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A novel biological model was created for the comparison of grapevine

embryogenic cells (EC) and nonembryogenic cells (NEC) sharing a com-

mon genetic background but distinct phenotypes, when cultured on their

respective most appropriate media. Cytological characterization, 1H-NMR

analysis of intracellular metabolites, and glycolytic enzyme activities pro-

vided evidence for the marked metabolic differences between EC and NEC.

The EC were characterized by a moderate and organized cell proliferation,

coupled with a low flux through glycolysis, high capacity of phospho-

enolpyruvate carboxylase and glucokinase, and high oxygen consumption.

The NEC displayed strong anarchic growth, and their high rate of glycoly-

sis due to the low energetic efficiency of the fermentative metabolism is

confirmed by increased enolase capacity and low oxygen consumption.

Many plant species are able to produce new embryos

from single somatic cells as a pertinent strategy of

asexual reproduction [1]. Such embryogenic cells are a

powerful tool for micropropagation and large-scale

in vitro multiplication of species with limited seed pro-

duction, germplasm conservation, as well as for genetic

transformation of many woody plants, for example,

grapevine. To better understand somatic

embryogenesis, it is also important to keep in mind

that the zygote is a free cell, whose fate is independent

of any surrounding tissue, avoiding neighboring cell

communications, and evolving under endosperm nutri-

tional and hormonal signaling. The fact that functional

embryos can develop from somatic cells demonstrates

that the genetic program for embryogenesis is totally

confined within the cell and can function completely in

Abbreviations

EC, embryogenic cells; NEC, nonembryogenic cells; PCA, principal component analysis; PCV, packed cell volume; TEM, transmission

electron microscopy.
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the absence of gene products from the maternal envi-

ronment [2,3]. The similarity between zygotic and

somatic embryogenesis is striking and remarkable, con-

sidering that somatic embryos develop completely out-

side of both the physical constraints and the

informational context of maternal tissue [4,5]. However,

unlike zygotic embryos, the somatic embryos develop-

ing in vitro need neither desiccation nor dormancy [6,7].

Embryogenic cell (EC) cultures are suspensions of

pro-embryogenic masses, which consist of aggregates

of small cells [8–12]. Interestingly, the formation of cel-

lular groups is thought to be a prerequisite for main-

taining their ability to differentiate into somatic

embryos, thereby allowing plant regeneration [13].

Auxins are necessary for preserving the embryogenic

character of cells, but they inhibit the induction of

somatic embryogenesis [14]. Inversely, the nonembryo-

genic cells (NEC) do not form embryos in culture, but

continue to proliferate as nonorganized cells [15].

Although metabolic studies have been performed on

embryogenic and nonembryogenic callus tissue from

sugar cane [16,17], the comparisons at cellular level of

EC and NEC still remain limited, either to hormonal

level [18–21], or to starch synthesis [15] and cell wall

components [12].

We performed an in-depth comparison of grape EC

and NEC sharing a common genetic background, but

cultured on particular nutritional media for maintaining

their specific cell fate determination. The comparative

analysis of cytological characteristics, growth kinetics,

cellular metabolites, and glycolysis enzymes of grape EC

and NEC revealed marked differences in their prolifera-

tion, metabolic behavior, and glycolytic metabolism.

Materials and methods

Plant material

Two grapevine cell suspensions (EC and NEC), both

derived from the rootstock hybrid 41B, the most commonly

used rootstock in the vineyards of Champagne (a hybrid

between Vitis vinifera L. cv. Chasselas x Vitis berlandieri

P.), were used. The EC suspension was subcultured every

2 weeks by transferring 0.3 mL of packed cell volume

(PCV) into 25 mL of a half-strength Murashige and Skoog

medium, containing glycerol (4.6 g�L�1) and maltose

(18 g�L�1) as carbon sources, as well as naphthoxyacetic

acid (NOA) (1 mg�L�1) and acid hydrolysate of casein. The

NEC suspension was initiated using stem fragments of

in vitro plants regenerated from the EC and, after its estab-

lishment, was subcultured every 2 weeks by transferring

1 mL PCV in 25 mL of fresh Gamborg medium comple-

mented with sucrose (20 g�L�1), 1-naphthalene-acetic acid

(NAA) (0.18 mg�L�1), and 6-benzylaminopurine (BAP)

(1 mg�L�1). Both cell suspensions grew under the same

controlled physical conditions: constant shaking

(110 r.p.m.), in darkness, and at 21 °C.

