (s) - ϕ x,h f (t) + R (1,0) (s, t x,i ) ϕ x,h f (s) - ϕ x,h f (t) + ϕ x,h f (t) R (1,0) (s, t x,i ) -R (1,0) (t, t x,i ) + ϕ x,h f (t) R(s, t x,i ) -R(t, t x,i ) = O 1 nh 4 .
Finally, using this equation together with Lemma 1 we obtain,

Φ(t, s) = Φ(t x,i , t x,i ) + (t -t x,i )Φ (1,0) ( i , t x,i ) + (s -t x,i )Φ (0,1) ( i , t x,i ) + O 1 n 2 h 4 . (37)
Similarly we verify that,

Φ(t x,i+1 , t x,i+1 ) = Φ(t x,i , t x,i ) + d x,i Φ (1,0) ( i , t x,i ) + d x,i Φ (0,1) ( i , t x,i ) + O 1 n 2 h 4 , (38)
and that,

Φ(t x,i+1 , t x,i ) = Φ(t x,i , t x,i ) + d x,i Φ (1,0) ( i , t x,i ) + O 1 n 2 h 4 . ( 39 
)
Inserting (37), ( 38) and ( 39) in (32) for i = j and using (36) and Lemma 1, we obtain,

N i,i (t, s) = 3d x,i Φ (1,0) ( i , t x,i ) -4(t -t x,i )Φ (1,0) ( i , t x,i ) + d x,i Φ (0,1) ( i , t x,i ) -4(s -t x,i )Φ (0,1) ( i , t x,i ) + O 1 n 2 h 4 .
Replacing this expression in (35), and using the boundedness of f and Lemma 1, we obtain,

I i,i = 1 2m d x,i 3Φ (1,0) ( i , t x,i ) + Φ (0,1) ( i , t x,i ) t x,i+1 t x,i t t x,i f (t) f (s) ds dt -4Φ (1,0) ( i , t x,i ) t x,i+1 t x,i t t x,i (t -t x,i )f (t) f (s) ds dt -4Φ (0,1) ( i , t x,i ) t x,i+1 t x,i t t x,i (s -t x,i )f (t) f (s) ds dt + O 1 mn 4 h 4 . ( 40 
) Recall that f is in C 2 ([0, 1]) and that d x,i = O( 1 n ) from Lemma 1.
It can easily be verified that for any integers l and l :

t x,i+1 t x,i t t x,i (s -t x,i ) l (s -t x,i ) l f (t) f (s) ds dt = f 2 (t x,i ) d (l+l +2) x,i (l + 1)(l + l + 2) + O 1 n l+l +3 .
Using this last Equation together with (36) in (40) above, and (27) we obtain,

I i,i = 1 12m Φ (1,0) ( i , t x,i ) -Φ (0,1) ( i , t x,i ) f 2 (t x,i )d 3 x,i + O 1 mn 4 h 4 = 1 12mn 2 Φ (1,0) ( i , t x,i ) -Φ (0,1) ( i , t x,i ) f 2 (t x,i ) f 2 (t * x,i ) d x,i + O 1 mn 4 h 4 .
Finally using Lemma 1, the integrability of ϕ x,h , ϕ x,h , f, f and R (0,1) (., t) and applying Lemma 2 in the Appendix, we obtain,

N Tn -1 i=1 I i,i = 1 12mn 2 N Tn -1 i=1 Φ (1,0) ( i , t x,i ) -Φ (0,1) ( i , t x,i ) f 2 (t x,i ) f 2 (t * x,i ) d x,i + O 1 mn 3 h 3 = 1 12mn 2 x+h x-h Φ (1,0) (t + , t) -Φ (0,1) (t + , t) dt + O 1 mn 3 h 3 . (41) 
Since Φ (0,1) (t + , t) = Φ (0,1) (t, t -) = Φ (1,0) (t -, t), then,

N Tn -1 i=1 I i,i = - 1 12mn 2 x+h x-h Φ (1,0) (t -, t) -Φ (1,0) (t + , t) dt + O 1 mn 3 h 3 . (42) 
Now, it remains to handle the off diagonal term. Assumption (B) yields that N i,j for i = j is twice differentiable off the diagonal on [0, 1] 2 . Taylor expansion of N i,j around (t x,i , t x,j ) for i = j up to order 2 gives,

Φ(t, s) = Φ(t x,i , t x,j ) + (t -t x,i )Φ (1,0) (t x,i , t x,j ) + (s -t x,j )Φ (0,1) (t x,i , t x,j ) + 1 2 (t -t x,i ) 2 Φ (2,0) ( (1) 
x,i , t x,j ) +

1 2 (s -t x,j ) 2 Φ (0,2) (t x,i , η (1) 
x,j )

