Solution analytique tridimensionnelle en convection naturelle stationnaire

Résumé.

On résout analytiquement le problème de la convection naturelle dans une cellule cubique saturée par un milieu poreux. L'algorithme utilisé permet de résoudre les équations de Darcy-Boussinesq formulées en terme de pression et de température. Les fonctions dépendantes P(x, y, z) et T(x, y, z) sont écrites sous la forme d'un déve loppement en puissance du paramètre e = ( Ra -Ra c ) 112 ln où Ra c désigne la valeur du nombre de Rayleigh critique dans la cavité cubique (Ra c1 = 4 n 2 pour l'écoule ment 2D et Rac 2 = 4,5 n 2 pour l'écoulement 3D). Les développements ont été effectués à l'ordre 48 pour l'écoulement 2D et à l'ordre 16 pour le 3D. Les résultats analytiques sont en très bon accord avec les résultats numériques obtenus à partir d'une méthode spectrale de collocation Legendre. © Académie des Sciences/Elsevier, Paris calcul symbolique I solution analytique / convection naturelle I milieux poreux

3D analytical steady solution of natural convection problem

Abstract. An analytical study of free convection in a cubic cavity of fluid-saturated porous mate rial is reported. The analytical algorithm integrates the Darcy-Boussinesq equations formu lated in terms of pressure and temperature. The dependent variables ( P, T) are expressed using an asymptotic development in the parameter e = ( Ra -Ra c ) 112 ln where Ra c = 4 n 2 denotes the value of the critical Rayleigh number, in a cubic cavity (Ra c1 = 4 n 2 for the 2D flow and Ra c2 = 4.5 n 2 for 3D flow ). Terms up to order 48 for the 2D fiow and up to order 16 for the 3D flow are computed. The analytical value of the Nusselt number is in good agreement with a numerical one obtained using a Legendre spectral collocation method. © Académie des Sciences/Elsevier, Paris symbolic computation / analytic solution / free convection I porous media

Abridged English Version

Beck [START_REF] Beck | Convection in a box of porous material saturated with fluid[END_REF] and Combarnous and Bories [START_REF] Combarnous | Hydrothermal convection in satured porous media[END_REF] performed a linear stability analysis of the convective solu tion from which they derived critical Rayleigh numbers and the form of convective flow which sets in after the first transition. They show that convection begins in a cube of porous medium when the Ray leigh number, Ra, equals Ra c1 = 4 n 2 . A two-dimensional roll cell is the only stable flow immediately above this critical value. At Ra c2 = 4.5 n 2 , a three-dimensional convective mode named (1, 1, 1) be gins. Steen [START_REF] Steen | Pattern selection for finite-amplitude convection states in boxes of porous media[END_REF] showed that this 3D flow remains unstable from birth until Ra = 4.87 n 2 , when it gains stability and begins to compete with the two-dimensional pattern. Schubert and Strauss [START_REF] Schubert | Three-dimensional and multicellular steady and unsteady convection in fl uid-saturated porous media at high Rayleigh numbers[END_REF] conducted a numerical study using a Galerkin method. They found numerically that the 2D flow transports more heat than the 3D one for Ra < 97, while the opposite is true for Ra > 97. We confirmed this numerical result analytically. Caltagirone and Fabrie [START_REF] Caltagirone | Natural convection in porous media at high Rayleigh numbers. Part I: Darcy Model[END_REF] confirmed Schubert and Strauss's results and extended their results from non-stationary flows to chaotic ones. In the present study using a computer with 128 MB of total system memory, we have extended the earlier 2D work by Grundmann and Mojtabi [START_REF] Grundmann | Solution asymptotique du problème de la convection naturelle dans la cavité carrée poreuse chauffée par le bas[END_REF], from order 34 to order 48. The solution obtained gives a very good description of the two-dimensional roll cell in a porous cube heated from below.

The solution of partial differential equations ( 1) and ( 2) uses an asymptotic development of P and T in the parameter e = ( Ra -Ra c ) in ln. To find these components and their coefficients, we have to use a program for symbolic computations. In this study the Maple program was used. The 2D and 3D results are in very good agreement with those obtained earlier by other authors and with the one obtained by the Legendre spectral collocation method [START_REF] Grundmann | Contribution à l'étude numérique et théorique des écoulements de convection naturelle en géométrie confinée[END_REF].

The present study has fulfilled a dual purpose of providing a solution to the problem of natural convection in cubic porous cavities, and demonstrating how the extended-perturbation method can be considered as an attractive alternative to finite difference computations or spectral methods. The solution thus obtained could be useful as a benchmark for the validation of future numerical 3D codes.

