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Queuing theory with heavy tails and network traffic modeling

Introduction

Computer network has been intensively studied for decades. The goal of network traffic modeling is to provide simple but accurate methods for the purposes of network analysis, network design, network management and services evaluation and protocols improvement. Because of high complexity and high randomness, traditional models fail to capture the behavior of internet traffic and the traditional queuing theory does not apply: the process of packets arrivals is not Poissonian, the inter-arrival times are not exponentially distributed [START_REF] Melakessoua | A multiplicative law of network traffic and its consequences[END_REF].

Heavy-tail phenomenon in network traffic has been observed in various studies and is of great importance for network capacity planning and traffic characteristics analyzing. To describe to heavy tailedness of network traffic, the self-similarity model is the mostly widely used model which captures the feature of the heavy tail [START_REF] Leland | On the self-similar nature of ethernet traffic[END_REF][START_REF] Willinger | Self-similarity in high-speed packet traffic: analysis and modeling of ethernet traffic measurements[END_REF][START_REF] Paxson | The failure of poisson modeling[END_REF]]. In the self-similar model, traffic process is time scale independent. However, real world internet traffic exhibits burstiness in a statistical sense only over several time scales, and hence self-similar model can not capture the essential nature of network traffic [START_REF] Melakessoua | A multiplicative law of network traffic and its consequences[END_REF]. Autoregressive Integrated Moving Average (ARIMA) process is used to model traffic process [START_REF] Moayedi | Arima model for network traffic prediction and anomaly detection[END_REF]. 1 However, ARIMA model is short tail. FARIMA model can capture both short tail and heavy tail, but it is difficult to reproduce [START_REF] Shu | Traffic prediction using farima models[END_REF]. Recently, an empirical study of LogPh model was established, based on the study of Wifi network [START_REF] Ghosh | Modeling and characterization of large-scale wi-fi traffic in public hot-spots[END_REF]. In [START_REF] Fang | Double pareto lognormal distributions in complex networks[END_REF] the double Pareto Lognormal model was proposed which exhibit double Pareto lognormal distributions.

Most of the studies of network traffic are empirically established and are based on empirical observations rather than on mathematical explanation. They seem to be credible but do not explain the mechanism of heavy tail phenomenon in network traffic. In this paper we present a mathematical modeling of network traffic, based on two simple assumptions and derive that in this model traffic ratio is Pareto distributed and volume traffic is logarithm Erlang distributed. Furthermore we derive the distribution of inter arrival time.

Queuing theory and heavy tails

In queuing theory, inter arrival time and traffic volume are two most important concepts and they form a natural duality.

Inter arrival time is a measurement used in queuing theory is understood as the time interval between the arrival of two consecutive packets. It is calculated for each data packets after the first and is often averaged to get the mean inter arrival time. In classical queuing theory, inter arrival time τ is modeled with exponential distribution

P [τ < x] = 1 -e -λx
But problems have appeared over time with this model. Network traffic has exhibits bursty phenomenon over a wide range of time scales. Various investigations demonstrated that packet inter arrival time follows truncated power law. For small time interval it follows a power law and it can be modeled with Pareto distribution. Over large time scale, Lognormal distribution fits the real world data better than Pareto distribution [START_REF] Bhattacharjee | Statistical analysis of network traffic inter-arrival[END_REF][START_REF] Garsva | Packet inter-arrival time distribution in academic computer network[END_REF][START_REF] Mushtaq | Statistical analysis and mathematical modeling of network (segment) traffic[END_REF].

Volume process x t is modeled with Poisson process in classical queuing theory and the defining characteristic of such a process is the exponentially distributed time intervals between two consecutive packets

P [x t = n] = (λt) n n! e -λt
However, recent studies have shown that the statistical assumptions underlying this queuing theory may not always be satisfied in practice and traditional queuing theory fails to model network traffic. In real world, the volume process exhibits heavy tailedness. Heavy tailedness is a long observed phenomenon in network traffic and numerous studies provide evidence of heavy tail in network traffic. Roughly speaking, heavy tail distribution are those distributions which have no exponential decay. In other words they have heavier tail than exponential distribution. Mathematically speaking, a random variable X is said to have a heavy tail if there exists a positive parameter α such that

P [X > x] = x -α L(x) (1) 
where α is called tail index and L denotes a slowly varying function

lim x→+∞ L(tx) L(x) = 1, ∀t > 0 3 A stochastic model of network traffic
Central limit theorem and lower bound

The central limit theorem (CLT) is the most important theorem in probability. It states the sum of a large number of independent, identically distributed variables from a finite-variance distribution will tend to be normally distributed. The mean of all samples from the same population will be approximately equal to the mean of the population.