+ (t -t x,i )(s -t x,j )Φ (1,1) ( (1) 
x,i , η

x,j ),

for some

x,i between t x,i and t and some η

x,j between t x,j and s. Taking t = t x,i+1 and s = t x,j in (43), we obtain,

Φ(t x,i+1 , t x,j ) = Φ(t x,i , t x,j ) + d x,i Φ (1,0) (t x,i , t x,j ) + 1 2 d 2 x,i Φ (2,0) ( (2) 
x,i , t x,j ),

x,i in ]t x,i , t x,i+1 [. Taking t = t x,i and s = t x,j+1 in (43), we obtain,

Φ(t x,i , t x,j+1 ) = Φ(t x,i , t x,j ) + d x,j Φ (0,1) (t x,i , t x,j ) + 1 2 d 2 x,j Φ (0,2) (t x,i , η (2) 
x,j ),

for some η

x,j in ]t x,j , t x,j+1 [. Taking t = t x,i+1 and s = t x,j+1 in (43), we obtain,

Φ(t x,i+1 , t x,j+1 ) = Φ(t x,i , t x,j ) + d x,i Φ (1,0) (t x,i , t x,j ) + d x,j Φ (0,1) (t x,i , t x,j ) + 1 2 d 2 x,i Φ (2,0) ( (3) 
x,i , t x,j ) +

1 2 d 2 x,j Φ (0,2) (t x,i , η (3) 
x,j )

+ d x,i d x,j Φ (1,1) ( (3) 
x,i , η

x,j ),

We obtain by inserting (43), ( 44), ( 45) and ( 46) in (32),

N i,j (t, s) = Φ (1,0) (t x,i , t x,j ) 2d x,i -4(t -t x,i ) + Φ (0,1) (t x,i , t x,j ) 2d x,j -4(s -t x,j ) + 1 2 d 2 x,i Φ (2,0) ( (2) 
x,i , t x,j ) + Φ (2,0) (

x,i , t x,j ) -

2(t -t x,i ) 2 Φ (2,0) ( (1) 
x,i , t x,j )

+ 1 2 d 2 x,j Φ (0,2) (t x,i , η (2) 
x,j ) + Φ (0,2) (t x,i , η

x,j ) -2(s -t x,j ) 2 Φ (0,2) (t x,i , η

x,j ) + d x,i d x,j Φ (1,1) ( (3) 
x,i , η

x,j ) -4(t -t x,i )(s -t x,j )Φ (1,1) (

x,i , η

x,j ). We obtain inserting the last equation in (33),

I i,j = 1 4m 5 l=1 I (l) i,j , (47) where, I (1) 
i,j = Φ (1,0) (t x,i , t x,j ) 2d x,i

t x,i+1 t x,i t x,j+1 t x,j f (t)f (s)dtds -4 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i )f (t)f (s)dtds . I (2) 
i,j = Φ (0,1) (t x,i , t x,j ) 2d x,j

t x,i+1 t x,i t x,j+1 t x,j f (t)f (s)dtds -4 t x,i+1 t x,i t x,j+1 t x,j (s -t x,j )f (t)f (s)dtds . I (3) i,j = 1 2 d 2 x,i t x,i+1 t x,i t x,j+1 t x,j Φ (2,0) ( (2) 
x,i , t x,j ) + Φ (2,0) (

x,i , t x,j ) f (t)f (s)dtds

-2 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i ) 2 Φ (2,0) ( (1) 
x,i , t x,j )f (t)f (s)dtds.

I (4) i,j = 1 2 d 2 x,j t x,i+1 t x,i t x,j+1 t x,j Φ (0,2) (t x,i , η (2) 
x,j ) + Φ (0,2) (t x,i , η

x,j ) f (t)f (s)dtds

-2 t x,i+1 t x,i t x,j+1 t x,j (s -t x,j ) 2 Φ (0,2) (t x,i , η (1) 
x,j )f (t)f (s)dtds.

I (5) i,j = d x,i d x,j t x,i+1 t x,i t x,j+1 t x,j Φ (1,1) ( (3) 
x,i , η

x,j )f (t)f (s)dtds

-4 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i )(s -t x,j )Φ (1,1) ( (1) 
x,i , η

x,j )f (t)f (s)dtds.

We first consider the term I

i,j . For l = 0, 1, 2, let,

ω i,l = t x,i+1 t x,i (t -t x,i ) l f (t)dt (48) 
The term I

i,j can then be written as, I

i,j = Φ (1,0) (t x,i , t x,j ) 2d x,i ω i,0 ω j,0 -4ω i,1 ω j,0 .