Introduction

L'avènement des ordinateurs dotés de capacités de mémoire et de puissance de calcul sans cesse crois santes, ainsi que la disponibilité de logiciels de calcul symbolique (Maple, Mathematica, Axiom ... ) nous ont permis d'obtenir des solutions de problèmes aux dérivées partielles non linéaires, jusque-là, accessi bles seulement par des méthodes numériques approchées. Ces méthodes numériques ne permettent gé néralement pas d'appréhender l'erreur commise sur la détermination de telle ou telle grandeur physique, leur précision étant tributaire de l'ordre des schémas utilisés et du choix du maillage.

Ainsi, l'étude de la convection naturelle dans une cavité poreuse 2D et 3D, chauffée par le bas, a été analysée par différentes approches numériques. J.L. Beck [START_REF] Beck | Convection in a box of porous material saturated with fluid[END_REF], M. Combamous et S. Bories [START_REF] Combarnous | Hydrothermal convection in satured porous media[END_REF], ont montré que le régime conductif perdait sa stabilité pour Ra c1 = 4 n 2 pour donner naissance à un régime convectif monocellulaire.

Dans le cas d'une cellule cubique, la solution conductive perd sa stabilité à partir de Ra c1 = 4 n 2 et seul le régime 2D est stable, mais à partir de Ra c2 = 4,5 n 2 un nouvel écoulement 3D, qualifié de mode (1, 1, 1), prend naissance. Cependant Steen [START_REF] Steen | Pattern selection for finite-amplitude convection states in boxes of porous media[END_REF] montre que cet écoulement 3D est instable entre 4,5 n 2 et 4,87 n 2 , et ce n'est qu'à partir de cette dernière valeur qu'il devient stable et entre en compétition avec l'écoulement 2D. En utilisant la méthode de Galerkin, Schubert et Strauss [START_REF] Schubert | Three-dimensional and multicellular steady and unsteady convection in fl uid-saturated porous media at high Rayleigh numbers[END_REF] ont remarqué que l'écoulement 2D induit un flux convectif supérieur à celui de l'écoulement 3D pour Ra < 97 et cette situation est inversée pour Ra > 97. Nous confirmons analytiquement ce résultat numérique. Caltagirone et Fabrie [START_REF] Caltagirone | Natural convection in porous media at high Rayleigh numbers. Part I: Darcy Model[END_REF] étendent les résultats de Schubert et Strauss à des Rayleigh supérieurs à 1 400 en 2D et mettent ainsi en évidence les différents scénarios conduisant au chaos.

Dans cette étude, nous étendons la méthode précédemment employée en 2D [START_REF] Grundmann | Solution asymptotique du problème de la convection naturelle dans la cavité carrée poreuse chauffée par le bas[END_REF] au cas de la cellule cubique. La formulation précédente n'étant pas extensible au 3D, nous avons alors été amenés à reformuler le problème en termes de pression et de température. Ainsi, grâce à la capacité en mémoire vive des machines actuelles, nous avons réussi à prolonger la validité de l'intervalle d'étude de notre solution analytique en développant la solution 2D en (P, T) à l'ordre 48 (le développement en ( If/, T) était fait à l'ordre 34 et le domaine de validité de la solution obtenue était restreint à Ra = 120). En utilisant dans cette étude le procédé d'accélération de la convergence de Padé, nous avons mis en évidence une solution en parfaite concordance avec celle issue de la méthode spectrale de collocation type Legendre (51 x 51) et ce, jusqu'à un Rayleigh de 310, soit de l'ordre de 9 Ra c1 . Nous avons également obtenu la solution 3D (mode (1, 1, 1)) par la même démarche jusqu'à l'ordre 16. La solution proposée est en très bon accord avec les résultats de la méthode spectrale jusqu'à Ra = 130 [START_REF] Grundmann | Solution asymptotique du problème de la convection naturelle dans la cavité carrée poreuse chauffée par le bas[END_REF]. Il est possible également, dans un avenir proche, d'étendre le domaine de validité de cette solution 3D, comme il est également possible de représenter d'autres structures 3D par cette approche. Une fois ces solutions déterminées de manière précise et sous forme analytique, il deviendra alors plus aisé de défi nir les critères de stabilité des différentes solutions obtenues.