However, the central limit theorem "erases" the trace of lower bound [START_REF] Li | A mean bound financial model and options pricing[END_REF]. For a sequence of independent and identically distributed random variables {X n } n , which are all bounded from below X n ≥ -a. Due to the central limit theorem, the random variable

n k=1 X k √ n
is asymptotically normally distributed and is not bounded from below even if all components X k are lower bounded by -a. Nevertheless, the mean is lower bounded by -a even if n is arbitrarily large

n k=1 X k n ≥ -a, ∀n > 0
In order to rediscover this lost lower bound and we present a stochastic model with a certain lower bound.

Traffic volume

We fix a time unit and let {x t } t denote the traffic process with respect to time t and define x 0 = 1 and r t denote the traffic ratio r t = xt x t-1 . Furthermore, we make two simple assumptions for the logarithm traffic ratio h t = ln xt x t-1 :

Assumption 1. h = {h t } t are independent and identically distributed with finite mean.

Assumption 2. h = {h t } t are all lower bounded by a negative number, -a ≤ h t ≤ +∞.

The assumption of bound is not very restrictive because the lower bound b can be arbitrarily chosen. We shall see that the characteristics of heavy tail in network traffic can be derived from these two simple assumptions. The only maximal entropy distribution of h t is exponential distribution of the form (see appendix)

P [h t < x] = 1 -e -λ(x+a) (2) 
and the traffic ration

r t P [r t < x] = P [h t < ln x] = 1 -x -λ e -λa (3) 
with density function

f (x) = λe -λa x -λ-1
The mean and variance of ratio are

E[r t ] = λe -a λ -1 σ 2 (r t ) = λe -2a (λ -2)(λ -1) 2 , λ > 2 (4)
As the sum of independent exponential distributed random variables has a Erlang distribution, so t i=1 h i is Erlang distributed from (2) with a shift term bt

P t i=1 h i < x = 1 -e -λ(x+at) t-1 i=0 λ i (x + at) i i!
Then for traffic volume

x t P [x t > x] = P e ( t i=1 h i) > x = P t i=t h i > ln x = x -λ e -λat t-1 i=0 λ i (ln x + at) i i! L(x) (5) 
Since ln x t = t i=1 h i is Erlang distributed, the x t can be called logarithm Erlang. Obviously, the function L(x) in ( 5) is a slow varying function satisfying (1) and x t has a heavy tail. As known, Erlang distributions can be expressed in terms of Gamma functions (see appendix B) and formula ( 5) is equivalent to

P [x t < x] = γ (t, λ(ln x + at)) Γ(t) ( 6 
)
where γ is an incomplete Gamma function

γ(k, x) = x 0 t k-1 e -t dt
and Γ a complete Gamma function So the traffic volum x t is logarithm Gamma distributed with mean and second order moment

Γ(k) = ∞ 0 t k-1 e -t dt 4 
E[x t ] = E t i=1 r i = λe -a λ -1 t E[x 2 t ] = E t i=1 r i 2 = e -2at λ λ -2 t , λ > 2 (7)
Now we have reached the following theorem:

Theorem 3.1. The traffic ratio r t is Pareto distributed

P [r t < x] = 1 -x -λ e -λa
and the traffic volume x t is logarithm Erlang distributed or logarithm Gamma distributed

P [x t < x] = γ (t, λ(ln x + at)) Γ(t) (8)

Inter arrival times

There is a natural duality relation between traffic volume and inter arrival time in queuing theory. Here we use this relation to derive the distribution of inter arrival time.

Inter arrival time refers to the time interval between two consecutive packets transmitted on network. Our goal is to derive the distribution of inter arrival time.

