Ricardo De Aldama
email: ricardo.dealdama@csl.sony.fr

Michaël Aupetit
email: michael.aupetit@cea.fr

Interpretability in Fuzzy Systems Optimization: A Topological Approach

Keywords: fuzzy system, fuzzy partition, optimization, tuning, interpretability, algebraic topology

When dealing with complex problems, it is often the case that fuzzy systems must undergo an optimization process. During this process, the preservation of interpretability is a major concern. Here we present a new mathematical framework to analyze the notion of interpretability of a fuzzy partition, and a generic algorithm to preserve it. This approach is rather flexible and it helps to highly automatize the optimization process. Some tools come from the field of algebraic topology.

Introduction

One of the appealing features of fuzzy ruled based systems is that in most cases they are easily interpretable by humans. However, when used to tackle complex problems, there is often need to make use of automatic optimization methods that improve the original system (cf. [START_REF] Cordón | Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases[END_REF]). These automatic methods have a drawback: It may entail important losses in the interpretability of the system, in particular in the fuzzy partitions. The goal of this paper is to deal with this loss of interpretability.

Although there is no standard definition for the notion of interpretability of a fuzzy system, we can distinguish, following [START_REF] Alonso | Un indice d'interprétabilité des bases de règles floues[END_REF][START_REF] De Oliveira | Semantic constraints for membership function optimization[END_REF], two levels of interpretability: That of fuzzy partitions and that of rule analysis. In this paper we deal with the problem of preserving the interpretability of the fuzzy partitions during the process of parametric optimization or tuning. We can divide this work in two parts: Firstly we provide a mathematical framework in which the concept of interpretability may be formalized, and secondly we provide a generic algorithm that takes as input a fuzzy system that the user considers interpretable, and a function to optimize (that measures the quality of a fuzzy system) and gives as output an optimized fuzzy system that preserves interpretability.

Thanks to this formalization the optimization process will be, in our view, much more painless for the user than in previous approaches. In particular it may be carried out not only by experts in optimization of fuzzy systems as usual, but also by users that are just experts in the problem-specific domain and whose knowledge in fuzzy theory may be limited.

In our approach we do not fix a priori the notion of interpretability. The mathematical framework that we propose is problem-independent and sufficiently generic to let the user establish which configuration he wants to preserve during the optimization. The essential point is the formalization of the notion of interpretability in topological and geometrical terms. Its preservation implies some particular constraints on the acceptable solutions for the optimization problem. In the generic algorithm that we propose, the codification and verification of these constraints is automatically done.

The geometric and topological analysis begins with a collection of fuzzy systems that the user considers interpretable (although in the our description of the algorithm we suppose that this family is composed of just one system). The domain of each variable is partitioned in such a way that the relative order of the different membership functions is constant on each region. These regions, and the order relations associated to them, will determine the geometric and topological constraints that will be taken into account during the optimization. In order to codify this information, a key role is played by homology groups. We make use of these well-known algebraic objects, which are able to capture a very significant part of the topology of a space and are well-suited for computer calculations. There exist several implementations to compute different homology groups. The reader interested in more details may consult for instance [START_REF] Hatcher | Algebraic topology[END_REF], [START_REF] Kaczynski | Computational homology[END_REF] or [START_REF] Zomorodian | Topology for computing[END_REF].

Analyzing the interpretability: A topological framework

The main idea

What we propose in this paper is not an absolute definition of interpretability, but rather a framework in which the actual definition, which will strongly depend on the user, can be expressed. We may talk then, given a user U , of interpretability relative to U . Our approach is strongly focused on topology: Our viewpoint is that the properties of the fuzzy partition that the user requires to be preserved are essentially of a topological nature.

Let us say a user defines a fuzzy partition such as the one on Figure 1 (top). It seems reasonable to consider that the user requires the optimization process to preserve, at least, the order of the terms. This order, although not explicitly formalized, underlies the solution we usually find in the literature: To strongly constrain the possible variations of the membership functions, in order to obtain very similar configurations as the original one, as in Figure 1 (top).

Some difficulties may arise if we try to define an order in a case such as that of Figure 1 (bottom). In more general cases, such as those of 2-dimensional variables, the concept of order may not even make any sense. However, there are always some basic properties that the user wants to preserve to be able to attach some meaning to the system. In our approach, these properties have a topological nature and are locally determined by the values of the different membership functions. In particular, we think that the relative order of these values is crucial.