Expanding f around t x,i yields,

ω i,l = t x,i+1 t x,i (t -t x,i ) l f (t x,i ) + (t -t x,i )f (t x,i ) + 1 2 (t -t x,i ) 2 f ( (4) 
x,i ) dt

= d (l+1) x,i (l + 1) f (t x,i ) + d (l+2) x,i (l + 2) f (t x,i ) + O 1 n (l+3) , (50) 
for some

x,i in ]t x,i , t x,i+1 [. Thus for l = 0, 1, 2, I

i,j = Φ (1,0) (t x,i , t x,j ) 2d x,i d x,i f (t x,i ) +

d 2 x,i 2 f (t x,i ) + O 1 n 3 × d x,j f (t x,j ) + d 2 x,j 2 f (t x,i ) + O 1 n 3 -4 d 2 x,i 2 f (t x,i ) + d 3 x,i 3 f (t x,i ) + O 1 n 4 d x,j f (t x,j ) + d 2 x,j 2 f (t x,i ) + O 1 n 3 = Φ (1,0) (t x,i , t x,j ) - 1 3 f (t x,i )f (t x,j )d 3 x,i d x,j + O 1 n 5 .
We obtain using Equations ( 36) and (27), I

i,j = -

1 3 Φ (1,0) (t x,i , t x,j )f (t x,i )f (t x,j )d 3 x,i d x,j + O 1 n 5 h 3 = - 1 3n 2 Φ (1,0) (t x,i , t x,j ) f (t x,i ) f 2 (t * x,i ) f (t x,j )d x,i d x,j + O 1 n 5 h 3 ,
for some t *

x,i in ]t x,i , t x,i+1 [. Using Lemma 1 and the integrability of ϕ x,h , ϕ x,h , f, and of R (0,1) (., t) and applying Lemma 2 twice, we obtain,

N Tn -1 i =j=1 I (1) i,j = - 1 3n 2 N Tn -1 i =j=1 Φ (1,0) (t x,i , t x,j ) f (t x,i ) f 2 (t * x,i ) f (t x,j )d x,i d x,j + O 1 n 3 h = - 1 3n 2 x+h x-h x+h x-h Φ (1,0) (t, s) f (t) f 2 (t) f (s)1 {s =t} dt ds + O 1 n 3 h 2 .
(51)

Similarly we verify that,

N Tn -1 i =j=1 I (2) 
i,j = -

1 3n 2 x+h x-h x+h x-h Φ (0,1) (t, s) f (s) f 2 (s) f (t)1 {s =t} dt ds + O 1 n 3 h 2 = - 1 3n 2 x+h x-h x+h x-h Φ (1,0) (t, s) f (t) f 2 (t) f (s)1 {s =t} dt ds + O 1 n 3 h 2 . ( 52 
)
We now control the term I 3 i,j . We have, I

i,j = d 2 x,i Φ (2,0) (t x,i , t x,j )

t x,i+1 t x,i t x,j+1 t x,j f (t)f (s)dtds -2Φ (2,0) (t x,i , t x,j ) t x,i+1 t x,i t x,j+1 t x,j (t -t x,i ) 2 f (t)f (s)dtds + 1 2 d 2 x,i t x,i+1 t x,i t x,j+1 t x,j Φ (2,0) ( (2) 
x,i , t x,j ) + Φ (2,0) (

x,i , t x,j ) -2Φ (2,0) (t x,i , t x,j )f (t)f (s)dtds

-2 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i ) 2 Φ (2,0) ( (1) 
x,i , t x,j ) -Φ (2,0) (t x,i , t x,j ) f (t)f (s)dtds.

Using (36), Lemma 1 and Equation (48) we get,

I (3) i,j = d 2 x,i Φ (2,0) (t x,i , t x,j )ω i,0 ω j,0 -2Φ (2,0) (t x,i , t x,j )ω i,2 ω i,0 + O 1 n 5 h 5 .
Note first that, using (50) for l = 0 along with l = 2 and Lemma 1, we obtain,

I (3) i,j = 1 3 Φ (2,0) (t x,i , t x,j )d 3 x,i d x,j f (t x,i )f (t x,j ) + O 1 n 5 h 5 = 1 3n 2 Φ (2,0) (t x,i , t x,j ) f (t x,i ) f 2 (t * x,i ) f (t x,j )d x,i d x,j + O 1 n 5 h 5 ,
Likewise, using Lemma 1 and the integrability of ϕ (k)

x,h , f (k) for k = 0, 1, 2 we have,

N Tn -1 i =j=1 I (3) i,j = 1 3n 2 x+h x-h x+h x-h Φ (2,0) (t, s) f (s) f (t) 1 {s =t} dt ds + O 1 n 3 h 3 . (53) 
Similarly, we obtain,