Microscopy

The samples were fixed in 2% paraformaldehyde/0.5% glu-

taraldehyde with 0.1M S€orensen buffer pH 7.3, for 45 min,

at 24 °C. After washing in the same buffer supplemented

with 7.5% sucrose, the postfixation in 1% osmium tetroxide

was performed for 5 min. The dehydrated samples were

embedded in London Resin White and incubated 24 h at

60 °C for polymerization. Sections were obtained using

EMUC6 Leica Microtome. Periodic acid/Schiff (PAS) reac-

tion was used for starch visualization on semi-thin sections

(500 nm) fixed on polylysinated (1 mg�mL�1; w/v) slides.

For transmission electron microscopy (TEM) on Jeol JEM

1010 microscope at 80 kV, the ultra-thin sections (60 nm)

were collected on gold grids and stained with uranyl acetate

and lead citrate.

Growth kinetics and cyclin gene expression

Cells were filtered, weighted for growth curves, and frozen

in liquid nitrogen every 2 days within the 2 weeks time of

culture. RNA was extracted using the SpectrumTM Plant

Total RNA Kit (SIGMA-Aldrich, Saint-Quentin Fallavier,

France) and retrotranscribed with M-MLV retrotranscrip-

tase (Promega, Charbonnières-les Bains, France) following

the respective manufacturers’ instructions. Cyclins’ expres-

sion was then determined by qRT/PCR (Promega qPCR

Master Mix, Mastercycler realplex2). Four housekeeping

genes have initially been tested: two elongation factors

(VvEF1a, VvEF1 g), actin (VvACT1) and glyceraldehyde-

3-phosphate dehydrogenase (VvGAPDH). Of all these,

actin was the most stable and therefore chosen as a refer-

ence in our cellular models. The cyclin expression was nor-

malized toward the actin as reference gene, using the 2�DCt

method and the following respective primers:

VvCycA2;2 (XM_010650250.1)

F 50-CATGTTGCCAGGTCGATGTAAC-30; R 50-
GAATGGCTCTGACATCATACAAC-30

VvCycD3;3 (XM_002285284.3)

F 50-GGCTGGCATTTCCGAACAGAAAGG-30; R 50-
GGGAACTGGGAACTGGGAAGAGAC-30

VvActin (XM_002282480.3)

F (50-GCATCCCTCAGCACCTTCCA-30; R 50-AACCC-

CACCTCAACACATCTCC-30.

Metabolomic analysis

For the 1H-NMR analysis, polar metabolites were

extracted, titrated, lyophilized (EZ Dry-FTS system),
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solubilized, and pretreated as described by Moing et al.

[22]. 1H-NMR spectra were recorded at 500.16 MHz and

300K on a Bruker Avance III spectrometer using a 5 mm

inverse probe and an electronic reference for quantification

(Digital ERETIC, Bruker TopSpin 3.0). The assignments

of metabolites in the NMR spectra were made by compar-

ing the proton chemical shifts with literature values [23–25],
with the spectra of authentic compounds recorded under

the same buffer conditions and by spiking the samples with

standards. Metabolite concentrations in the NMR tube

were calculated using Analytical Profiler mode of AMIX

software (version 3.9.10, Bruker) for calculation of reso-

nance areas, followed by data export to Excel software.

