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Figure 1: Colorizing a line-art image usually involves the creation of a flat-color layer. (a) Input line-art image. (b) Random colorization
of connected white regions. (c) Image pre-colorized by the artist with flat colors. (d) Final colorization by the artist. (e) Layer with constant
color areas produced by our algorithm. (f) Flat-colored drawing obtained by merging the line-art with the color layer.

Abstract
We present a fast and efficient algorithm for the semi-supervised colorization of line-art images (e.g. hand-made cartoons),
based on two successive steps: 1. A geometric analysis of the stroke contours, and their closing by splines/segments, and 2. A
colorization step based on the filling of the corresponding connected components, either with random colors or by extrapolating
user-defined color scribbles. Our processing technique performs image colorization with a similar quality as previous state of
the arts algorithms, while having a lower algorithmic complexity, leading to more possible user interactivity.

CCS Concepts
• Computing methodologies → Image processing; Non-photorealistic rendering; Shape analysis;

1. Introduction

In the world of illustration, the task of colorizing a black and white
line-art image (Fig. 1(a)) is usually done in two successive steps.
First, the drawing is pre-colorized with flat colors only (Fig. 1(c)),
i.e. by assigning a unique color to pixels of each distinct image re-
gion or object (the person being in charge of this specific task is a
flat color artist). Second, the colorist improves this pre-coloring,
adding shadows, lights and colorimetric ambience until the final
colorization is achieved (Fig. 1(d)). In practice, the flat coloring
step results in the creation of a new layer that contains only con-
stant color areas, hence forming a colored partition of the plane

(Fig. 1(e)). This color layer is then merged with the original line-
art to render the flat-colored drawing (Fig. 1(f)).

Artists admit it: flat-coloring is a long and tedious process.
“Classical” tools in digital painting software do not make this task
easy: most of the region filling tools do not handle stroke dis-
continuities very well, neither they do with anti-aliased contours
(Fig. 2(a)). It is then usual for artists to manually paint the flat col-
ors with a brush on a separate layer, with all the precision problems
that come along (particularly contour overflows, Fig. 2(b,c)).

It may even happen that the artist decides to explicitly constrain
his drawing style, using for instance, aliased strokes in higher reso-
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Figure 2: Problems encountered for flat coloring using tools pro-
vided by classical digital drawing/painting.

lution (rather than anti-aliased) and/or forcing himself to draw lines
without “holes”, just to ease the flat-colorization work afterwards.

In this paper, we propose an original technique for colorizing flat
regions, producing results with a quality similar to optimization-
based techniques (see related work, section 2), but with a much
lower algorithmic complexity, enabling a possibly better interac-
tivity and comfortable use for the user. The proposed algorithm is
capable of handling drawing strokes with discontinuities, as well as
anti-aliased contours (Section 3). It is based mainly on a fine analy-
sis of the local geometry (specifically normal and curvatures) of the
drawn lines (Section 4), followed by the closing of regions using
splines curves or segments (Section 5). As a final step (Section 6),
we make it possible to choose between three colorization modes:
random coloring (Fig. 1(b)), colorization guided by markers placed
by the user, or auto-cleaning of a roughly made color layer. These
steps (described in the sequel) involve only low-complexity algo-
rithms (linear time, or less) which makes the whole colorization
procedure fast to render. In addition to its speed, we found out
that the proposed algorithm is really robust regarding the choice
of its different parameters: most experiments presented here were
successfully conducted with the same working set of default pa-
rameters, despite the different drawing styles and resolutions of the
considered input line-arts.

2. Related work

Some research papers have been proposing algorithms dedicated to
the colorization of images with flat colors. It started with methods
designed for usual photographs [LLW04], then more specifically
for drawings [QST∗05,QWH06,SDC09]. These approaches are all
based on similar steps: the user has to place colored markers at
some key locations on his drawing. These markers are then extrap-
olated for all pixels of the image, thanks to the minimization of a
global energy that takes into account the geometry of the drawing
strokes. Unfortunately, the algorithmic complexity of these itera-
tive minimization processes is really important, thus tends to de-
creases the user interactivity when running on modest computers.
That’s particularly true when dealing with high-resolution images
(a typical example would be the colorization of a A4 paper, with
resolution of 5000 × 7000).