Approche analytique

2.l. Formulation mathématique 3D

On s'intéresse à la convection naturelle dans une cavité cubique poreuse [ 0, n] x [ 0, n] x [ 0, n] chauffée par le bas et isolée latéralement. La formulation adimension nelle de ce problème, fondée sur l'approximation de Boussinesq et la loi de Darcy est donnée par : 

V. V =0; V = -VP+Tez; �; +RaV. VT = V
(

Le choix de la dimension du cube est fait dans le but d'obtenir des solutions du problème avec des expressions les plus simples possibles.

En prenant le rotationnel de l'équation de Darcy, on est amené à une nouvelle formulation, en termes de pression et de température des écoulements 3D, soit :

(3) Le problème ainsi défini admet une solution conductive, quel que soit Ra qui s'écrit sous la forme:

z 2 P o = -2• T o = -z (4)

Approche asymptotique

On se propose de déterminer les solutions 3D qui prennent naissance juste après le point de bifurcation. C'est-à-dire pour des nombres de Rayleigh Ra supérieurs à la valeur critique Ra c soit:

Ra = Ra c + n 2 e 2 .
On écrit alors P et T sous la forme d'un développement asymptotique en e : sont les fonctions propres de D' associées aux valeurs propres :

Î.n, m, 1 = ( Ra( n 2 + m 2 )/n 2 -( n 2 + m 2 + 12 )2 )/( n 2 + m 2 + 12 ) Nous pouvons donc tirer les valeurs critiques Ra c pour lesquelles  n , m, 1 = 0 soit :

Rac = n 2 (n 2 + m 2 + z 2 ) 2 / (n 2 + m 2 )
L'approximation à l'ordre N s'écrit ainsi: ) ;� (

1 + t e 2 + � e 4 )) (13) 
Cette nouvelle approche nous a fournis non seulement une meilleure approximation du nombre de Nusselt et ce, pour des valeurs de Nusselt au-delà du rayon de convergence de la série en Nusselt, comme le montrent les comparaisons présentées dans les tableaux I et II donnant les nombres de Nusselt pour les écoulements 2D et 3D en fonction du nombre de Rayleigh. En 2D, avec une approximation de 48, la valeur du nombre de Nusselt analytique diffère de manière significative de celle obtenue numériquement à partir de Ra= 120 et les résultats divergent complètement au-delà. En revanche, dans le tableau I, on peut remarquer que la valeur du nombre de Nusselt obtenue avec l'accélération de Padé reste convenable au-delà de Ra= 300. En 3D, le tableau II montre que pour Ra= 95, la valeur du Nusselt issue de l'expression analytique est déjà erronée et le champ de température correspondant n'est plus totalement cohérent. En revanche, l'approximation de la valeur du nombre de Nusselt, avec l'accélération de Padé, est acceptable jusqu'à 105. Les valeurs des 24 coefficients q n et a m relatifs à l'écoulement 2D, sont données dans le tableau III. Pour l'écoulement 3D, la série donnant l'expression analytique de Nusselt s'écrit: Nu 30 = 1 + 0,37 860 082 e 2 -0,24 031 992 X 10-1 e 4 + 0,55 308 300 X 10-2 e 6 -0,20 344 428 X 10-2 e 8 + 0,57 258 206 X 10-3 e 10 -0,11 766 038 X 10-3 e 12 + 0,19 400 578 X 10-4 e 14 De cette dernière série on déduit la nouvelle expression de Nusselt utilisant le processus de Padé soit:

NuPadé = ( 1 + 0,54 348 707 e 2 + 0,38 394 078 X 10-1 8 4 + 0,15 682 850 X 10-2 e, 6 -0,11 224 850 x 10-2 8 8 + 0,23 713 041 x 10-3 e 1 0 -0,23 249 468 x 10-4 8 12 )/( 1 + 0,16 488 625 x e 2 ) où: e 2 = (Ra -4,5 n 2 )/n 2 .

Approche numérique

Nous avons mis au point, pour la comparaison des résultats analytiques et numériques, une méthode spectrale de collocation Legendre avec des points de collocation de Gauss-Lobatto pour la discrétisation spatiale des équations de Darcy et d'Helmholtz. La procédure de diagonalisation successive est utilisée Tableau III. Valeurs des 24 coefficients q" et a n des séries (13) et (14).

Table III.

Values of the first 24 coefficients q n and a n of series ( 13) and ( 14). n q n a n n q n a n 1 0,500 000 000 

Conclusion

Nous avons ainsi résolu le problème de la convection naturelle dans une cavité cubique chauffée par le bas et isolée latéralement. La solution analytique obtenue est en très bon accord avec les résultats numériques jusqu'à des valeurs de l'ordre de neuf fois le Rayleigh critique linéaire pour la solution 2D et trois fois pour la solution 3D.