2D-homonuclear correlation spectroscopy (1H-1H COSY)

experiments were carried out to verify the identity of

known compounds and to check whether unknown signals

really correspond to different compounds. Starch was

determined as described in Hendriks et al. [26].

Oxygen consumption

The consumption of oxygen (O2) by both types of cells is

measured using the Clark electrode (DUAL DIGITAL

MODEL 20, RANK BROTHERS LTD). The rate of oxy-

gen consumption was followed during 20 min on 20 mg

cells maintained in the dark and was estimated in nmols

O2�min�1�g�1 dry weight [27].

Enzyme activities

Extraction was performed as described by Nunes-Nesi

et al. [28]. All enzyme activities were carried out on a

robotized platform [29] and assayed as described, respec-

tively: phosphoglucose isomerase—PGI [30]; enolase and

triose-phosphate isomerase—TPI [31]; phosphoglucomutase

—PGM [32]; pyruvate kinase—PK, glucokinase—GK, fruc-

tokinase—FK, phosphoenolpyruvate carboxylase—PEPC

and ATP-dependent phosphofructokinase—PFK [29]; phos-

phoglycerokinase—PGK [33]; aldolase [34].

Results

Cytological characterization

The cytological study of both cell types harvested dur-

ing the growth phase revealed important differences

(Fig. 1). The EC clusters displayed an apparent homo-

geneity mimicking sand grains, composed of distinct

groups of many small cells (10 to 20 lm wide) sur-

rounded by a kind of thin gel coat (Fig. 1A). Inver-

sely, the NEC were larger in size (50 to 60 lm in size)

and formed very small groups of several adjacent cells

(Fig. 1B). The nucleo-cytoplasmic ratio of EC was sig-

nificantly higher (0.60 � 0.09) compared to that of the

A B

C D

E F F’

Fig. 1. Microscopy observation of grape

EC and NEC. Photonic microscopy: A.

Clusters of numerous and small-sized EC,

with the nuclei (N) in the central part,

small vacuoles (v) and many amyloplasts

(arrow); B. small groups of large NEC with

the nuclei at the cell periphery, one or two

large vacuoles (V) and some amyloplasts

(arrow). Transmission microscopy: C and

E. In EC: many small vacuoles (v) in the

dense cytoplasm, large starch grains in

amyloplasts (Pa), many mitochondria (m),

long profiles of endoplasmic reticulum (er),

and Golgi stacks (G); D, F, and F’. In NEC:

thin layer of cytoplasm (asterisk) adjacent

to the cell wall (W), long mitochondria

profiles, amyloplasts with small starch

grains, short profiles of endoplasmic

reticulum PFA/glutaraldehyde/OsO4/LRW.

A and B. PAS staining—starch grains were

purple-stained and cell walls pink-stained;

C-F’. uranyl/lead contrast—starch grains

were white-stained because of their high

optic density.
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NEC (0.44 � 0.10). The nuclei of EC were localized in

the cell center, while the nuclei of NEC were usually

at the cell periphery. The vacuolar apparatus of EC

was composed of several small vacuoles (1 to 2 lm)

embedded in a dense cytoplasmic matrix (Fig. 1C,E).

The NEC presented one or two large vacuole(s), reach-

ing 20 to 40 lm, compressing the cytoplasm as a thin

layer to the cell wall (Fig. 1D,F). The EC presented a

lot of large starch grains in amyloplasts 1 to 3 lm
wide (mean 2.26 � 0.94) (Fig. 1A,C, and E), while the

NEC contained smaller amyloplasts (mean 1.17 �
0.26) without any important starch reserves (Fig. 1B,

D,F, and F’). In EC, abundant and small-sized mito-

chondria (0.5 to 1 lm in width) with dense matrix and

large cristae occurred together with many ribosomes

forming polysomes, Golgi stacks, and a large amount

of long endoplasmic reticulum profiles of rough-type.

By contrast, NEC mitochondria were often elongated

(2 lm long and 1 lm large) with large electron lucent

cristae and the endoplasmic reticulum had very short

profiles.

