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Non-negative Observation-based Decomposition of
Operators

Manuel Lopez-Radcenco, Student Member, IEEE, Ronan Fablet, Senior Member, IEEE and Abdeldjalil
Aïssa-El-Bey, Senior Member, IEEE

Abstract—The problem of observation-based characterization
of operators, closely related to the well-studied problem of blind
source separation, remains nonetheless considerably less studied.
Inspired by the recent success of non-negative and sparse blind
source separation, we aim at extending constrained blind source
separation models to the data-driven characterization of opera-
tors. We introduce a novel non-negative decomposition model for
linear operators and investigate different parameter estimation
algorithms. We study and compare the proposed algorithms
in terms of identification and reconstruction performance in a
variety of experimental settings, in order to gain insight into
the robustness and limitations of the proposed algorithms. We
further discuss the main contribution of our approach compared
with state-of-the-art methods for the analysis and decomposition
of operators.

I. INTRODUCTION

The problem of observation-based separation of different
contributions associated with multiple sources or processes,
formally known as blind source separation [1], [2], has been
extensively studied in signal and image processing. Consider-
able advancements have been made in the last few years with
the introduction of non-negativity [3]–[6] and sparsity [7]–[9]
constraints, which allow for the development of part-based
representations and more interpretable models.
Non-negativity constraints have been exploited extensively
in science and engineering. They were first introduced to
account for situations where an inherent non-negativity exists
within the problem solution (e.g. physical measurements, pixel
intensities, frequency counts, etc), to constraint models in
order to avoid physically impossible or absurd results [4].
Classical non-negatively constrained problems include Non-
negative Least Squares (NNLS) [10] and Non-negative Matrix
Factorization (NMF) [3]–[6], [11]. In practice, non-negativity
can be enforced in several manners, most notably with opti-
mization schemes such as active set algorithms [10], iterative
update rules that maintain non-negativity [3], [4], [11], and
constrained alternating least squared [11], [12] exploiting
proximal operators [13], among others. Additionally, part of
the inspiration behind non-negativity constraints comes from
numerous situations in nature where a process or phenomenon
can be explained by the additive mixing of multiple contribut-
ing factors [3], [4]. As such, they allow for the development of

M. Lopez-Radcenco, R. Fablet and A. Aïssa-El-Bey are with IMT Atlan-
tique, Lab-STICC, UBL, 29238 Brest, France.

This work was supported by ANR (grant ANR-13-MONU-0014), Labex
Cominlabs project SEACS and OSTST project MANATEE.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

part-based representations with a wide variety of applications,
ranging from learning parts of faces or semantic features of
text [3] to music analysis and audio blind source separation
of convolutive mixtures [5], [6].
Sparsity constraints, on the other hand, where introduced for
dimensionality reduction, and to allow for the development
of simpler representations of high-dimensional data [14]. This
led to the development of simpler models and representations
that are easier to understand. Constraining solutions to be as
sparse as possible will nullify all but the strongest parts or
components of the solution, thus allowing for these to be
given greater relative importance in the final reconstruction
(provided that an adequate number of non-zero components is
parametrized). Formally, sparsity constraints impose restric-
tions on the number of non-zero elements of the solution s. In
practice, this is generally achieved through the minimization
of the `0-norm ||s||0, i.e. the number of non-zero elements
of solution s. As this minimization is an NP-hard, usually
intractable problem, the constraint is generally relaxed and the
`1-norm is considered instead. Several sparse representation
algorithms exist to compute (or approximate) the solution of
this minimization problem, including (but not restricted to)
Lasso [14], Orthogonal Matching Pursuit [15] and proximal
splitting methods [13].
Interestingly, even though an extensive literature exists on the
problem of blind source separation, the very similar problem
of observation-based characterization and decomposition of
operators (relationships between variables of interest), on the
other hand, has not been studied as extensively. To cite some
examples, operator decomposition techniques have been used
in domains such as fluid dynamics [16]–[18], oceanography
and meteorology [19] and image processing [20]. Most of
these approaches, however, rely on hypothesis such as classical
orthogonality priors and time invariance, and exploit l2-norm
penalizations, which may not always yield the best represen-
tations. For instance, in the field of physical oceanography,
understanding the relationships and interactions between dif-
ferent geophysical tracers is a major challenge [21]–[26], with
approaches ranging from Fourier-based representations [27],
[28] to latent class regression model [29]. However, with ocean
dynamics depicting strong stochastic variabilities in space and
time, these approaches may not be relevant to reveal hidden
processes.
Overall, given the need for more complex formulations that
can tackle the shortcomings of current models, recent ad-
vances in blind source separation applications using sparse
and non-negative constraints make them particularly appealing
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to address the observation-based characterization and decom-
position of operators. This paper addresses these issues and
develops mathematically-sound and computationally-efficient
schemes. Our main contributions are three-fold:

• A least-square formulation in the observation space under
non-negativity constraints associated with different esti-
mation algorithms;

• A reformulation of the considered non-negative issue as
a dictionary leaning problem to gain modeling flexibility,
including the ability to consider alternative priors, such
as sparsity;

• The experimental evaluation of the proposed numerical
schemes, which point out the relevance of the dictionary
learning framework.

The remainder of the paper is organized as follows. Section II
formally introduces the problem of observation-based operator
decomposition and related work. Section III presents the
proposed models and algorithms. We also include a brief
analysis on computational complexity. In Section IV-B, we
study and compare the different algorithms’ performance in
terms of parameter recovery and observation reconstruction
for multiple cases, including ideal noiseless settings, cases
involving a variable number of decomposition modes and
configurations considering noisy observations and parameters.
Finally, Section V presents our concluding remarks and future
work perspectives.

II. PROBLEM STATEMENT AND RELATED WORK

The problem of separating different contributions associated
with multiple sources or processes using only an observation
dataset (without any a priori knowledge of the hidden pro-
cesses behind the dataset generation), formally known as blind
source separation [1], [2], is a classical problem that has been
extensively studied in signal and image processing. In the last
few years, considerable advancements have been reported with
the development of non-negativity [3]–[6] and sparsity [7]–[9]
based models. In a general way, we aim at decomposing a
signal or image as the sum of K components:

y =

K∑
k=1

αksk + ω (1)

where coefficient αk quantifies the contribution of component
sk, which corresponds to the k-th reference signal or image
and ω is a white Gaussian noise process that models the
estimation residual. Depending on the specific characteristics
of the dataset or application considered, model (1) may be-
come intractable, which justifies the introduction of additional
constraints in order to improve model identifiability.
The very similar problem of observation-based characteriza-
tion and decomposition of operators (relationships between
variables of interest), on the other hand, has not been stud-
ied as extensively. Formally, the general and unconstrained
observation-based decomposition of operators amounts to con-
sidering operators which relate variables of interest x and y,
and state a general decomposition according to K modes as

the superposition of K responses to input variable x. For a
dataset {xn,yn}, this may be given by:

yn =

K∑
k=1

αnkfk (xn) + ωn (2)