More recently, Sato et al. [SMYA14] proposed a semiautomatic
method that propagates the colors of a reference colored image to
a target one. This method is based on a segmentation step of both
images which are then represented as graphs, so that colors may be

propagated between corresponding regions thanks to graph match-
ing.

Because flat coloring somehow requires the segmentation of the
line-art into regions, it shares with the problem of vectorization
of line drawings [NHS∗13, BS18] the important issue of “leak-
age” at small curve gaps. However, because these works are also
mainly concerned with line junctions disambiguation (in order to
extract topologically sound structures), few vectorization related
papers address the problem of non-watertight contours. For exam-
ple, Favreau et al. [FLB16] make use of the so called “Trapped-
ball region segmentation” algorithm [ZCZ∗09] based on floodfill-
ing and morphological operators. For the same purpose, Qu et al.’s
[QWH06] colorization method based on level sets uses a modified
speed function that drops down to zero nearby small gaps identified
thanks to the gradient of the blurred image. (We use a similar idea
in the definition of a priority function in section 6.2.)

Eventually, it is worth mentioning related works based on Con-
volutional Neural Networks like [ISSI16], although dedicated (lim-
ited ?) to photographs. Closer to our target images, Frans proposes
in [Fra17] an architecture based on a first network, used to “infer”
a color scheme from the input line-art, so that a second network
may produce a final image from the input outline and the obtained
color scheme. Quoting the latter: “Due to memory constraints, we
train on 256×256 images [. . . ]”, we may insist on one of our main
goals in this work, which is developing a lightweight flat coloring
method.

3. Pre-Processing of the anti-aliased image

We consider an input line-art image I : Ω→ [0,255], with dimen-
sions w× h, so that the image is defined on the discrete domain
Ω= {0, . . . ,w−1}×{0, . . . ,h−1}. Generally, the drawing is made
of anti-aliased strokes (Fig. 1(a)), as artists use “smooth” brushes.
The algorithm we propose here relies on a crucial step that closes
the drawing strokes between, or from, detected key-points. How-
ever, instead of developing a pixel-value based approach for this
closing stage, we have chosen to use a straightforward method deal-
ing with a binarized version (Ib : Ω→{0,1}) of the input image I.
We may thus make use of efficient processings considering pre-
cisely defined object borders; namely, bicurves presented in sub-
section 4.1. Furthermore, it should be noticed that the simplification
introduced by the binarization occurs without loss of generality, as
discussed in Section 7.

The pre-processing stage consists in a binarization of the anti-
aliased image, followed by an estimate of the typical stroke width.

First, for θ ∈ [0,255], we define the binarized image Ib by a sim-
ple thresholding operation of I; namely Ib(x,y) = 1I(x,y)≤θ. Note that
line-arts are usually made of black strokes over a white background,
hence the use of an upper limit, and not a lower one.

For the sake of independence with respect to the image reso-
lution, a second step allows to reduce the width of the strokes to
a few pixels, if necessary, using a morphological erosion. The ra-
dius to be used for this erosion is set automatically by estimating
the width of the strokes found in the drawing. For that purpose,
an euclidean distance transform [MRH00] is first used to compute
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the maximum value of the distance to the background for every
8-connected component of pixels of strokes. The median value of
all these maximums eventually provides a good approximation of
the stroke half-width. One should note that disconnections that may
result from the morphological erosion step applied here, which re-
main rare, will be corrected anyway by the closing step to be ap-
plied thereafter.

4. Characterization of key-points

The following steps of the method rely on the detection of key-
points which are located at the extremities of the strokes and, at the
same time, on the estimation of a valid direction to extend these
strokes (Fig. 5(c)). In order to characterize these key-points, we
propose to use an estimation of the normal field and curvature val-
ues along the border of non-zero areas of Ib. Key-points are then
characterized as the loci of extreme curvatures.

4.1. Normal and curvature estimation along borders

The normal field estimation which we use here relies on a geomet-
ric local averaging of so called canonical normals (Fig. 5(a)). It
is inspired by the image-based contextual shading for voxel based
volumes [CHRU85], which we extend to a larger neighborhood to
obtain a better approximation, as suggested by [FM09], while re-
stricting ourserlves to the 2D case. However, unlike the latter, the
method we use does not extend the averaging kernel by recursive
convolutions with a small one, but merely applies a single-pass
convolution with a proper Gaussian kernel. This method is now
described in details.