Proliferation characteristics

The different proliferation behavior of both cell types

was reflected by their distinct growth curves, obtained

through the fresh mass (Fig. 2A,B). The EC were

characterized by slow and progressive proliferation,

revealing their aptitude to grow for at least 1 month

on the same culture medium without an apparent sta-

tionary phase (Fig. 2A). By contrast, the NEC dis-

played three phases: latent (from 0 to 2 day), growth

(from 2 to 8 day), and stationary (from 10 to 14 day),

and their survival was strongly dependent on subcul-

ture in a fresh nutritional medium (Fig. 2B).

In this regard, the RT/qPCR analysis of two genes

encoding cyclins VvCycD3;3 and VvCycA2;2 surprisingly

demonstrated a higher level of expression in EC

(Fig. 2C,D) compared to that of NEC (Fig. 2E,F). At

day 2 after subculture, EC presented a twofold initial

increase in cyclin gene expression that reached a maxi-

mum at days 4 and 6 and at days 6 and 8, respectively,

for VvCycD3;3 and VvCycA2;2. After day 8, their
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Fig. 2. Growth curves of grape EC (A) and

NEC (B) obtained using the fresh weight

of filtered cells at each time point during

the culture period (mean values from three

independent biological replicates).

Expression profiles of CycD3;3 (C and D)

and CycA2;2 (E and F) genes, respectively,

in EC (C and E) and NEC (D and F) (mean

values from three biological replicates).
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expression remained stable at a level similar to that at

day 4. An at least threefold more important expression of

VvCycD3;3 was observed, when compared to that of

VvCycA2;2. Conversely, NEC demonstrated a lower

level and a transient pattern of expression induction for

both cyclins. At day 2, they displayed an initial fivefold

to sixfold induction, respectively, for VvCycD3;3 and

VvCycA2;2, with a maximum at day 4, followed by a rel-

atively stable level during the growth phase, and a critical

drop before to reach the initial expression level at day 14.

Comparison of the intracellular metabolites

The intracellular metabolite comparison of the EC and

NEC was achieved by quantitative proton NMR analy-

sis at seven time points during the 14 days of culture.

We quantified six soluble sugars (glucose, fructose, mal-

tose, sucrose, galactose, and fucose), two alcohol sugars

(glycerol and inositol), seven organic acids (acetate,

fumarate, citrate, succinate, formate, galacturonate, and

malate), 15 amino acids (alanine, asparagine, aspartate,

gamma amino butyric acid, glutamine, glutamate, iso-

leucine, leucine, histidine, phenylalanine, serine, trypto-

phan, valine, proline, and tyrosine), and two

polyamines (cadaverine and putrescine) in the two cell

types. In total, 1H NMR enabled the detection of 42

metabolites, from which 36 could be identified. This

result was in line with the previously described detection

capacity of the chosen method [35].

Principal component analysis (PCA) was used to

visualize the discriminating differences between both

cell types (Fig. 3A). The first PCA axis, corresponding

to 42.02% of the variance, revealed the spectacular

cleavage between EC and NEC. The EC were perfectly

clustered throughout the subculture period, displaying

a high level of homogeneity. They were characterized

by low levels of both maltose and glucose and by high

levels of glycerol, alanine, proline, and some com-

pounds related to the B group vitamins—choline and

trigonelline, as detailed in Fig. 3B.

The NEC displayed two internal groups reflecting a

changing metabolite profile during the subculture period

(Fig. 3A,B). The evidence for this particularity was pro-

vided by the second PCA axis responsible for 32.72% of

the variance (Fig. 3A). The first group of NEC corre-

sponded to the latent and growth phases from day 0 to

day 10, while the second corresponded to the establish-

ment of the stationary phase (days 12 and 14). The NEC

in proliferation presented high concentrations of soluble

sugars (sucrose and glucose) and organic acids (citrate,

fumarate, succinate, malate) (Fig. 3B).