N Tn -1 i =j=1 I (4) i,j = 1 3n 2 x+h x-h x+h x-h Φ (0,2) (t, s) f (t) f (s) 1 {s =t} dt ds + O 1 n 3 h 3 = 1 3n 2 x+h x-h x+h x-h Φ (2,0) (t, s) f (s) f (t) 1 {s =t} dt ds + O 1 n 3 h 3 . ( 54 
)
Finally, for the term I

i,j , we have, I

i,j = d x,i d x,j Φ (1,1) (t x,i , t x,j ) 

x,i , η

x,j ) -Φ (1,1) (t x,i , t x,j ) f (t)f (s)dtds

-4 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i )(s -t x,j ) Φ (1,1) ( (1) 
x,i , η

x,j ) -Φ (1,1) (t x,i , t x,j ) f (t)f (s)dtds = d x,i d x,j Φ (1,1) (t x,i , t x,j )ω i,0 ω j,0 -4Φ (1,1) (t x,i , t x,j )ω i,1 ω j,1

+ d x,i d x,j t x,i+1 t x,i t x,j+1 t x,j Φ (1,1) ( (3) 
x,i , η

x,j ) -Φ (1,1) (t x,i , t x,j ) f (t)f (s)dtds

-4 t x,i+1 t x,i t x,j+1 t x,j (t -t x,i )(s -t x,j ) Φ (1,1) ( (1) 
x,i , η

x,j ) -Φ (1,1) (t x,i , t x,j ) f (t)f (s)dtds.

Recall that f, f , 1 f are all bounded and using ( 36) and ( 50) with l = l = 1 we obtain, I

i,j = O

1 n 5 h 5 .
Finally, since N Tn = O(nh) from Lemma 1, we obtain,

N Tn -1 i =j=1 I (5) i,j = O 1 n 3 h 3 . (55) 
Replacing (51), ( 52), (53), ( 54) and ( 55) in (47) we obtain,

N Tn -1 i =j=1 I i,j = 1 6mn 2 x+h x-h x+h x-h Φ (2,0) (t, s)f (t) -Φ (1,0) (t, s)f (t) f 2 (t) 1 {s =t} f (s)dtds + O 1 mn 3 h 3 = 1 6mn 2 x+h x-h s x-h ∂ ∂s Φ (1,0) (t, s) f (t) dt f (s)ds + O 1 mn 3 h 3 + 1 6mn 2 x+h x-h x+h s ∂ ∂s Φ (1,0) (t, s) f (t) dt f (s)ds + O 1 mn 3 h 3 = 1 6mn 2 x+h x-h Φ (1,0) (s -, s) -Φ (1,0) (s + , s) ds + O 1 mn 3 h 3 + 1 6mn 2 x+h x-h Φ (1,0) (x + h, s) f (x + h) - Φ (1,0) (x -h, s) f (x -h) f (s) ds + O 1 mn 3 h 3 .
Note that for t = s,

Φ (1,0) (t, s) = ϕ x,h (t)f (t) -ϕ x,h (t)f (t) f 2 (t) R(t, s) + ϕ x,h (t) f (t) R (1,0) (t, s) ϕ x,h (s) f (s) . ( 56 
)
It follows from ( 18) that,

Φ (1,0) (x + h, s) f (x + h) = Φ (1,0) (x -h, s) f (x -h) = 0 for all s ∈]x -h, x + h[.

Thus,

N Tn -1

i =j=1 I i,j = 1 6mn 2 x+h x-h Φ (1,0) (t -, t) -Φ (1,0) (t + , t) dt + O 1 mn 3 h 3 . (57) 
Inserting ( 42) and ( 57) in (34), we obtain,

Var(ĝ trap n (x)) = 1 m σ 2 x,h + 1 12mn 2 x+h x-h Φ (1,0) (t -, t) -Φ (1,0) (t + , t) dt + O 1 mn 3 h 3 . (58) 
Applying (56) it follows that,

Φ (1,0) (t -, t) -Φ (1,0) (t + , t) = ϕ 2 x,h (t) f 2 (t) R (1,0) (t -, t) -R (1,0) (t -, t) = ϕ 2 x,h (t) f 2 (t) α(t). (59) 
Replacing ( 59) in (58) we obtain,

Var(ĝ trap n (x)) = 1 m σ 2 x,h + 1 12mn 2 x+h x-h ϕ 2 x,h (t) f 2 (t) α(t) dt + O 1 mn 3 h 3 . (60) 
Since α and f are continuous on [0, 1], then one can write,

x+h x-h α(t) f 2 (t) ϕ 2 x,h (t)dt = 1 h 1 -1 α(x -th) f 2 (x -th) K 2 (t) dt = 1 h α(x) f 2 (x) 1 -1 K 2 (t) dt + 1 h 1 -1 α(x -th) f 2 (x -th) - α(x) f 2 (x) K 2 (t) dt = 1 h α(x) f 2 (x) 1 -1 K 2 (t) dt + O(1). (61) 
Recall that for an even kernel, we have a simplified expression of σ 2 x,h given by Benhenni and Rachdi [START_REF] Benhenni | Nonparametric estimation of average growth curve with general nonstationary error process[END_REF] as follows,