We first define precisely the notion of border, before provid-
ing details about the estimation of a normal field along this bor-
der (green vectors in Fig. 5(b)). Our definition of a border fol-
lows the one of bicurves found in [Ros74, Section 4]. Let X ⊂ Ω

be the set of pixels with non-zero value in Ib, and let us denote
X = Z2 \X . Classically, two pixels p = (xp,yp) and q = (xq,yq)
are said to be 4-adjacent if |xp − xq|+ |yp − yq| = 1, in which
case they share an edge. The border of X , denoted by δ(X), is
the set of edges shared by two 4-adjacent pixels, one of which be-
longs to X and the other one belongs to X . Since an edge can be
identified to an ordered pair of pixels, we have δ(X) = {(p,q) ∈
X ×X , p and q are 4-adjacents}. Unless stated otherwise, in what
follows all edges are supposed to be part of the border of X , in
other words they are border edges.

Following the description given in Fig. 3, it is then possible to
define a symmetric and anti-reflexive binary relation Re ⊂ δ(X)×
δ(X), such that every edge is in relation with exactly two other
edges by Re: one for each of its extremities. The connected compo-
nents of δ(X) following Re (i.e. the equivalence classes of the tran-
sitive closure of Re) thus constitute the set of border-components
of X . We have chosen the construction of Re described by Fig. 3 in
order to obtain border-components which separate an 8-connected
component of X from one of the 4-connected components of X .
Here, “separate” means that any 4-connected path of pixels be-
tween two sets of pixels crosses the border. We indeed consider
the strokes as a set of 8-connected components of non-zero pix-
els. Eventually, given the choice of an edge and one of its ex-

(a) (b) (c)

Figure 3: Adjacency relation between edges. Given 4 pixels p, q, s
and t such that (p,q) ∈ δ(X), a single edge incident to the point v
is in relation with (p,q) by Re. Thus: (p,q)Re(p, t) in case (a),
(p,q)Re(t,s) in case (b), and (p,q)Re(s,q) in case (c) for any
value of t.

tremities, it is possible to provide every border-component with a
complete parameterization C = (e0, . . . ,en−1), ei ∈ δ(X) where n
is the number of edges of the component and eiReei+1 mod n for all
i ∈ {0, . . . ,n−1} (see [Ros70, Section 6]).

Definition 1 (Canonical normals) For any edge e = (p,q) in the
border of X , we define the canonical normal of e, denoted by n(e),
as the unit vector n(e) = (xq− xp,yq− yp).

The set of all canonical vectors at the border of an object is de-
picted in Fig. 5(a).

Definition 2 (Estimated normal vector) Let C = (e0, . . . ,en−1)
be a parameterization of a border of X and i ∈ {0, . . . ,n− 1}. We
define the estimated normal vector at the edge ei, denoted by ñ(ei),
as the vector ñ(ei) =

m(ei)
‖m(ei)‖ where

m(ei) = ∑
−L≤k≤L

e
k2

L2 n(ei+k mod n) (1)

for an averaging kernel size L ∈ N∗.

In our experiments, a kernel size of 11 edges (L = 5) proved to
be sufficient for a good estimate. Note that if the border C contains
less than 2L+1 edges, the sum of equation (1) is restricted in order
to take into account each edge only once. This estimation, based on
a simple smoothing of the canonical normals, is precise enough to
characterize afterwards the areas of high curvature in the border of
strokes whose width is a few pixels.

Definition 3 (Estimated border curvature) Let C =
(e0, . . . ,en−1) be a parameterization of a border of X and
i ∈ {0, . . . ,n− 1}. We define the estimated signed curvature at the
locus of the edge ei, denoted by κ̃(ei), as follows:

κ̃(ei) = sign(det(ñ(ei−1), ñ(ei+1)))
‖ñ(ei+1)− ñ(ei−1)‖

2
(2)

Property 1 For any border edge e, the estimated border curvature
satisfies |κ̃(e)| ≤ 1.