where xn ∈ RJ , yn ∈ RI , αnk ∈ R are mixing coefficients
that model the contribution of each mode to the reconstruction
of yn given xn, fk : RJ → RI is a linear or non-linear
function associated with mode k, and ωn ∈ RI is a noise
process, usually a Gaussian noise. In this paper, we will focus
on linear, constrained versions of model (2).
Fluid dynamics and dynamical system analysis are among
the scientific fields where such decomposition models are of
key interest. Dynamical Mode Decomposition (DMD) [16] is
among the most popular approaches for the decomposition
of operators governing dynamical systems into physically-
relevant modes. DMD relies on orthogonality priors through
an SVD [30] based eigendecomposition of a finite-dimensional
approximation of the Koopman operator1 [31]. Meanwhile, the
Koopman operator relies on strong hypothesis, such as space-
time stationnarity, which may not be fulfilled especially, and
the accuracy of the finite-dimensional approximation of the
(infinite-dimensional) Koopman operator needed to ensure the
feasibility of DMD. To improve the interpretability and repre-
sentation power of DMD, a few studies have investigated ex-
tensions with joint sparsity and non-negativity constraints [17]
and Bayesian priors [18]. Beyond the DMD, orthogonality-
based decomposition approaches [19], [32] are widely used
for the analysis and characterization of geophysical systems.
The assumption that the underlying modes may be separated
according to orthogonality constraints is, in general, not sup-
ported by theoretical evidence. As stated in [33], it should
be noted that, in spite of their computational efficiency, there
are no guarantees that an orthogonal decomposition will yield
physically-meaningful individual dynamical modes or even
modes that relate to independent processes or individual kine-
matic degrees of freedom. Moreover, the extracted modes will
most probably not be statistically independent, and might be
strongly influenced by the modal non-locality needed to ensure
that variance is maximized globally. In the image processing
field, super-resolution methods based on linear patch-based
operators have recently investigated operator decomposition
issues as a means to reduce memory complexity [20]. These
approaches exploit an ensemble of locally-estimated linear
regressors to perform super-resolution. To reduce memory
complexity, this ensemble is decomposed onto a set of basis
regressors and representation coefficients, so that only basis re-
gressors and coefficients are stored. Stored parameters are then
used for the re-computation of original regressors at run-time,
thus greatly reducing memory requirements (at the expense
of some extra computational complexity). These methods,
however, rely on Tikhonov regularization (also known as ridge
regression), i.e. an l2-norm penalization, for the decomposition

1 The Koopman operator associated with a given non-linear finite-
dimensional dynamical system is a linearization of its associated operator
obtained by projecting it onto an appropriate infinite-dimensional space.
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of operators, whereas other decomposition constraints might
be more suitable.

III. NON-NEGATIVE DECOMPOSITION OF OPERATORS

We describe in this section the proposed formulation and
algorithms for the non-negative decomposition of operators.
We first introduce the considered formulation (Section III-A)
and associated alternating least squares based algorithms
for the estimation of model parameters (Section III-B). We
then introduce a dictionary-learning based formulation of the
considered problem (Section III-C). We further detail model
training and application issues (Section III-D) and analyze
the computational complexity of the considered algorithms
(Section III-E).

A. General formulation

Let us consider a multivariate observation dataset {x,y}n,
where xn ∈ RJ , yn ∈ RI denote the nth observation
pair. Variables xn and yn may, for instance, refer to feature
vectors, image patches for different modalities or successive
states of a dynamical system, depending on the targeted case-
study. We focus on model (2) under the assumption that the
potentially non-linear relationship between xn and yn, given
by functional response fk (xn), can be locally approximated,
with reasonable accuracy, by a linear operator. The idea of
exploiting a local linear approximation of non-linear operators
directly relates to classical approaches such as local linear
embbeding [34]. We consider the decomposition of the ap-
proximated linear operator relating variables xn and yn under
non-negativity constraints. As stated in [35], this translates into
the following model:

yn =

K∑
k=1

αnkβkxn + ωn

Subject to

{
αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK
||βk||F = 1, ∀ k ∈ J1,KK

(3)

where αnk ∈ R+ are non-negative mixing coefficients quanti-
fying the contribution of linear modes k to the reconstruction
of yn for a given xn, βk ∈ RI×J is a regression matrix
representing mode k, ||·||F is the Frobenius norm and ωn ∈ RI
is a noise process, typically a centered Gaussian noise with
covariance matrix Σ, representing both model uncertainties
and observation errors. N and K denote, respectively, the
total number of observations and modes, while k ∈ J1,KK
and n ∈ J1, NK indicate, respectively, the current mode and
observation.
Here, a non-negativity constraint has been imposed on mixing
coefficients αnk, drawing inspiration from the success of non-
negative decompositions in applications where naturally occur-
ring positive superposition of parts exists [3], [4]. Additionally,
a normalization constraint on modal regression matrices βk
has been added to eliminate scaling indetereminancies and
improve model identifiability.
It may also be noted that any non-linear decomposition
model (2) may be restated as a linear decomposition
model (3) according to the vector of regression variables