The second axis was positively correlated with the

intracellular concentration of some amino acids (aspar-

tate, valine, asparagine, leucine, tryptophan, histidine,

and phenylalanine) and the polyamine cadaverine. The

concentration of free amino acids sharply increased at

days 12 and 14 in the NEC, suggesting an induction of

proteolysis at the stationary phase. The appearance of
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fucose, a deoxyhexose largely involved as the terminal

sugar of protein N-glycosylation, also confirmed this

possibility. Another fact arguing in favor of the

enhanced cell death at this latter phase concerned the

accumulation of galacturonic acid and fucose, as valu-

able indicators of cell wall degradation.

A quantitative comparison of identified cellular

metabolites, performed by 1H-NMR analysis of both

cell types during 14 days of the subculture period, is

presented in detail in Fig. 4 and S1. Despite the rela-

tively similar concentrations of sucrose and glucose in

the NEC, fructose was only detected at day 2 and its

level was approximately one-third that of glucose.

Throughout this subculture period, starch concentration

in the EC was higher than that in the NEC. In the EC,

the starch content remained stable during 14 days, while

in the NEC, it dropped down at the stationary phase.

Two other compounds considered as compatible osmo-

lytes, the amino acid proline and the amino alcohol cho-

line (a quaternary ammonium), displayed relatively

stable concentrations all over the proliferation of EC,

but they were almost undetectable in the NEC. The total

protein content of EC at day 8 was four times higher

than these of NEC. The unique metabolite presenting

the same very constant concentration for both cell types

was inositol, an important source of key second messen-

gers for the intracellular hormonal signaling.

Comparison of culture medium metabolites

In complement to the intracellular metabolites, a meta-

bolic profiling 1H NMR study of the culture media

was carried out. PCA was performed using all com-

piled data that were obtained throughout cell prolifer-

ation. As shown in Fig. 5, the first axis displays

75.93% of variance, which highlights the strong dis-

crimination of the media used to culture EC and

NEC. As both cell types were cultured on two distinct

nutritional media, the comparison of extracellular

metabolites allowed a better understanding of their

nutritional behavior. Once again, the metabolites of

the EC medium were perfectly matching and form a

unique homogenous group (Fig. 5A). As expected, the

culture medium of EC was characterized by high con-

tent of maltose, glycerol, and amino acids during the

growth phase (Fig. 5B). Inversely, the metabolites of

the NEC medium manifested two separate groups, cor-

responding, respectively, to the first part of the grow-

ing curve (days 0-6) and to the second part (days 8-14)

(Fig. 5A). Elevated concentrations of sucrose, glucose,

and fructose predominated between day 0 and day 6,

while acetate, ethanol, and glucuronate accumulated

mainly between days 8 and 14 (Fig. 5B).

The detailed analysis of all detected compounds in

the culture media was presented in Figs 6 and S2. In

EC, the carbon sources maltose and glycerol were used

with parsimony throughout the 14-day period, as addi-

tionally confirmed by the very low and relatively stable

level of glucose. A second specific characteristic con-

sisted in the maintaining of a very stable level of amino

acids concentration during the subculture period,

apparently due to the presence of casein hydrolysate,

but also revealing a relatively low consumption by EC.

In the culture medium of NEC, the three soluble

sugars (i.e., sucrose and its cleavage products glucose

and fructose) were detected. Sucrose concentration dis-

played a rapid early decline, during the cell growth

phase, and a complete depletion at day 8. This phe-

nomenon was possibly due to loosely bound parietal

invertases, which efficiently hydrolyze sucrose in cul-

ture medium. Between the two products of sucrose

cleavage, glucose appeared as the preferred substrate

of hexose transporters and sugar metabolism, as it was

undetectable from day 8, while fructose was still mea-

surable at day 10. The fact that ethanol, acetate, and

formic acid accumulated over time in the culture med-

ium revealed that anaerobic metabolism (fermentation)

was taking place in these cells.