From now on, we call border pixel a pixel of X which is 4-
adjacent to a pixel of X , i.e. a pixel in X which defines at least
one border edge.

Definition 4 (Estimated normal at a border pixel) Let p be a
border pixel, and L(p) be the set of border edges of the form (p, ·).
We define ñ(p), the normal vector associated with the pixel p, as
ñ(p) = m̃(p)

‖m̃(p)‖ , where

m̃(p) = ∑
e∈L(p)

κ̃(e)2 · ñ(e) (3)
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Definition 5 (Estimated curvature at a border pixel) Let p be a
border pixel and L(p) be the set of border edges of p. We define the
estimated curvature at p, denoted by κ̃(p) as follows:

κ̃(p) = max
e∈L(p)

{max(0, κ̃(e))} (4)

This curvature is thus defined as null at any border edge e such
that κ̃(e) < 0. Indeed, the key-points to be detected afterwards be-
ing characterized by an extreme positive curvature, as depicted by
red disks in Fig. 5(b), negative ones are not relevant. For example,
in the case depicted in Fig. 4, the negative curvature at edge e in
the inside part of the pixel curve should be ignored in the computa-
tion of the curvature at pixel p. Only the three other edges, with a
positive curvature, should be taken into account.

4.2. Set of key-points

We have defined in the previous subsection the normal vector as
well as the curvature associated with a border pixel of X . We may
now define a first set of points I′ containing the pixels that show
an extreme positive curvature. Given a threshold θκ such that 0 <
θκ < 1, we define

I
′ = {p ∈ X , κ̃(p)≥ θκ}. (5)

However, the set I′ is not necessarily made of isolated pixels
but may contain several ones at a given actual extremity. There-
fore, only one pixel is kept within each 8-connected components
of I′: the pixel with highest estimated curvature. We define I, the
remaining set of pixels (depicted in red in Fig. 5(c)), as the set
of key-points to be considered in the stroke-closing stage. The re-
sult of this detection step is also depicted on a larger example, as
enlarged red dots, in Fig. 10(e). The stroke closing stage will be
described in the next subsection.

5. Closure of the strokes

Given the set of key-points I, we propose an algorithm for closing
the drawing strokes, as suggested by the Gestalt principle of good
continuation, by combining two methods:

1. Link together some pairs of the key-points using digitized spline
curves (Section 5.1). The latter being parameterized by the esti-
mated normals at the two extremity points (see the blue curve in
Fig. 5(c)).

Figure 4: At the locus of pixel p, the border of this pixel curve has a
curvature which is both negative (in e) and positive (in other edges
of p). We associate a positive curvature to the pixel p by ignoring
the negative curvature of e (see equation (4)).

(a) Canonical normals, in
blue, at each border-edge.

(b) Normals (in green) and
curvature (positive in red,
negative in blue) estimated at
each border-edge.

(c) Stroke closing using splines (in blue) and straight seg-
ments (in green). The detected key-points are depicted in
red, together with their estimated normal vectors.

Figure 5: Illustration of several steps of the stroke closing method.

2. Extend some of the strokes by drawing a straight line segment
from chosen key-points, in the direction of the estimated normal
at these points (Section 5.2). Fig. 5(c) shows three such lines, in
green.

From now on, we call closing stroke a sequence of pixels which
is the digitization of a spline curve or a straight line segment. Such
a stroke will be added to the binary line-art image Ib if some condi-
tions are satisfied. It is indeed important to wisely choose the candi-
date keypoints for closing strokes, so that the number of closed re-
gions is kept reasonable. The required conditions will be described
in the next subsections. Furthermore, in what follows, we will de-
note by Ic the image obtained by drawing closing strokes in Ib.

5.1. Strokes closing using splines

First, we describe here the steps and notions used for the connection
using splines, starting with the criterion used to decide whether or
not two key-points should be linked.