(f0 (xn) , .., fK (xn)). In the subsequent, we assume that
candidate non-linear functional responses (fK (xn)) are given
a priori and we address the estimation of mixing coefficients
(αnk) and regression matrices (βk).

B. Alternating least squares based estimation of model pa-
rameters

We state the estimation of model parameters for model
(3) from a set of observations {x,y}n as the resolution of
the following non-linear, non-convex constrained optimization
problem:

∀n,


[
α̂nk, β̂k

]
= argmin

αnk,βk

N∑
m=1

Wn
m

∣∣∣∣∣∣∣∣ym − K∑
k=1

αnkβkxm

∣∣∣∣∣∣∣∣2
Σ

αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK
||βk||F = 1, ∀k ∈ J1,KK

(4)

where || · ||Σ is a weighted norm according to covariance Σ.
We assume that, according to weighing factors Wn

m, multi-
ple observation pairs (xm,ym) may share relatively similar
mixing coefficients {αnk}. The greater Wn

m, the more similar
the expected mixing coefficients {αnk} and {αmk}. Weighing
matrix W may encode both space-time smoothness priors,
such that observation pairs close in space and/or time are
expected to share similar operator decompositions, as well as
observation-space similarity priors, for instance that observa-
tion pairs with similar regression variables may share similar
decompositions. This seems reasonable for many applications
where parameters are expected to correlate and vary smoothly
in the considered spatio-temporal space. The parameterization
of weighing matrix W is expected to be application-dependent
and may be related to similar ideas used in covariance-
based modeling [36] and non-local schemes [37]. Regarding
identifiability issues, if the number of modes K verifies K > I
(where I is the dimension of observation vector yn), the
estimation of mixing coefficients αnk becomes intractable
from a single observation pair (xn,yn) 2. As such, weighing
matrix also provides a means to address the estimation of
mixing parameters in such situations.
An interesting particular case of model (3), studied in [35],
arises when K ≤ I . In this case, model parameters may be
estimated from only observation pair (xn,yn) for each index
n, with relates to the parameterization of weighing matrix W
as

Wn
m =

{
1, m = n

0, m 6= n
(5)

and translates to the following constrained minimization prob-
lem:

∀n,


[
α̂nk, β̂k

]
= argmin

αnk,βk

∣∣∣∣∣∣∣∣yn − K∑
k=1

αnkβkxn

∣∣∣∣∣∣∣∣2
Σ

αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK
||βk||F = 1, ∀k ∈ J1,KK

(6)

2For a fixed set of linear modes βk , the estimation of mixing coefficients
αnk requires solving a linear system involving K unknowns and I equations



4

Nonetheless, it should be noted that the condition K ≤ I
does not singlehandedly guarantee that Equation (6) will have
a solution. Indeed, for pathological cases where the system’s
Gramian matrix is not invertible more observations need to
be considered to compute a solution (as in Equation (4)).
In this respect, a compromise exists between the number of
observations considered, which increases model’s robustness
and numerical stability, and the locality of the model, which
increases when fewer (or more local when dealing with space-
time variabilities) observations are considered.
Given the non-linear, non-convex nature of constrained mini-

mization problem (4), the joint estimation of model parameter
sets αnk and βk is not straightforward. Conveniently, this
jointly non-convex minimization problem becomes convex
when estimation is performed for one set of parameters while
considering the other set of parameters to be fixed. This
suggests an alternating minimization approach, which leads
to the following updates of model parameter sets αnk and βk
being iterated until convergence:

• β-step: Minimization over βk with fixed αnk and exter-
nally forced normalization constraints3