Oxygen content as evidence for cell metabolic

activity

To obtain an appropriate estimation for the level of the

oxidative phosphorylation in EC and NEC, oxygen con-

sumption was measured with an oxygen electrode. The

chosen time points corresponded to each of the three

phases of proliferation, that is, latent (days 0-2), growth

(days 2-8), and stationary (days 10-14). The oxygen con-

tent was normalized to the dry weight of cells, thus mini-

mizing the cell size differences. Despite a certain decline

of the oxygen level in EC at day 8, the rate of electron

flow to oxygen remained relatively stable for both cells

types and especially for the NEC. The most striking

observation consisted in the fact that the EC consumed

twice as much oxygen as the NEC (Fig. 7).

Profiling of enzyme activities in the glycolysis

pathway

The profiles of the capacities (i.e., activities measured

under substrate saturating conditions) of the glycolysis

enzymes measured at day 8 were very different

between the two types of cells (Fig. 8A,B,C,D). The

twelve measured enzymes could be clustered in three

categories based on their activities, which ranged from

2000 to 200 000 nmol�g�1 DW�min�1. Both cell types
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Fig. 4. Quantitative comparison of the intracellular metabolites of both cell types related to glycolysis pathway and TCA cycle (mean values

from three biological replicates): EC (columns in gray) and NEC (columns in black). Starch content was enzymatically determined. *Total

proteins (mg�g�1 dry weight) were measured at day 8.
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were characterized by enzymes of the irreversible steps

of glucose metabolism (glucokinase, fructokinase,

phosphofructokinase) with high capacities (Fig. 8B).

The EC displayed higher capacities of enzymes cat-

alyzing the reversible reactions in the upper part of

glycolysis (phosphoglucose isomerase, aldolase, triose-

phosphate isomerase, phosphoglucomutase, phos-

phoglycerokinase) as well as phosphoenolpyruvate

carboxylase and pyruvate kinase, which are both

situated at the lower part of glycolysis and use phos-

phoenolpyruvate as substrate (Fig. 8C,D). Inversely,

the NEC were characterized by an important enolase

activity and by very low phosphoenolpyruvate

carboxylase and pyruvate kinase activities (Fig. 8C).

Discussion

The main challenge of the present study was to com-

pare the metabolic behavior of EC and NEC sharing a

common genotype but evolving as two independent

phenotypes maintained on their most appropriate cul-

ture media. It should be stressed that none of the cell

types can maintain its phenotype and specific cell fate

determination in the opposite medium.

Cytological characteristics and proliferation

specificities

The EC characteristics, dense cytoplasm, small vac-

uoles, high nucleo-cytoplasmic ratio, numerous poly-

somes, active mitochondria, ER, and Golgi (Fig. 1A,

C, and E) argue in favor of a cell division coupled

with cytoplasmic growth, which implies the accumula-

tion of macromolecules and cellular components, as

described for meristematic cells [36,37]. Conversely, the

NEC displayed one or two large vacuole(s), a small

nucleo-cytoplasmic ratio, electron lucent cristae, and

small endoplasmic reticulum profiles (Fig. 1B,D,F, and

F’), features coupling the cell division to the cell

expansion growth [37].