σ 2 x,h = R(x, x) - 1 2 α(x)C K h + o(h), (62) 
where

C K = 1 -1 1 
-1 |u -v|K(u)K(v)dudv. Finally, using (61) and (62) in (60) yields,

Var(ĝ trap n (x)) = 1 m R(x, x) - 1 2 α(x)C K h + 1 12mn 2 h α(x) f 2 (x) 1 -1 K 2 (t) dt + o h m + O 1 mn 2 + 1 mn 3 h 3 .
This concludes the proof of Proposition 2.

Proof of Proposition 3.

Let

I 1 = 1 0 R(x, x)w(x) dx, I 2 = 1 0 α(x) f 2 (x) w(x) dx and put, Ψ(h, m) = - C K h 2m 1 0 α(x)w(x) dx + 1 4 h 4 B 2 1 0 [g (x)] 2 w(x) dx.
We have from Equation [START_REF] Ferreira | Kernel regression estimates of growth curves using nonstationary correlated errors[END_REF] in Theorem 1,

IMSE(h) = I 1 m + Ψ(h, m) + V I 2 12mn 2 h + o h 4 + h m + O 1 n 3 h + 1 mn 3 h 3 + 1 mn 2 + 1 n 6 h 6 .
Let h * be as defined in [START_REF] Benhenni | Nonparametric estimation of average growth curve with general nonstationary error process[END_REF]. It is clear that h * = argmin 0<h<1 Ψ(h, m) so that Ψ(h, m) ≥ Ψ(h * , m) for every 0 < h < 1. Let h n,m be as defined in Corollary 3. We have,

IMSE(h * ) IMSE(h n,m ) = I 1 m + Ψ(h * , m) + V I 2 12mn 2 h * + o h * 4 + h * m + O 1 n 3 h * + 1 mn 3 h * 3 + 1 mn 2 + 1 n 6 h * 6 I 1 m + Ψ(h n,m , m) + V I 2 12mn 2 hn,m + o h 4 n,m + hn,m m + O 1 n 3 hn,m + 1 mn 3 h 3 n,m + 1 mn 2 + 1 n 6 h 6 n,m ≤ I 1 + mΨ(h n,m , m) + V I 2 12n 2 h * + o mh * 4 + h * + O m n 3 h * + 1 n 3 h * 3 + 1 n 2 + m n 6 h * 6 I 1 + mΨ(h n,m , m) + V I 2 12n 2 hn,m + o mh 4 n,m + h n,m + O m n 3 hn,m + 1 n 3 h 3 n,m + 1 n 2 + m n 6 h 6 n,m
.

Using the definition of h * , mh This concludes the proof of Proposition 3.

Proof of Corollary 1.

Let f * be as defined in [START_REF] Blanke | Regression estimation and predection in continuous time[END_REF]. Let D(f ) =

1 0 α(x)
f 2 (x) w(x) dx, then it is sufficient to prove that:

D(f * ) ≤ D(f ) for every positive density f on [0, 1].
Applying Hölder's inequality, we get,

D(f * ) = 1 0 {α(x)w(x)} 1/3 dx 3 = 1 0 α(x)w(x) f 2 (x) 1/3 f 2/3 (x) dx 3 ≤ 1 0 α(x)w(x) f 2 (x) dx 1 0 f (x) dx 2 = D(f ).

Hence, argmin

{f >0 density on [0,1]} D(f ) = f * .
This completes the proof of Corollary 1.

Proof of Theorem 2.

Let x ∈]0, 1[ be fixed. We have, 

√ m ĝtrap n,m (x) -g(x) = √ m ĝtrap n,m (x) -E ĝtrap n,m (x) + √ m Bias ĝtrap n,m (x) . ( 63 
√ m ĝtrap n,m (x) -E ĝtrap n,m (x) = 1 √ m m j=1 1 2n N Tn -1 i=1 ϕ x,h f ε j (t x,i ) + ϕ x,h f ε j (t x,i+1 ) = 1 √ m m j=1 1 2n N Tn -1 i=1 ϕ x,h f (t x,i ) ε j (t x,i ) -ε j (x) + 1 √ m m j=1 1 2n N Tn -1 i=1 ϕ x,h f (t x,i+1 ) ε j (t x,i+1 ) -ε j (x) + 1 2n N Tn -1 i=1 ϕ x,h f (t x,i ) + ϕ x,h f (t x,i+1 ) 1 √ m m j=1 ε j (x) . (65) 
We start by controlling the last term of this last equation. Recall that Equation (27) yields for some t * x,i ∈]t x,i , t x,i+1 [ that 1 n = (t x,i+1 -t x,i )f (t * x,i ). From the Riemann integrability of ϕ x,h and f and Lemma 2 we obtain,