β̂i+1
k = β̂ik+

[
N∑
n=1

α̂ink

(
yn −

K∑
p=1

α̂inpβ̂
i
pxn

)
xTn

]
[
N∑
n=1

(
α̂ink

)2
xnxTn

]−1 (7)

β̂i+1
k =

β̂i+1
k∣∣∣∣∣∣β̂i+1
k

∣∣∣∣∣∣
F

, ∀k ∈ J1,KK (8)

• α-step: Minimization over αnk with fixed βk and exter-
nally forced non-negativity constraints

α̂i+1
nk = α̂ink+

N∑
m=1

Wn
m

[
xTm

(
β̂ik

)T
Σ−1

(
ym −

K∑
p=1

α̂inpβ̂
i
pxm

)]
N∑
m=1

Wn
m

[
xTm

(
β̂ik

)T
Σ−1β̂ikxm

]
(9)

α̂i+1
nk = max

{
0, α̂i+1

nk

}
(10)

For the case where a single observation pair suffices to
estimated model parameters (Equation (6)), the α-step of
the alternating minimization approach reduces to:

α̂i+1
nk = α̂ink +

xTn

(
β̂ik

)T
Σ−1

(
yn −

K∑
p=1

α̂inpβ̂
i
pxn

)
xTn

(
β̂ik

)T
Σ−1β̂ikxn

(11)

3Since linear modes βk are shared by all observation pairs, one set of
regression matrices is estimated using all observation pairs in the training
dataset. In this respect, all observation pairs are weighted equally for the
estimation of modal regression matrices, under the assumption that they
contribute uniformly to the estimation of the globally shared linear modes.
Hence, to correctly fit the model, all global linear modes should be adequately
sampled so as to be represented equally within the training dataset.

The downside to the simplicity of the alternating minimiza-
tion approach is that it is prone to numerical issues. As
acknowledged in the blind source separation literature [11], the
alternating projections on the unconstrained and constrained
solution spaces may induce divergent or numerically unstable
behaviour. To handle such a problem, the direct minimization
introduced in Equation (9) may be softened by considering a
gradient descent:

α̂i+1
nk = α̂ink+

2δ

[
N∑
m=1

Wn
mxTm

(
β̂ik

)T
Σ−1

(
ym −

K∑
p=1

α̂inpβ̂
i
pxm

)]
(12)

where δ is the used defined gradient descent step.
For the single-observation case (Equation (6)), the α-step
reduces to:

α̂i+1
nk = α̂ink+

2δ

[
xTn

(
β̂ik

)T
Σ−1

(
yn −

K∑
p=1

α̂inpβ̂
i
pxn

)]
(13)

This is then combined with a projection onto the constrained
non-negative solution space (Equation (10)), which comes
down to a gradient based proximal splitting method [13].
Even though less necessary (since the renormalization con-
straint imposed in Equation (8) comes down to a simple
rescaling), the same gradient based reformulation can be used
for the estimation of modal linear regression matrices βk:

β̂i+1
k = β̂ik+

2δ

[
N∑
n=1

α̂inkΣ
−1

(
yn −

K∑
p=1

α̂inpβ̂
i
pxn

)
xTn

]
(14)

C. Dictionary-based formulation

As detailed below, the considered decomposition issue may
be restated as a dictionary learning problem. In (3), linear
operator

∑K
k=1 αnkβk can be regarded as a decomposition

of the local linear operator relating variables y and x for
index n. This local linear operator may be estimated as follows
according to a weighted least-square criterion using weighing
matrix W :