5.1.1. Definition of a connection criterion

We define a quality measure associated with every pair of key-
points which are candidates to be linked by a spline curve. This
value will be used as a criterion to reject a pair when its associated
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(a) (b)

Figure 6: Illustration of the second term of the quality measure
ω(s, t). The configuration (b), where ñ(s)vst + ñ(t)vts = 1.8, is es-
timated to be a better candidate for closure using a spline curve
than the configuration (a), for which ñ(s)vst + ñ(t)vts = 0.9.

value is equal to zero, and as a mean to sort the remaining ones.
Indeed, the proposed closing method makes it possible to allow, or
avoid, intersections between the closing strokes. In the case when
such intersections are not allowed, it is therefore important to draw
first the strokes that are considered of higher relevance. Thus, if s
and t are two pixels of I, the connection of these key-points by a
spline curve is parameterized by several values, among which one
can find:

• dmax, the maximum distance above which two key-points should
not be linked together;
• α, the maximum admissible angle between the normals ñ(s) and
−ñ(t), which should reasonably be in [0◦,90◦].

We define the quality factor associated with the pair of pixels s
and t, denoted by ω(s, t), as follows:

ω(s, t) = max(0,1− ‖s−t‖
dmax

)

· 12 max(0, ñ(s)vst + ñ(t)vts)
·max(0, ñ(s) · (−ñ(t))− cos(α))

(6)

where vst =
t−s
‖t−s‖ and vts =−vst =

s−t
‖s−t‖ .

Remark 1 It is readily seen that ω(s, t) = ω(t,s). Furthermore, we
also have 0 ≤ ω(s, t) ≤ 1 since each term of the product in equa-
tion 6 is non-negative and bounded by 1.

As previously mentionned, any pair of key-points {s, t} will not
be considered as soon as ω(s, t)= 0. The first term of the sum favors
pairs of points that are close one to each other, and excludes pairs
which satisfy ‖s− t‖ ≥ dmax. The second term promotes pairs for
which the direction of the estimated normal at each point is close
to the direction towards the other point (see Fig. 6). Finally, the
third term allows to favor pairs whose estimated normal vectors
have opposite directions but are close in orientation, excluding a
difference of orientation greater of equal to the angle α.

(a) Invalid closing stroke. (b) Valid closing stroke.

Figure 7: Configurations of stroke closing using a spline in a part
of an image Ib (in gray). In (a) the spline curve S (in blue) between
the two key-points (in red) is such that τ(S, Ib) = 4; it is therefore
not added. Note however that the bottom-right stroke may be judi-
ciously extended by a line segment (subsection 5.2). In (b) we have
τ(S, Ib) = 2, the curve can therefore be drawn.

5.1.2. Drawing digitized spline curves

The set of all pairs of pixels {s, t} of I satisfying ω(s, t) > 0 is
then traversed following the decreasing values of ω(s, t), and spline
curves are drawn between these pairs as soon as two other condi-
tions are satisfied (which are described in the remaining part of this
subsection). Each curve is defined by its two extremities {s, t} and
respective tangent vectors. The distance between the two points is,
in practice, a convenient factor that can be applied to the estimated
normal vectors ñ(s) and ñ(t) to obtain the two tangent vectors. Still,
it is possible in our proposed implementation to modulate the as-
pect of the splines by applying a further multiplication factor ρ,
with 0≤ ρ≤ 2.

5.1.3. Preventing an over-segmentation of the background

The proposed stroke closing method results in a segmentation of
the image background into 4-connected areas which will be auto-
matically colorized in a following step (Section 6). Generally, an
over-segmentation of the background is not satisfactory: it would
mean a tough job for the colorist who would then have to manually
specify colors for many regions with small area. To overcome this
problem, we propose to avoid intersections between closing strokes
and the original ones (Fig. 7), and also to prevent the creation of re-
gions with small areas.

5.1.4. Handling intersections

To check in a robust way whether or not a closing stroke intersects
an input stroke, without taking into account its extremities, we rely
on the notion of the number of transitions between a path of pixels
and a binary image. This is necessary because of the existence of
configurations for which several contiguous pixels, at the extremity
of a spline, may belong to the input drawing.

Definition 6 Let J be a binary image defined over Ω and C =
(p0, . . . , pn−1) be the parameterization of an 8-connected path of
pixels connecting p0 to pn−1, n ∈ N∗. We define the number of
transitions associated to C and J, which we denote by τ(C,J), as
follows:

τ(C,J) =
∣∣∣{i ∈ {0, . . . ,n−2} s.t. (J(pi) = 1)Y (J(pi+1) = 1)

}∣∣∣
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where Y stands for “exclusive or”.