The main idea is to partition the numeric domain of the variable into regions in which the relative order of the membership functions is constant, such as in Figure 1 (bottom). We use the following notation: If t 1 , t 2 , t 3 are linguistic terms and µ t1 , µ t2 , µ t3 their corresponding membership functions, then a region R of the domain is said to satisfy the relation t 1 > t 2 > t 3 , or have the label Some properties of this partition will be required to be preserved during the optimization process. Examples of such properties could be:

t 1 > t 2 > t 3 , if for every x ∈ X the relation µ t1 (x) > µ t2 (x) > µ t3 (x) holds. 0 1 R 3 R 1 R 5 R 2 R 4 R 6 R 7 R 8 R 9 R10 R 11 R 12 R13
-There is a region R 2 in which the relation Extreme > Low > High holds, with neighbors R 1 and R 3 , such that in R 1 we have Low = High < Extreme, and in R 3 we have Extreme = Low > High. -The value 50 belongs to the region R 6 that verifies Low > High > Extreme.

The rest of the section will be devoted to make this main idea more precise. In particular, we will present two key notions: The geometric and topological signatures.

Notation and definitions

The definitions concerning fuzzy systems, such as linguistic variable, membership function, etc. are standard (see for instance [START_REF] Klir | Fuzzy sets and fuzzy logic: theory and applications[END_REF]). We consider that the numeric domains associated to each linguistic variable are equipped with a natural topology (as it is the case with R n).

-Let Ω be the set of possible fuzzy systems under consideration, and let

A = A 1 × . . . × A n (typically A ⊆ R n
) be the domain of the parameter vector that we consider as determining a fuzzy system. A solution to our optimization problem will be then an element ā ∈ A. -We denote by ω : A → Ω the map that determines a fuzzy system ω(ā) from the parameter vector ā. In particular ω determines every membership function of the system. -We denote by V the set of all linguistic variables and we suppose it is the same for every ω ∈ Ω. We denote by Dom v the domain of a linguistic variable v ∈ V .

Geometric signature

Let ω ∈ Ω be a fuzzy system and v ∈ V a linguistic variable. The geometric signature of ω relative to v, that we denote by G ω (v), is a mathematical object that captures all the potentially interesting properties of the partition induced by ω on Dom v . It provides the regions in which the relative order of the different membership functions is constant, and together with each region, its corresponding order. As an illustration, consider that for a certain ω ∈ Ω and v ∈ V , Figure 1 (bottom) represents the partition induced by ω on Dom v . In this case G ω (v) is the map that associates to i ∈ {1, . . . , 13} the region R i , together with the corresponding order relation on terms. For instance: In some cases the user might consider certain "dummy" functions Dom v → [0, 1] to code particular constraints, such as interactions between membership functions. For instance, to deal with strong partitions we might consider the constant function 1 and the function i µ i (x) (where µ i represents the i-th membership function).

-G ω (v)(1) is the region R 1 , i.
The geometric signature of ω, denoted by G ω , is the map that associates

G ω (v) to v ∈ V .

Topological signature

The topological signature of ω relative to v, that we denote by T ω (v), is a a weaker concept than that of the geometric signature, i.e. for ω, η

∈ Ω, if G ω (v) = G η (v) then T ω (v) = T η (v). It codes the topological information contained in G ω (v).
The topological signature of ω is the map that associates G ω (v) to v ∈ V . We denote by T ω .

In the field of computational topology, the use of homology groups is widely spread to deal with the topology of a space. We will not provide here any definition concerning homology theory, since it is out of the scope of this paper; nevertheless we should say that these groups are topological invariants of algebraic nature, that capture an important part of the topological information of a space and are well-suited from an algorithmic viewpoint. The reader interested may consult for instance [START_REF] Hatcher | Algebraic topology[END_REF], a standard reference in algebraic topology, or [START_REF] Kaczynski | Computational homology[END_REF] and [START_REF] Zomorodian | Topology for computing[END_REF] for an approach more focused on computational aspects.

We can propose then to code the topological signature in terms of these homology groups, that we denote by H N for N ∈ N. Let v ∈ V and consider ω, η ∈ Ω such that ω induces a partition on Dom v composed of regions R 1 , . . . , R n and η induces a partition on Dom v composed of regions S 1 , . . . , S n . We say that T ω (v) and T η (v) are equal if there is a n-permutation σ such that:

1. the order on terms corresponding to R i is the same as that of S σ(i) for i = 1, . . . , n, and moreover 2.