Θn =

(
N∑
m=1

Wn
mymxTm

)(
N∑
m=1

Wn
mxmxTm

)−1

(15)

where again Wn
m are weighting coefficients that account for

the relative contributions of observation pairs (xm,ym) to the
estimation of the linear operator Θn relating observation pair
(xn,yn). This least-square estimate comes to solve indepen-
dently the least-square criterion for each index n in (3). Here,
as in model (3), there is also a compromise between model
robustness and computational stability and model locality,
ultimately determined by the number of auxiliary observations
considered for the estimation of local linear operators Θn.
Given local models {Θn}n, problem (3) relates to the non-
negative decomposition of linear operators Θn. It can be
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shown that model (3) (which yields optimization problem (4))
can be reformulated as:

Θn =

K∑
k=1

αnkβk +

Υn︷ ︸︸ ︷(
N∑
m=1

Wn
mωmxTm

)(
N∑
m=1

Wn
mxmxTm

)−1

Subject to

{
αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK
||βk||F = 1, ∀ k ∈ J1,KK

(16)

The reformulation introduced by the estimation of local linear
operators Θn induces an error matrix Υn ∈ RI×J that de-
pends directly on observations xm and weights Wn

m. However,
given the Gaussian nature of the original error term ωm, the
new error matrix Υn, being a linear combination of Gaussian
terms, is a Gaussian matrix. The first and second order
moments of the new error matrix elements [Υn]ij introduced
in Equation (16) are:

E ([ Υn ]ij) = 0 (17)

[Ψn](ij)(i∗j∗) =E ([ Υn ]ij [ Υn ]i∗j∗) =

N∑
m=1

(Wn
m)

2
xTm

( N∑
m=1

Wn
mxmxTm

)−1

:j( N∑

m=1

Wn
mxmxTm

)−1

j∗:

xm

 [Σ]ii∗

(18)

where sub-indexes [A]:j and [A]l: denote, respectively, the j-
th column and the l-th line of matrix A. This leads to the
conclusion that Υn (and thus Θn) is heteroscedastic, i.e., its
elements present a non-constant variance Ψn that depends on
the observations {xn} and weights Wn

m used to estimate the
considered linear operator Θn. As such, adequately choosing
the linear regression weights Wn

m should allow us to better
manage the heteroscedastic nature of model (16).
Given local models {Θn}n, parameter estimation for model
(16) then translates to the following constrained optimization
problem:

[
α̂nk, β̂k

]
= argmin

αnk,βk

N∑
n=1

(∣∣∣∣∣∣∣∣Θn −
K∑
k=1

αnkβk

∣∣∣∣∣∣∣∣2
Ψn

)
αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK
||βk||2 = 1, ∀k ∈ J1,KK

(19)

The direct minimization of this least-square criterion using
ALS or gradient-spilling schemes would require the computa-
tion of an error covariance matrix Ψn for each local linear
operator Θn, which implies a considerable increase in the
computational complexity. Therefore, we propose an alterna-
tive method based on the dictionary-based decomposition of
vectorized versions of local linear operators Θn where, for the
sake of simplicity, we also consider a simplified homoscedastic

covariance structure. More precisely, the constrained mini-
mization problem presented in Equation (19) can be restated
as a blind dictionary learning based decomposition. We can
consider the set {Θ}n of all N local linear operators, to
which we apply the vectorization operator in order to rewrite
Equation (19) as:

[
Â, B̂

]
= argmin

A,B
||Φ−BA||2F

Akn ≥ 0, ∀k ∈ J1,KK,∀n ∈ J1, NK
||[B]:k||2 = 1, ∀k ∈ J1,KK

(20)

where matrix Φ ∈ RIJ×N is obtained by concatenating
vectorized operators θn = vec(Θn) (i.e. Φ = [θ1|...|θN ]),
columns of matrix A ∈ RK×N contain mixing coefficients
αnk quantifying the contribution of each mode k for the recon-
struction of vectorized local linear operator θn and columns
of B ∈ RIJ×K (noted as [B]:k) contain vectorized versions
of modal linear regression matrices βk, i.e., [B]:k = vec(βk).
The estimation of model parameters for model (20) resorts,
under this new formulation, to a classical dictionary learning
problem coupled with a non-negativity constraint. Dictionary
learning is a classical problem in signal processing, for which
numerous methods, exploiting different constraints, have been
proposed [3], [4], [7], [9], [11]. Here, since we consider a
non-negative constraint, we solve minimization (20) using
a proximal splitting method [13] to account for the non-
negativity of mixing coefficients matrix A. It involves the
iteration of the following two steps until convergence:

• The least-squares estimation of dictionary matrixB under
normalization constraints ||[B]:k||2 = 1, ∀k:

Bi+1 = Φ
(
Ai
)T (

Ai
(
Ai
)T)−1

(21)

[
Bi+1

]
:k

=

[
Bi+1

]
:k

||[Bi+1]:k|| 2
∀k ∈ J1,KK (22)

• The estimation of mixing coefficients matrix A using a
gradient descent based proximal splitting method [13] to
enforce non-negativity:

Ai+1 = Ai − 2λ
(
Bi
)T (

Φ−BiAi
)

(23)

[
Ai+1

]
kn

= max
{

0,
[
Ai+1

]
kn

}
,∀k ∈ J1,KK
,∀n ∈ J1, NK

(24)

Alternatively, one may choose a different dictionary-learning
technique to enforce a different constraint (e.g. KSVD [7]
for sparsity). This gives the dictionary-based formulation
increased flexibility and adaptability, since alternative model
constraints can thus be introduced seamlessly into model (3).

D. Model training and application

We may distinguish two different situations in terms of
model parameter estimation for this dictionary-based formu-
lation:

• Model training: Regression matrices β̂k (matrix B̂ in
formulation (20)) and mixing coefficients α̂nk (matrix
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Â in formulation (20)) are jointly estimated for a set
of local linear operators Θn obtained from a training
dataset {x,y}n. Estimated regression matrices β̂k will
be considered as the dictionary of regression modes βk
when the model is applied to new observations and are
thus stored for future use.

• Model application: Given a trained dictionary of opera-
tors {β̂}k (matrix B̂ in formulation (20)), mixing coeffi-
cients α̂nk (matrix Â in formulation (20)) are estimated
for a new observation dataset {x∗,y∗}n. Two approaches
may be considered. Similarly to the training step, linear
operators {Θ∗}n can be estimated for the new dataset,
and mixing coefficients can be computed by projecting
these operators onto the previously trained dictionary
(using a non-negativity constraint). Alternatively, mixing
coefficients can be estimated directly from observations
using a least-squares criterion derived from model (3)
without the prior estimation of linear operators {Θ∗}n.
Both approaches can be implemented using proximal
operators, as in the model training step, or classical non-
negative least-squares solvers [10]. It should be noted
that the estimation of mixing coefficients α∗

nk for new
observations (x∗

n,y
∗
n) may exploit only data from the

training dataset, which, in the context of dynamical
system prediction, provides the algorithm with actual pre-
diction capabilities (since no knowledge of y∗

n = x∗
n+1

is needed for the estimation of mixing coefficients αnk).

E. Computational complexity analysis

Table I presents a summary of complexity of the different
algorithms, namely the alternating least squares exploiting a
direct minimization (equations (7), (8), (9) and (10)), the al-
ternating least squares exploiting a gradient descent (equations
(7), (8), (12) and (10)) and the dictionary-based local linear
operator decomposition (equations (21), (22), (23) and (24)),
expressed in number of operations. Subsequently, we will refer
to these algorithms as ALS-direct, ALS-gradient and LLOD,
respectively. From these results, it is clear that differences
in computational complexity arise from the different strate-
gies used to approximate the unconstrained solution, as the
cost of implementing model constraints is identical for all
algorithms. ALS-gradient is more computationally demanding
that ALS-direct, which seems in agreement with the more
gradual manner in which the solution is approximated. In this
respect, the added computational cost comes as a downside of
having a more regular, smoother approach. As far as LLOD is
concerned, complexity is shifted from the optimization stage
to the estimation of local linear operators. Globally, however,
LLOD involves a lower computational complexity than both
variants of the ALS algorithm.