Intuitively, if p0, pn−1 ∈ Ω satisfy J(p0) = J(pn−1) = 1, we have
τ(C,J) = 2 if and only if the path C leaves exactly once the non-
zero pixels of J, to enter them back a single time afterwards. Thus,
a closing stroke C between two pixels will not be added to the bi-
nary image Ic (during the closing process) if τ(C, Ic) 6= 2 in the
case when we want to avoid intersections between closing strokes,
and if τ(C, Ib) 6= 2 otherwise. We have indeed chosen to introduce
a parameter which allows or prevents intersections between clos-
ing strokes (called self-intersections). When such intersections are
allowed, the previously described test is achieved using the input
binary image Ib, otherwise it is done on the image Ic containing all
the closing strokes which have already been added.

5.1.5. Creation of regions with suitable area

In order to avoid a possible over-segmentation, the proposed clos-
ing method also relies on a criterion which prevents the drawing
of strokes when they would lead to the creation of at least one 4-
connected background component whose number of pixels is lower
than a given threshold amin. Nevertheless, a region with less than
5 pixels is not considered as being relevant from this point of view
since regions with a very few pixels can appear. It may indeed hap-
pen for example in the neighborhood of a key-point from which
several closing strokes are to be drawn. In this case, the apparition
of such very small and therefore not significant regions should not
prevent strokes from being drawn. Note that this value of 5, yet
empirical, is actually effective to ignore a very local artifact which
does not depend on the resolution of the image.

Eventually, for a candidate closing stroke T made of n pixels and
a binary image Jb, we rely on an algorithm with complexity O(n)
allowing to check if any 4-connected background region R⊂ Jb∪T
adjacent to T satisfies (|R| ≥ amin)∨ (|R|< 5).

5.2. Closing with line segments

After the drawing of splines that have been considered valid during
the previous step, some straight line segments may be added, start-
ing at some of the key-points. These line segments should extend
an existing stroke in the direction given by the estimated normal at
the key-point, if another stroke can be found within a limited dis-
tance in that same direction. As for the spline curves, the drawing
of such segments is subject to a few conditions:

• smax, the maximum length of the segment;
• cmax, the maximum number of closing strokes originating from

a given key-point;
• amin, the minimum number of pixels in the regions created by

drawing the segment.

The straight segments which have been added by this step are
depicted in green color in Fig. 5(c). Note on this figure the effect of
the condition on the minimum area of the created regions. Indeed,
the brown color region counts 50 pixels; which, for a parameter
amin > 50 prevents the drawing of a segment starting at the pixel p.

To summarize, the proposed stroke closing method is composed
of 3 main steps. First, a key-point detection is applied to the bina-
rized image Ib. Second, key-points satisfying extra conditions are

linked with splines to form a new image Ic. Last, additional gaps are
filled in Ic by extending existing strokes with small line segments.
These steps have been elaborated with the help of our collaborator,
David Revoy, a professional digital illustrator. Analyzing the way
he would have closed drawings by hand inspired the modelization
of the proposed closing technique with splines and segments ac-
cording to a quality factor.

6. Coloring flat regions

Obtaining the binary image Ic with the closed line-art contours
is the most important part of our proposed colorization process.
Following that step, we propose three distinct methods that
generate a new color layer Icol : Ω → [0,255]3 associated to a
drawing I. Both correspond to valid workflows for the colorist.

6.1. Random colorization of connected regions

Here, the idea lies in generating a colorization layer Icol composed
of regions filled with random and piecewise constant colors, so
that the set of these regions form a slightly over-partitioning of
the initial drawing (Fig. 10(b)). Then, the flat color artist will only
have to assign a plausible color to each filled region of Icol, the
same color being assigned to several neighboring regions if nec-
essary (Fig. 10(c)). In practice, this can be done by applying the
usual bucket fill tool found in the digital painting software, directly
on the constant regions defined on Icol. With this mode, produc-
ing Icol is realized by a simple connected component labeling al-
gorithm applied on the closed binary image Ic, e.g. with the fast
algorithm [HMB01] (linear complexity), for all points I f (x,y) = 0.
Afterwards, those labels are propagated to non-zero pixels by a wa-
tershed algorithm [BM93] based on the following priority map P
defined as:

∀(x,y) ∈Ω, P(x,y) =− min
(p,q)∈Ω

[
‖(x,y)− (p,q)‖ | I f (p,q) = 1

]
This leads to an onion-peel reconstruction of the labels onto the
residual contours. Note that the computation of P is also in linear
time thanks to the fast algorithm of [MRH00] for the distance trans-
form. Finally, a random color is assigned to each obtained label in
Icol. The prior closing of the line-art contours is the key step to get
many distinct regions that form a judicious partitioning of the input
drawing I (e.g. see the forehead-hairs boundary in Fig. 10(e)).

6.2. Color scribbles-guided colorization

This second colorization technique takes up the idea of extrap-
olating color scribbles placed by the user (Fig. 10(f)), until one
gets a full colored partition of the whole drawing (Fig. 10(g)).
This idea is actually common to all state-of-the-art techniques
[LLW04,QST∗05,QWH06,SDC09]. The propagation of the known
colored pixels is still done through a watershed algorithm [BM93],
with a priority P defined from the closed binary image Ic, such as:

∀(x,y) ∈Ω, P(x,y) = min((Ic ∗Gσ1)(x,y),(Ic ∗Gσ2)(x,y))

where Ic ∗Gσ denotes the convolution of Ic by a 2d isotropic Gaus-
sian kernel with standard deviation σ. We consider indeed both lo-
cal (σ1 = 1) and global (σ2 = max(l,h)/100) scales for analysis
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(a) (b)

(c) (d)

Figure 8: Influence of the parameters for our region closing algo-
rithm: (a) Curved splines and low minimal area, (b) Curved splines
and medium minimal area, (c) Straight splines and medium mini-
mal area, (d) Straight splines and high minimal area.

in order to estimate a continuous potential map P from the image
Ic. Here again, considering the closed binary contours for propa-
gating the user-defined color scribbles plays a leading role in the
efficiency of the colorization algorithm (as shown in Fig. 10(g),
comparing the colorization results based on I against those based
on Ic).

6.3. Automatic cleaning of a given color layer

We propose also a third original approach (which is basically a mix
of the two former ones 6.1 and 6.2) that requires the user to pro-
vide an additional color image Icol (layer) corresponding to a very
rough and quickly made colorization (Fig. 10(e)). It is not required
that Icol has only piecewise constant regions of color. This layer Icol
can be then auto-cleaned by combining its color data with the in-
formation got from the estimation of the closed binary line-art Ic:
each connected component of Ic is simply colorized with the me-
dian color of the corresponding region the component overlaps in
Icol. This median color is actually computed as the median of the
three color components R,G and B taken separatly for each disct-
inct region of Ic, leading to a cleaned version of the input color
layer Icol (Fig. 10(f)).

7. Results

Fig. 10 and 11 summarize the use of the two proposed flat coloriza-
tion methods, and show very clearly that the closing of drawing
strokes is indeed an essential step for getting relevant results. Fig. 8
illustrates the influence of the different algorithm parameters, for
the colorization of the well-known Kanizsa triangle. By varying the
maximum lengths of the spline curves and segments, and the max-
imum areas of the connected regions, we are capable of generat-
ing different (though all coherent) coloring results. This practically
means we are able to adapt ourselves to many types and resolutions
of input line-arts. Moreover, we avoid the computation of expensive

Image name Resolution Krita Our Gain
Mister 418 × 404 0.5 s 0.1 s 80%
Futaba 1119×720 2.1 s 0.42 s 80%
Zones 2210×1287 5.5 s 1.43 s 74%
Characters 5259×2400 28 s 8.5 s 70%

Table 1: Comparison of computation times.

minimization processes, and we use only quasi-linear complexity
labeling/propagation techniques, so that our method becomes par-
ticularly efficient and simple to implement in comparison with state
of the art algorithms doing a similar task (see Benchmarks below).