H n (k∈K S h(k)) ≈ H n (k∈K R k) for each K ⊆ I and n ∈ N.
The homology groups are characterized by some integers, namely the Betti numbers and the torsion coefficients; they will be stored and used as topological signature. However, we should say that this is a general-purpose coding; in practice there may be different ways to implement the notion topological signature, depending mostly on the nature of Dom v . In some cases the computation of these homology groups may not be necessary and a much more efficient coding can be devised.

To illustrate the notion of topological signature, consider that for a certain ω ∈ Ω and v ∈ V , Figure 1 (bottom) represents the partition induced by ω on Dom v . In this case, T ω (v) provides for each i ∈ {1, . . . , 13} the the order on terms corresponding to the region R i , and for each K ⊆ {1, . . . , 13} the topological information of i∈K R i . For instance, if we consider K = {4, 5}, T ω (v) codes the fact that R 4 ∪ R 5 is connected, and if we consider K = {1, 6, 9} the fact that R 1 ∪R 6 ∪R 9 is composed of three connected components. Essentially, T ω (v) codes the following information:

1. There are 13 regions R i (each one being a connected set), 2. the order on terms corresponding to

R 1 is Extreme > Low = High, that of R 2 is Extreme > Low > High, etc. 3. R 1 is neighbor of R 2 , R 2 is neighbor of R 1 and R 3 , etc.
Hence if we consider another η ∈ Ω whose decomposition of Dom v is given by regions S 1 , . . . , S M , then T η (v) = T ω (v) iff M = 13, and for some permutation σ we have:

1. The order on terms corresponding to S σ [START_REF] Alonso | Un indice d'interprétabilité des bases de règles floues[END_REF] [START_REF] Alonso | Un indice d'interprétabilité des bases de règles floues[END_REF] and S σ(3) , etc.

is Extreme > Low = High, that of S σ(2) is Extreme > Low > High, etc. 2. S σ(1) is neighbor of S σ(2) , S σ(2) is neighbor of S σ

User interactions: An operational definition of interpretability

As we have already mentioned, we do not provide an absolute definition of interpretability, but rather, given a user U , a conceptual and operational framework to deal with interpretability relative to U . The goal of this section is to show how we can define and manipulate this interpretability relative to U , relaying on the notions presented in Section 2 and, importantly, on some interactions with U . We should mention that the interactions we present here seem to us flexible enough to cover most part of needs; however, other interactions could be consider. Our base hypothesis is that the notion of interpretability has essentially a topological flavor. An oversimplified version of this hypothesis would be :

Assumption 1. For every user U , there is a family {ω 1 , . . . , ω n } = Σ ⊂ Ω of representative systems, such that every η ∈ Ω considered as interpretable by U , satisfies T η = T ωi for a certain i ∈ {1, . . . , n}.

Since we want to provide an operational definition of interpretability relative to U , we need, of course, some interaction with U . We suppose then that Σ = ∅ and that U is capable of specifying Σ, i.e. providing a parameter vector āi ∈ A such that ω(ā i) = ω i , for i = 1, . . . , n. This first interaction, in which U provides Σ, is the slightest interaction with U that our method needs. However, if we want to make our method more flexible, we can allow U to provide more information. Next we present the two other kind of interactions that we consider.

For the sake of simplicity, we suppose hereafter that Σ is composed of only one system, Σ = {ω 0 }. The general case is easily deduced from this particular case (see the end of this section).

Relaxation of the topological conditions. This is basically a relaxation of Assumption 1. Once U has provided Σ = {ω 0 }, one could consider that for a solution ā ∈ A to be acceptable, i.e. such that ω(ā) is interpretable relatively to U , ā must satisfy T ω(ā) = T ω0 . Instead, we may let the user relax this condition: He could omit, if he wishes, some of the topological conditions imposed by T ω0 . Typically it may consist in merging different regions and requiring a relaxed order on terms; in this case the relaxed order should be compatible with the order of the merged regions (see example in Figure 3). This notion of compatibility could be easily formalized in terms of the lattice of partial orders on terms. This interaction with U induces some topological conditions C t that a solution ā must satisfy to be considered interpretable by U . For instance, if there is no relaxation, a solution ā satisfies C t if and only if T ω(ā) = T ω0 .