Let τ denote inter arrival time. The τ < ∆t implies that the the traffic volume at time t + ∆t is higher than that at time t, i.e. x t+∆t > x t , then

P [τ < ∆t] = P x t+∆t x t > 1 = P [x ∆t > 1]
Combining the formula (8) we reach the following theorem Theorem 3.2. The inter arrival time τ has the distribution

P [τ < ∆t] = 1 - γ (∆t, λa∆t) Γ(∆t) (9) 
The traffic volume x t with logarithm Erlang distribution

P [x t < x] = γ (t, λ(ln x + at)) Γ(t)
and the inter arrival time with distribution

P [τ < ∆t] = 1 - γ (∆t, λa∆t) Γ(∆t)
form a duality. From the log-log plot of this inter arrival time, we see, inter arrival times are distributed according to a power law with a sharp cut-off for large values of ∆t. This phenomenon has been observed in a variety of studies. The first derivative of incomplete Gamma function is related to Meijer G-function and the distribution (9) has no simple analytic of density function. We can only obtain approximate solution by methods of numerical analysis.

Conclusion

In this paper we present a queuing model with heavy tails to model network traffic, based on only two simple assumptions. In this model, traffic volume x t is logarithm Erlang distributed

P [x t < x] = γ (t, λ(ln x + at)) Γ(t)
and traffic ratio r t is Pareto distributed

P [r t < x] = 1 -x -λ e -λa
Furthermore, we derive a duality relation between traffic volume and inter arrival time and show that the distribution of inter arrival time

P [τ < ∆t] = 1 - γ (∆t, λa∆t) Γ(∆t)
The inter arrival time apears to obey power law with a cut-off.

A Maximal entropy principle and lower bounded random variables

The Principle of Maximum Entropy states the rather obvious point that probability distribution with largest uncertainty remained should be selected. In other words, subject to precisely testable information, the probability distribution which best represents the current state of knowledge is the one with largest entropy and the least informative default. The actual mathematical procedure is called the "method of Lagrange multipliers" [START_REF] Harte | Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (Oxford Series in Ecology and Evolution[END_REF][START_REF] Li | A mean bound financial model and options pricing[END_REF].

We consider a random variable X bounded from below +∞ ≥ X ≥ b with probability density f (x). This implies that there exists a negative number -a such that

P [X ≤ -a] = 0 (10) 
Now we calculate its distribution with maximum entropy principle. The differential entropy of X is defined as

H(f ) = - R f (x) ln f (x)dx
The following optimization solves for a maximum entropy distribution that satisfies some constraints:

min f -H(f ) (11) s.t.f (x) ≥ 0 f (x)dx = 1 xf (x)dx = m 1
For the Lagragian functional

L(f, λ) = -H(f ) + λ 0 f (x)dx -1 + λ 1 xf (x)dx -m 1
calculate the functional derivative and set ∂L ∂f = 0,

∂L ∂f = 1 + ln f + λ 0 + λ 1 x = 0 (12) 
Then the only solution that solves this optimization problem [START_REF] Paxson | The failure of poisson modeling[END_REF] is the shifted exponential distribution

P [X < x] = 1 -e -λ(x+a) (13) 
with mean and standard derivation

µ = 1 λ -a σ = 1 λ (14) 
where -a is the lower bound of X. 

B Probability distributions

Gamma distributions

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The common exponential distribution and Erlang distributions are special cases of the gamma distribution. If k is a positive integer, then the distribution represents an Erlang distribution; i.e., the sum of k independent exponentially distributed random variables.
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Pareto distributions Definition B. 1 .

 1 A random variable has Pareto distribution with parameter α ifP [X < x] = 1 -x min x αGamma functionsGamma functions are very important in stochastic analysis, economy and engineering and are defined viaΓ(k, x) = ∞ x t k-1 e -t dt γ(k, x) = x 0 t k-1 e -t dt Γ(k) = ∞ 0 t k-1 e -t dt

Definition B. 2 .

 2 A random variable X is Gamma distributed if P [X < x] = γ(k, λx) λ T x T -1 e -λx Γ(k)