Cette approche représente une alternative possible aux calculs numériques discrets. La solution proposée pourrait servir de solution de référence pour la validation des codes de calculs 3D.
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 256 T = -z + L e; t;, P = -� + L e; P; i= En utilisant les conditions aux limites (2), le système d'équations aux dérivées partielles (3) peut être représenté sous la forme symbolique suivante: P = P( T), D( T, P( T) ) = 0 (En développant l'opérateur D par rapport à e, nous pouvons réécrire ce système sous la forme : (7) où D'est un opérateur linéaire. La solution t 1 est cherchée dans une base des vecteurs propres de l'opérateur D'. On vérifie que: ' n , m, 1 = cos ( nx) cos ( my) sin ( lz ), P n , m, 1 =r n , m./( n 2 + m 2 + 1 2 )

2 + 1 ( 12 )

 2112 �e p;(t;), i= l N T=-z+ Le i t; solution ( 11) est calculée pour un choix bien défini des paramètres m, n et l qui restent fixés dans toute la suite du calcul. Le choix m = n = l = l conduit à l'écoulement stationnaire 3D de type (1, 1, 1), pour m = l = l et n = 0, il s'agit de l'écoulement 2D stationnaire. Ces deux écoulements 2D, sous forme de rouleaux, et 3D existent simultanément dans un cube pour Ra supérieur à Ra c2 = 4,5 n 2 . Une fois obtenus les champs de pression et de température à l'ordre 48 en e pour la solution 2D et à l'ordre 16 pour la solution 3D dans la cavité cubique, on en déduit le nombre de Nusselt sous forme de série entière de e 2 = ( Ra -Ra c )/n 2 soit: i=N Nu a symp. = 1 + L q;( e 2 Y i= Pour les deux écoulements 2D et 3D, les séries donnant le nombre de Nusselt sont des séries alternées. La convergence de ces séries est ainsi analysée en vue d'en augmenter le domaine de validité. Le processus d'accélération de la convergence de Padé a été utilisé et nous a permis d'obtenir de façon heuristique une estimation du nombre de Nusselt pour la solution 2D par : NuPadé = 1 + ; � a; ( e 2 r{ ( 4 + e 2

  Tableau I. Nombre de Nusselt pour l'écoulement 2D.

  490 366 98 X 10-14 pour inverser ces différents opérateurs. L'intégration temporelle utilise un schéma aux différences fi nies semi-implicite du second ordre. Les termes linéaires sont traités de manière implicite par le schéma du second ordre d'Euler retardé, et les termes non linéaires par le schéma d' Adams-Basforth[START_REF] Grundmann | Contribution à l'étude numérique et théorique des écoulements de convection naturelle en géométrie confinée[END_REF].

Table I . Nusselt number for 2D flow.

 I Tableau II. Nombre de Nusselt pour l'écoulement 3D, mode (1, 1, 1).

	Nunum. (51x51)	Nua,ymp. Padé	Ra	Nunum. (5Jx51)
	2,084 394 3 2,949 133 5 3,082 539	2,080 439 4 2,949 134 4 3,082 544	230 240 250	4,050 458 4,124 302 4,195 396
	3,206 405 3,322 107 3,430 731	3,206 418 3,322 146 3,430 829	260 270 280	4,263 953 4,330 167 4,394 205
	3,533 154	3,533 369	290	4,456 221
	3,630 091 3,722 140	3,630 518 3722 919	300 310	4,516 352 4,574 721
	3,809 802	3,811 129		
	3,893 505	3,895 638		
	3,973 618	3,976 879		

Table II . Nusselt number for 3D flow, mode ( 1, 1, 1).

 II 

						Nuasymp.
						Padé
						4,055 236
						4,131 053
						4,204 635
						4,276 251
						4,346 141
						4,414 515
						4,481 555
						4,547 423
						4,612 255
	Nu Padé ( e 12 , 1)	Nunum. ( 31 X 31 X 31)	Ra	Nuasy_mp. ( /; 16 )	Nu Padé (e 12 , 1)	Nunum. (31x3Jx31)
	1,207 434 JO	1,207 434 JO	80	2,155	2,155	2,157
	1,383 254 11	1,383 254 11	85	2,288	2,288	2,294
	1,551 282	1,551 284	90	2,4JO	2,4JO	2,427
	1,712 24	1,712 26	95	3,345	2,519	2,554
	1,866 5	1,866 7	JO0		2,609	2,677
	2,014 2	2,015 0	J05		2,671	2,796
			110		2,696	2,912

Note présentée par René MOREAU.