Addition of geometric conditions. U may strengthen the conditions for a solution to be considered interpretable. This extra conditions are of a geometric rather than topological nature. This will allow U to specify the regions to which certain points should belong. If we consider again Figure 1 (bottom), U may want to include the condition "0 ∈ R 1 ", that is "0 should belong to the region indexed by 1", or more precisely "0 should belong to the region whose corresponding order on terms is Extreme > Low = High, that is neighbor of other region (namely R 2) whose corresponding order is Extreme > Low > High, that is neighbor of etc. ". It is clear that we can codify these kind of conditions in terms of the point 0 and the signature T ω0 . We note by C g the geometric conditions imposed by this interaction with U .

Definition of interpretability

The interactions we have just described allow us to provide the following definition of interpretablity: A solution is interpretable relative to U if it satisfies the conditions C t and C g . During the optimization process we will use this definition to test if a solution is valid or not. In the general case, in which Σ is not necessarily composed by only one ω 0 , the definition is very similar. For each ω ∈ Σ, the user goes through the same interactions: Firstly he can relax the topological conditions induced by T ω , and secondly he can add geometric conditions related with G ω ; then these interactions provide conditions C t ω and C g ω for each ω ∈ Σ. In this case, a solution ā is interpretable relative to U , if there is ω ∈ Σ such that ā satisfies the conditions C t ω and C g ω .

Algorithm

- We present here the different parts of a generic algorithm that fulfills our purpose: To optimize a given fuzzy system while preserving its interpretability. In Figure 2 we can see a scheme of this algorithm, but rather than explaining it in its more abstract form, we prefer to focus in the explanation of a particular example. The generic case will easily be induced from this description.

Let us consider a certain fuzzy system ω 0 modeling a 2-dimensional problem, in which only one linguistic variable v is involved. For instance there may be some rules involving the terms East, West and Center that are used to activate some procedures: We could imagine a fuzzy controller that produces policy decisions (e.g. public transports, taxes, etc.) for towns in a certain area, following rules of the type "If town T is in region East then apply policy P to T ". An example of the membership functions associated to East, West and Center can be found in Figure 3 (left). Let us say a user U considers ω 0 as interpretable and wants to optimize it using a performance function f .

W < C < E W < E < C C < W < E C < E < W E < C < W E < W < C C < E < W C < W < E . < . < C . < . < E . < . < W Town X Town Y West Center East

Preprocessing

Step 0. The user gives ω 0 and f as input.

Step 1. The first part of the algorithm consists in computing the geometric signature, that is the regions in which the order of terms is constant. Let µ West , µ Center , µ East be the membership functions corresponding to the terms West, Center, East. The domain is discretize and each function is evaluated on each point of the grid. This evaluation induces a label for each point, e.g. a point

x gets the label West < East < Center if µ West (x) < µ East (x) < µ Center (x).

Then we can explicitly compute the regions (maximal connected components with the same label) by using, for instance, the method described in [START_REF] Dillencourt | A General Approach to Connected-Component Representations Labeling for Arbitrary Image Representation[END_REF]. See Figure 4 (top).

Step 2. At this point comes the second interaction with U (apart from Step 0):

The regions are presented to him (we can omit regions of dimension 0 and 1) and then he can, first relax the topological conditions that will be imposed to the acceptable (interpretable) solutions, and afterwards impose some geometric conditions. In Figure 3 we can see an example in which U , only interested in the function with highest value, decides to relax the topological conditions by merging the regions that share the same highest-valued function; he also imposes the geometric conditions "town X must belong to the region in which the value of West is the biggest" and "town Y must belong to the region in which the value of Center is the biggest". The Betti numbers of each region will be used to code the topology. Bottom left: A possible configuration of a solution that is acceptable. Bottom center: A configuration that does not satisfy the topological conditions since the region whose highest-valued function is µ Center is disconnected. Bottom right: A configuration that does not satisfy the geometric conditions since town Y does not belong to the region whose highestvalued function is µ Center .

Town X Town Y R 1 R 2 R 3 R 1 ∪ R 2 R 1 ∪ R 3 R 2 ∪ R 3 R 1 ∪ R 2 ∪ R 3
Step 3. No other interaction with U is needed, since he has just operationally defined what he considers as interpretable: This definition is essentially contained in the right side of Figure 3. In Figure 4 (bottom) we can find examples of interpretable and not-interpretable solutions. This topological information is then coded in terms of homology groups, following the explanations of Section 2 and using for instance the algorithms presented in [START_REF] Kaczynski | Computational homology[END_REF].