1 2n N Tn -1 i=1 ϕ x,h f (t x,i ) + ϕ x,h f (t x,i+1 ) = 1 2 N Tn -1 i=1 ϕ x,h f (t x,i ) + ϕ x,h f (t x,i+1 ) f (t * x,i )(t x,i+1 -t x,i ) -→ m,n→∞ 1 -1 K(t) dt = 1.
where d x,i = t x,i+1 -t x,i and t * x,i ∈]t x,i , t x,i+1 [. The Central Limit Theorem for i.i.d. variables yields,

1 √ m m j=1 ε j (x) D -→ m→∞ Z where Z ∼ N (0, R(x, x)).
We shall prove now that the two first terms of Equation (65) tend to 0 in probability as n, m tends to infinity. We will only study the first term, the second one is treated analogously. Let,

A m,n (x) = 1 √ m m j=1 1 2n N Tn -1 i=1 ϕ x,h f (t x,i ) ε j (t x,i ) -ε j (x) ∆ = 1 √ m m j=1
T n,j (x).

From the Chebyshev inequality, it suffices to prove that lim n,m→∞ E(A 2 m,n (x)) = 0. We have for j = l, E(ε j (x)ε l (y)) = 0 so E(T n,j (x)T n,l (x)) = 0. Hence, We have, Using (62) we obtain,

E(T 2 n,j (x)) = 1 4n 2 N Tn -1 i=1 N Tn -1 k=1 ϕ x,h f (t x,i ) ϕ x,h f (t x,k )E ε j (t x,i ) -ε j (x) ε j (t x,k ) -ε j (x) = 1 4n
B n,1 (x) = R(x, x) - 1 2 α(x)C K h + o(h) + O( 1 nh 
).

where C K = This concludes the proof of Theorem 2.

[19] Gasser T, Müller HG. Estimating regression functions and their derivatives by the kernel method. This concludes the proof of Lemma 2.
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  A) The autocovariance function R exists and is continuous on the square [0, 1] 2 .

Proposition 1

 1 Suppose that Assumption (D) is satisfied. Moreover assume that f ∈ C 2 ([0, 1]) and f , g are Lipschitz functions on [0, 1]. If lim n→∞ h = 0 and lim n→∞ nh = ∞ then for any x ∈]0, 1[,

Figure 1 :

 1 Figure 1: Cubic regression function is in plain line and the trapezoidal estimator is in dashed one.

GM 5 9 .

 9 9714×10 -5 5.5781×10 -3 5.6778×10 -3 0.181 T rap 1.2841×10 -4 5.5373×10 -3 5.6657×10 -3 0.181 GM 15 9.9714×10 -5 4.6484×10 -3 4.7481×10 -3 0.181 T rap 1.2841×10 -4 4.6145×10 -3 4.7429×10 -3 0.181 GM 30 9.9714×10 -4 3.9844×10 -3 4.0841×10 -3 0.181 T rap 1.2841×10 -4 3.9552×10 -3 4.0836×10 -3 0.181

  3 n,m = O(1), lim n,m→∞ h n,m = 0 and the assumption m n = O(1) as n, m → ∞ we know that mΨ(h n,m , m) = O(h n,m ). Then, lim n,m→∞ IMSE(h * ) IMSE(h n,m ) ≤ 1.

1 - 1 1- 1 1 - 1 K 1 K 1 0K

 1111111 |u -v|K(u)K(v)dudv. Since lim n→∞ h = 0 and lim n→∞ nh = ∞. Thus,lim n→∞ B n,1 (x) = R(x, x). (67)Consider now the term B n,2 (x). We obtain using Lemma 2 twice, h (s)ϕ x,h (t)R(s, x) ds dt + O( (s)R(x -hs, x) ds + O( (s)R(x -hs, x) ds+ (s)R(x -hs, x) ds + O( 1 nh ). For s ∈] -1, 0[, Taylor expansion of R(•, x) around x yields, R(s, x) = R(x -sh, x) -shR (1,0) (x+, x) + o(h).Similarly for s ∈]0, 1[ we obtain,R(x -sh, x) = R(x, x) -shR (1,0) (x-, x) + o(h).Thus, B n,2 (x) = R(x, x) -hR (1,0) (x+, x)

Table 2 :

 2 

	n = 20 m	Ibias 2	Ivar	IMSE	h opt
	GM T rap	5	4.57002×10 -3 1.70570×10 -1 1.75140×10 -1 0.46 4.57001×10 -3 1.70565×10 -1 1.75135×10 -1 0.46
	GM T rap	15	1.31050×10 -3 5.8884×10 -2 1.30997×10 -3 5.8857×10 -2	6.0194×10 -2 0.34 6.0167×10 -2 0.34
	GM T rap	30	7.7889×10 -4 7.7828×10 -4	2.9818×10 -2 2.9791×10 -2	3.0597×10 -2 0.30 3.0569×10 -2 0.30

The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Ornstein-Uhlenbeck error process with λ = 1 for the GM and the trapezoidal estimator.