The expression profiles of the cyclin genes,

VvCYCD3;3 and VvCYCA2;2, also demonstrated the

differences in cell division activity of EC and NEC

(Fig. 2C,D,E, and F). The choice of these two distinct

types of cyclins shed light on two crucial transitions

between the phases of cell cycle, the G1/S and the G2/

M, respectively [38]. The VvCYCD3;3 gene belongs to

the D-type cyclins known to display a certain functional

redundancy required for normal embryonic develop-

ment [39]. The expression of CYCD3 genes has been

demonstrated as regulated at transcriptional level by

cytokinins, and this hormonal control is efficiently mim-

icked by sucrose, which also acts as a metabolic signal

[40,41]. Thus, the presence of cytokinins and sucrose in

fresh culture medium may explain the sharp induction

of VvCYCD3;3 after the subculture of NEC. Inversely,

the decrease in cyclin gene expression at the stationary

phase due to the sucrose depletion argues in favor of a

strong but anarchic proliferation of NEC. As sucrose

availability is crucial for commitment to plant cell divi-

sion during G1 phase by controlling the expression of

D-type cyclins [42], a plausible explanation for the
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Fig. 6. Quantitative comparison of the metabolites in culture medium of each cell type related to glycolysis pathway and TCA cycle (mean

values from three biological replicates): EC (columns in gray) and NEC (columns in black).

792 FEBS Open Bio 8 (2018) 784–798 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Model of two cell types with specific growth and metabolic behavior J. Parrilla et al.



strong expression of VvCYCD3;3 in EC may consist in

their partial synchronization in G1 phase due to the

sucrose starvation. The sustained expression of both

cyclin genes provides evidence for a moderate but orga-

nized proliferation of the EC throughout the subculture

period, assumption supported by the specific profiles of

expression of many cell-cycle genes in synchronized cell

cultures of Arabidopsis [43,44].

In Arabidopsis seeds during the embryo develop-

ment, the enhanced cell proliferation has been associ-

ated with the increased expression of D3- and B1-type

cyclins in megaintegumental/auxin response factor 2

(mnt/arf2) and apetala 2 (ap2) mutants, affected in the

corresponding transcription factors responsible for the

downregulation of these cyclins [45,46]. The triple Ara-

bidopsis mutant cycd3;1/2/3 is characterized by a
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reduction in cell number compensated by an increase

in cell size and DNA content [47]. Furthermore, it has

been demonstrated that transcripts of CYCA genes,

such as CYCA2;1 and CYCA2;3, accumulate at the

G2 to M transition in a manner concomitant with

these of all CYCB genes. The fact that CYCA2;1

expression is related to cell division was further con-

firmed by the promotion of the endoreduplication by

its proper mutation [48].

Metabolic behavior and profiling of glycolysis

enzyme activities

The detailed 1H-NMR analysis of intracellular

metabolites emphasized some marked metabolic dis-

crepancies between EC and NEC summarized in

Fig. 9. It appears that EC are able to maintain a low

intracellular content of glucose and sucrose, in parallel

with the synthesis and storage of starch, amino acids

(in particular proline and alanine), choline, and pro-

teins. Considering the fact that EC have a relatively

low but maintained division activity, the influx of mal-

tose coupled with a less efficient glycolysis (glycerol

effect) may explain the starch accumulation in numer-

ous amyloplasts. Inversely, NEC demonstrated a high

intracellular level of glucose and sucrose, as well as of

some TCA cycle intermediates (citrate, succinate,

fumarate, malate).

Although sucrose is the classical sugar in cell sus-

pensions, the use of maltose in embryogenic cell cul-

ture and the subsequent induction of somatic

embryogenesis are now largely applied for numerous

plant species [36,49–52]. The most credible reason for

understanding the beneficial effect of maltose on

somatic embryogenesis consists in the low hydrolysis

of this disaccharide by the extracellular a-glucosidase,
which has been at least five times slower than the

sucrose hydrolysis by the cell wall invertases in barley

microspore culture [53]. The assimilation of supplied

carbon from [14C]sucrose has been demonstrated to be

remarkably greater than that from [14C]maltose. In

addition, the authors provided evidence that the

adenylate energy charge (ATP and ADP) increased,

when the microspores were transferred to maltose,

and, inversely, it decreased after transfer to sucrose at

the same concentration (40 mM).