Optimization process

Step 4. This well-coded information, as well as the function f and ω 0 , is given as an input to an optimization algorithm, and is interpreted as a constraint C on the (signatures of the) solutions. This optimization algorithm may be of different types (e.g. metaheuristic or exact) depending on the nature of f . As it is the case for any iterative optimization algorithm, it should contain a "solution generator" module. This module may have different ways of dealing with constraints. The most basic option would be to test C for each solution that it generates and to use the result of the test to generate a new solution. Another option would be to do some kind of preprocessing, in which the acceptable domain is approximated, and then to only generate valid solutions. In any case we will need to iterate a process similar to Step 1 and Step 3: Given ā ∈ A, compute G ω(ā) and T ω(ā) , and use them to test if ā satisfies C (these are Step 4a and Step 4b in Figure 4). This will ensure that the final solution is interpretable relative to U .

Conclusion and perspectives

We have presented a generic method to deal with the loss of interpretability in fuzzy partitions during the optimization of a fuzzy system. It relies essentially on topological concepts and tools, which confers a solid mathematical foundation.

Our definition of interpretability is not absolute, but rather relative to each user, who implicitly defines the notion by means of some specific interactions. That makes this approach very flexible. Moreover, we think this method is sufficiently general to be uniformly applicable to most situations, without the need of an expert in optimization of fuzzy systems. This claim is justified by the fact that the user interactions are straightforward (no need of expertise in fuzzy systems optimization), as we can see in the description given in Section 4. This notion of interpretability could also open the door to other uses, independent of optimization; for instance, the quality of a system could be influenced by the complexity of its signature. There are nevertheless some technical limitations. In the general case the computations are expensive, for instance that of homological groups. Also, if the membership functions are highly irregular, this might create lots of different regions to analyze. However, in a typical case of dimension 1 or 2 and simple functions (such as triangles) this should not be an issue. Other pathological cases may arise, such as a solution inducing a valid topology in which some regions are extremely small and not perceptible by the user. These limitations need some careful study, but do not seem impossible to overcome. We are currently working on the implementation of some case studies for user testing.

Fig. 1 .

 1 Fig. 1. Top: Example of a fuzzy partition and some typical constraints on it (classical approach). Bottom: Decomposition of the domain [0, 100] in regions Ri in which the relative order of the membership functions is constant (our approach). For instance, if µE, µL, µH are the membership functions corresponding to Extreme, Low, High, then R2 gets the label Extreme > Low > High, since µE(x) > µL(x) > µH (x) ∀x ∈ R2.

 e. the interval [0, x 1], together with the label Extreme > Low = High. This means that for every x ∈ R 1 , µ Extreme (x) > µ Low (x) = µ High (x), where µ Extreme , µ Low , µ High are the corresponding membership functions.-G ω (v)(3) is the region R 3 , i.e. the set {x 2 } composed of only one point, together with the label Extreme = Low > High. In practice, regions of low dimension (0 in this case) may be ignored.

Fig. 2 .

 2 Fig. 2. Scheme of the algorithm. The steps correspond to the description in the text.

Fig. 3 .

 3 Fig. 3. Left: Example three membership functions associated to a 2-dimensional variable (darker colors represent values closer to 1). The black dots represent towns.Center: Regions induced by the membership functions, with their corresponding labels. Right: A relaxation of the topological conditions and the addition of two geometric conditions: Since only the highest-valued functions are relevant, some labels are merged; moreover town X must belong to the region in which µ West is the highest-valued function and town Y to the region in which µ Center is the highest-valued function.

Fig. 4 .

 4 Fig. 4. Top: Signature computation (step 1: discretization and computation of regions).The Betti numbers of each region will be used to code the topology. Bottom left: A possible configuration of a solution that is acceptable. Bottom center: A configuration that does not satisfy the topological conditions since the region whose highest-valued function is µ Center is disconnected. Bottom right: A configuration that does not satisfy the geometric conditions since town Y does not belong to the region whose highestvalued function is µ Center .

⋆ Current address: Sony CSL Paris, 6 rue Amyot, 75005 Paris, France.