Table 3 :

 3 The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Wiener error process with σ 2 = 0.5 for the GM and the trapezoidal estimator.

	n = 20 m	Ibias 2	Ivar	IMSE	h opt
	GM T rap	5	1.0481×10 -3 4.3939×10 -2 4.4988×10 -2 0.322 1.0485×10 -3 4.3915×10 -2 4.4963×10 -2 0.322
	GM T rap	15	2.7691×10 -4 1.5169×10 -2 1.5446×10 -2 0.233 2.8535×10

-4 

1.5124×10 -2 1.5409×10 -2 0.233 GM 30 1.1792×10 -4 7.7228×10 -3 7.8407×10 -3 0.188 T rap 1.4175×10 -4 7.6733×10 -3 7.8150×10 -3 0.188

Table 4 :

 4 The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Ornstein-Uhlenbeck error process with λ = 25 for the GM and the trapezoidal estimator.

	n = 20 m	Ibias 2	Ivar	IMSE	h opt
	GM T rap	5	4.3931×10 -3 2.7163×10 -2 3.1556×10 -2 0.455 4.3930×10 -3 2.7165×10 -2 3.1558×10 -2 0.455
	GM T rap	15	1.7942×10 -3 1.2819×10 -2 1.4613×10 -2 0.366 1.7935×10 -3 1.2824×10 -2 1.4618×10 -2 0.366
	GM T rap	30	1.0481×10 -3 7.0808×10 -3 8.1290×10 -3 0.322 1.0485×10 -3 7.0855×10 -3 8.1341×10 -3 0.322

Table 5 :

 5 The integrated squared bias, Integrated variance, IMSE and the optimal bandwidth in terms of m under the Wiener error process with σ 2 = 0.06 for the GM and the trapezoidal estimator.

	n = 20 m	Ibias 2	Ivar	IMSE	h opt

Table 7 :

 7 The IMSE and the reduction rIMSE of ĝtrap n using the uniform design or optimal design when R(s, t) = st min(s, t) and m = 5.

	n T rap unif T rap opt rIMSE
	5	0.363	0.313 13.72%
	10	0.170	0.157 7.55%
	15	0.133	0.129 3.74%
	20	0.124	0.120 2.79%

Table 8 :

 8 The IMSE and the reduction rIMSE of ĝtrap n using the uniform design or optimal design when R(s, t) = st min(s, t) and m = 30.

	n T rap unif T rap opt rIMSE
	5	0.345	0.292 15.30%
	10	0.143	0.125 12.41%
	15	0.099	0.092 7.12%
	20	0.086	0.082 5.38%
	5 Proofs		

5.1 Proof of Lemma 1.

  Recall that Lemma 1 yields N Tn = O(nh) and sup

						1≤i≤n	d x,i = O( 1 n ). Using (19) and (20) we
	have,				
	sup (x-h)≤t≤t x,1	|ϕ x,h (t)| = O	1 n 2 h 3	and	sup t x,N Tn ≤t≤(x+h)
	N Tn -1	x+h	t x,j+1	
	j=1		t x,N Tn	t x,j	

Φ(t, s)f (t) f (s) ds dt.

  )Consider now the first term of the right side of (63). SinceY (t x,i ) -E(Y (t x,i )) = ε(t x,i ),we have, as done by Fraiman and Pérez Iribarren [20],

	Since lim n,m→∞ √	mh 2 = 0 and lim n,m→∞	nh 2 = ∞ then Proposition 1 implies that,
		lim n,m→∞	√ m Bias ĝtrap n,m (x) = 0.	(64)

  ) R(t x,i , t x,k ) -R(t x,i , x) -R(x, t x,k ) + R(x, x) . )R(t x,i , t x,k )d x,i d x,k .