Note also that our coloring technique works satisfactorily when
the input line-art contains anti-aliased edges, although the pro-
posed geometric analysis is done on a binarized image Ib. The
reason is twofold: on the one hand, the binarization of I does
not fundamentally deteriorate the geometric structure of the drawn
lines, and even if some contours may be lost (light lines that could
pass below the threshold for instance), they would be likely recon-
structed by our closing algorithm. On the other hand, the propa-
gation methods used when generating the color layer Icol ensure
that colored pixels are effectively reconstructed “under the draw-
ing lines”. Merging I and Icol, typically by multiplication, makes
it then possible to slightly color pixels that do not belong to anti-
aliased part of the lines (hence not completely black).

Benchmarks

We have compared execution times of our method against a state
of the art technique, LazyBrush, proposed in [SDC09]. It should be
emphasized that GPU implementations of LazyBrush are available,
which make it usable in interactive context. However, in order to
conduct a fair comparison that reflects actual algorithmic complex-
ities of both methods, we used CPU only implementations in our
tests.

On the one hand, we used a C++ implementation of Lazy-
Brush shipped with version 4.0 of the digital painting software
Krita (a functionality named “Colorize Mask”). It should be no-
ticed that the Boykov-Kolmogorov graph-cut algorithm [BK04], as
used by LazyBrush, showed to be a complexity bottleneck for a
CPU only implementation. For that reason, developers of Krita re-
placed it with a custom watershed algorithm. On the other hand,
we used a C++ implementation of our method. Experiments were
achieved on an Intel® Xeon® based computer, with 12 actual cores
@2.6GHz and Hyper-Threading Technology. Computation times
on four different images (Table 1) show a noticeable gain which,
again, confirms the better algorithmic complexity of our method.

Note that we chose to compare our method to the only one we
know with comparable workflow and with whom the comparison
is fair with respect to memory complexity and, in turn, possible
implementation environments. Indeed, some of the other methods
mentioned in section 2, which are based on Deep Learning, have
memory storage requirements which we see as a bottleneck.

What is more, we have found that our method provides compa-
rable or better results than LazyBrush, especially in case of large
gaps. As an illustration, Fig. 9 shows output of both methods on
the “Girl” sample image.
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(a) (b)

Figure 9: Comparison with LazyBrush result on the Girl sample
image with input scribbles of Fig. 10(f). (a) Output of the Lazy-
Brush algorithm. (b) Output of our method where gaps tend to be,
by design, closed in a more continuous way.

8. Conclusion and future work

We have presented in this paper several methods intended to help
artists in the tedious task of line-art colorization. Each of these
methods relies on a common and straightforward step of curve clos-
ing, ending up with an algorithm of very reasonable space and time
complexities. Thanks to this, implementation on systems with lim-
ited ressources (like inexpensive tablets) may be considered, offer-
ing a possible handled working environment for artists. It should be
noted that our line closing method may (nicely) handle gaps with
arbitrary size and not only small one.

For the sake of reproducible research and to ease the coloriza-
tion task for artists, the proposed algorithm has been included as
a user-friendly filter Smart coloring into G’MIC [TF18], an image
processing framework freely available as a plugin for Gimp and
Krita.

On the prospective side, it might be interesting to make use of
deep learning methods to achieve the curve closing step, instead
of using our heuristic criterions. However, space complexity would
certainly suffer from this choice, for results that need to be com-
pared.
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(a) Original line-art (b) Detected keypoints (red), and curves
(blue) added by our closing algorithm

(d) Result after color assignment of each
closed region, by the artist

(f) Original line-art +
user-defined color scribbles

(g) Color propagation after
automatically closing the

contours

(h) Colorized result by our
algorithm

(i) Same, without closing the
contours (flaws circled in red)

Figure 10: Illustration of two of the proposed colorization methods. Method 1 (a,b,c,d,e): Colorization using over-segmented partition with
random colors. Method 2 (f,g,h,i): Colorization by the propagation of user-defined color scribbles.

(a) Input B&W lineart to be colorized. (b) Result after our automatic
colorization algorithm.

(c) Result of our automatic colorization
algorithm, in auto-clean mode.

Figure 11: Illustration of two different colorization techniques that our algorithm enables: (a)-(b) From the automatic random colorization
(b,top) generated by our algorithm, the artist assign a plausible color to each generated region (b,bottom). (c) From an input line-art and a
roughly made colorization layer (c,top), our algorithm is able to “clean” the provided colorization to make it stick to the line-art contours
(c,bottom).