Contrary to most yeast species relying on glycerol as

a carbon substrate in aerobic conditions, plant cells do

not use it efficiently as a growth substrate. For exam-

ple, in mesophyll cells from barley leaves, glycerol trig-

gers an accumulation of glycerol-3-phosphate at the

expense of intracellular Pi and impairs phosphate meta-

bolism and photosynthesis [54]. The growth of excised

maize root tips is also inhibited in the presence of

100 mM glycerol [55]. Glycerol, which may provide

carbon to the glycolysis via a phosphorylation (glyc-

erokinase) followed by an oxidation (glycerol-3-phos-

phate dehydrogenase), is not only a poor substrate for

plant cell growth, but also a disturbing factor, which

slows down the glycolysis flux. This is consistent with

the known inhibition of glucose-6-phosphate isomerase

by glycerol-3-phosphate [56]. Two independent analy-

ses realized on citrus and chicory cells cultured on med-

ium containing glycerol as only carbon source have

demonstrated the synthesis of soluble sugars (sucrose,

glucose, fructose) as well as of starch [57,58]. These lat-

ter observations are in agreement with the starch accu-

mulation in grape EC and argue in favor of a possible

role of glycerol in the stimulation of gluconeogenesis.

It is very likely that NEC strongly rely on fermenta-

tive metabolism to generate ATP, as fermentation

products ethanol and formic acid were found in the

culture medium (Fig. 6), and enolase activity was very

high compared to EC (Fig. 8). It is striking that high

enolase characterizes a range of cancer cells but also

yeast [59], which both use the Warburg effect to

increase their cell proliferation rate under favorable

conditions (for instance high sugar supply). The par-

tial switch of NEC to fermentation was corroborated

by their more rapid cell growth (Fig. 2A,B) and con-

firmed by their two times lower oxygen consumption

rate (Fig. 7) than those of the EC. Moreover, due to

low energy efficiency, fermentative metabolism

requires a high metabolic flux through glycolysis.

Inversely, phosphoenolpyruvate carboxylase and pyru-

vate kinase activities were much higher in EC com-

pared to NEC (Fig. 8). One explanation could be that

in EC, these activities need to be relatively high to

support the supply of carbon into the TCA cycle, and

thus, the synthesis of ATP and carbon skeletons to

cell growth.

Cross-talk of hormonal and metabolic regulation

In cells displaying embryogenic potential but main-

tained on noninducing medium, auxin depletion

induces the synthesis of a-amylases and the stimulation

of starch catabolism [60]. The same authors have

demonstrated the importance of metabolic regulation,

namely the fact that the decrease in soluble sugars

level may produce the same derepression effect on the

genes encoding starch degradation enzymes. The

already-described opposite effects of auxins and cyto-

kinins on amyloplast development and starch synthesis

genes in the BY2 tobacco cells [61], coupled to the

quick sucrose metabolism fueling the high rate of cell
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division, are therefore arguments in favor of the low

starch content in NEC. Inversely, the EC are cultured

at the conditions of high auxin repression of starch

degradation. Their ability to maintain a low cellular

level of glucose may be due to the maltose and the

glycerol as carbon sources, which impose a low glycol-

ysis flux at the expense of starch accumulation. Our

model is a pertinent example that the low glycolysis

flux is required to prevent the EC from differentiating.

The low glycolytic metabolism under high auxin pres-

sure thereby hinders the differentiation of the EC

through somatic embryogenesis.

Conclusion

Our results fill in the literature gap by providing evi-

dence for the marked metabolic differences between

EC and NEC. These new data highlight the NEC as a

model of strong and anarchic cell proliferation, while

the EC as a model of cell ability to switch from mod-

erate and organized cell proliferation toward differenti-

ation. These both cell types with differential efficiency

of glycolytic metabolism and distinct cell fate open

perspectives for the study of gene expression regulation

in the glucose signaling pathways, at the cross-talk of

hormonal and metabolic signals.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this

article:
Fig. S1. 1H-NMR spectra of cellular metabolites. EC

(red), NEC (black).

Fig. S2. 1H-NMR spectra of metabolites in culture

media. EC (red), NEC (black).
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