	2 (t x,k Since E((T 2 N Tn -1 i=1 N Tn -1 k=1 ϕ x,h f (t x,i ) ϕ x,h f n,j (x)) does not depend on j we get,
			E(A 2 m,n (x)) =		
	1 4n 2	N Tn -1 i=1	N Tn -1 k=1	ϕ x,h f	(t x,i )	ϕ x,h
										(66)
	We obtain using Equation (27) for t * x,i ∈]t x,i , t x,i+1 [,
	B n,1 (x) = (t x,k The use of Lemma 2 twice yields, N Tn -1 i=1 N Tn -1 k=1 f (t * x,i )f (t * x,k ) ϕ x,h f (t x,i ) ϕ x,h f
	B n,1 (x) =	N Tn -1 i=1	f (t * x,i )	ϕ x,h f	(t x,i )d x,i	x+h x-h	ϕ x,h (t)R(t x,i , t) dt + O(	1 nh	)
			=	x+h x-h	ϕ x,h (t)	N Tn -1 i=1	f (t * x,i )	ϕ x,h f	(t x,i )R(t x,i , t)d x,i dt + O(	1 nh	)
			=	x+h x-h		x+h x-h	ϕ x,h (s)ϕ x,h (t)R(s, t) ds dt + O(	1 nh	) = σ 2 x,h + O(	1 nh	).

f (t x,k ) R(t x,i , t x,k ) -R(t x,i , x) -R(x, t x,k ) + R(x, x) ∆ = 1 4 B n,1 (x) -B n,2 (x) -B n,3 (x) + B n,4

(x) .

  Scandinavian Journal of Statistics. 1984;11:171-185.[20] Fraiman R, Pérez Iribarren G. Nonparametric regression in models with weak error's structure. Journal of Multivariate Analysis. 1991;37:180-196. Integral approximation of a sum) Let u and v be two Lipschitz functions on [x -h, x + h], i.e, there exists two positive numbers l 1 and l 2 such that,|u(s) -u(t)| ≤ l 1 |s -t|, |v(s) -v(t)| ≤ l 2 |s -t|. Let t x,1 < • • • < t x,N Tn be points in [x -h, x + h] and put d x,i = t x,i+1 -t x,i . Then, for any t x,i ∈ [t x,i , t x,i+1] for all i = 1, • • • , n and for some appropriate positive constants c 1 , c 2 and c 3 ,|∆ n,h | ≤ c 1 l 1 |B 2 | ≤ 2c3 sup Since u and v are Lipschitz continuous we obtain, |A -B 1 | ≤ N Tn sup Since nh ≥ 1, Lemma 1 yields that sup 1≤i≤n d x,i = O( 1 n ) and N Tn = O(nh). Hence, |∆ n,h | = |A -B| ≤ |A -B 1 | + |B 2 |

				t∈[0,1] |v(t)|l 1 sup 1≤i≤n	d 2 x,i + N Tn sup t∈[0,1]	|u(t)|l 2 sup 1≤i≤n	d 2 x,i .
	Appendix						
	n Lemma 2 (h ≤ c 1 l 1 h n	sup t∈[0,1] sup t∈[0,1] |v(t)| + c 2 l 2 |v(t)| + c 2 l 2	h n h n	sup t∈[0,1] |u(t)| + 2 sup t∈[0,1] |u(t)| + 2	c 3 n c 3 n	sup ∪[t x,N Tn ,x+h] t∈[x-h,t x,1 ] sup	|v(t)u(t)|.
								x+h
								u(t)v(t) dt.
								x-h
	We have,						
	N Tn -1	t x,i+1		t x,1			x+h
	B =		u(t)v(t) dt +	u(t)v(t) dt +	u(t)v(t) dt
	i=1	t x,i			x-h			t x,N Tn
	t x,1 x-h u(t)v(t) dt +	x+h t x,N Tn		
								|v(t)u(t)| sup	d x,i .
					t∈[x-h,t x,1 ]	1≤i≤n
					∪[t x,N Tn	,x+h]
	On the other hand, we have,			
	N Tn -1	t x,i+1			
	A -B 1 =						
	i=1		t x,i				

N Tn -1 i=1 u(t x,i )v(t x,i )d x,i = x+h x-h u(t)v(t) dt + ∆ n,h , t∈[x-h,t x,1 ] ∪[t x,N Tn ,x+h] |v(t)u(t)|.

Proof of Lemma 2. In fact, let ∆ x,h = A -B where,

A = N Tn -1 i=1 u(t x,i )v(t x,i )d x,i and B = ∆ = B 1 + B 2 ,

where

B 2 = u(t)v(t) dt. On the one hand, since (t x,1 -(x -h)) ≤ sup 1≤i≤n d x,i and (x + h -t x,N Tn ) ≤ sup 1≤i≤n d x,i we have, u(t x,i )v(t x,i ) -u(t)v(t) dt = N Tn -1 i=1 v(t x,i ) t x,i+1 t x,i u(t x,i ) -u(t) dt + N Tn -1 i=1 t x,i+1

t x,i u(t) v(t x,i ) -v(t) dt.