IV. EXPERIMENTS

In this section we evaluate the performance of the proposed
algorithms to address the general decomposition model (3)
under ideal and non-ideal settings. We consider the three
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Fig. 1. Probability density function (PDF) for the normalized mean squared
estimation error (nMSE) for mixing coefficients αnk . Results presented for
the ALS algorithm using a gradient descent approach (ALS-gradient), the ALS
algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD). All presented probability
distributions where computed using a gaussian kernel.

algorithms introduced in the previous section, namely ALS-
direct, ALS-gradient and LLOD. We report numerical exper-
iments to evaluate the proposed models and algorithms. We
exploit synthetic data to perform a quantitative analysis of the
estimation performance and a sensitivity analysis w.r.t. key
parameters and modeling hypotheses.

A. Synthetic dataset generation

We consider synthetic data (xn,yn) so that we are provided
with groundtruthed data. We proceed as follows. Mixing
coefficients αnk are simulated by means of a clustering-based
approach so that they involve state-dependent variabilities.
Elements of linear regression matrices βk are sampled from
a normal distribution N (0, 1), and regression matrices are
subsequently normalized. A cluster-based strategy is used to
generate observation pairs, so that Nc cluster centroids xc are
sampled from a multivariate normal distribution N (0, σ2

cI)
and Nx clustered observations are sampled for each cluster
from a multivariate normal distribution N (xc, σ

2
xI) centered

around each cluster centroid. Mixing coefficients αnk are
emulated by sampling the same mixing coefficient for all
observation pairs in a given cluster from a uniform distribution
U[0,Ga]. Corresponding observations yn are then generated by
applying model (3) to xn.

B. Estimation performance under ideal settings

We first evaluate estimation performance under ideal noise-
free conditions, i.e., when no observation noise is present,
which means that noise process ωn in Equation (3) repre-
sents modeling error only. Moreover, we consider that all
observations pairs within the same cluster share exactly the
same operator decomposition, in the sense that no parameter
noise in either mixing coefficients αnk or modal regression
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TABLE I: Computational cost of the different steps of the proposed algorithms, in number of operations.
ALS-direct ALS-gradient LLOD

Θn estimation - - NM [2J2 + 2IJ ] +N [J3 + IJ2]

α/A-step 2NK[MKIJ + 1]
+NK[I2 + IJ + 2I + 1]

+MNK[I2 + 2IJ + J + 1]

2NK[MKIJ + 1]
+NK[I2 + IJ + 2I + 1]

+1

NK[2IJ + 2] +NIJ + 1

α/A ≥ 0 NK NK NK

β/B-step NK[IJ + I]
+N [2J2 + 2IJ + I + 1]]

+J3 + IJ2 + IJ

NK[IJ + I]
+N [2J2 + 2IJ + I + 1]]

+J3 + IJ2 + IJ

NK2 +K2IJ +KIJ +K3

β/B normalization K[3IJ + 1] K[3IJ + 1] K[3IJ + 1]
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Fig. 2. Probability density function (PDF) for the normalized mean squared
estimation error (nMSE) for linear modes βk . Results presented for the
ALS algorithm using a gradient descent approach (ALS-gradient), the ALS
algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD). All presented probability
distributions where computed using a Gaussian kernel.

matrices βk is considered. The minimal inter-cluster distance
dmin verifies dmin > 6σx, which ensures a nearest neighbour
search will only select points within the same cluster, such that
they truly share the same mixing coefficients. All considered
algorithms (ALS-direct, ALS-gradient, LLOD) where applied
to a dataset generated considering I = 30, J = 2, K = 2,
Nc = 100, Nx = 300, σ2

c = 1 and σ2
x = d2min/360. M = 100

nearest neighbours are used to estimate model parameters
for each observation pair (xn,yn), with uniform weighting
Wn
m = 1/M,∀n,m. The experience is repeated 100 times

and results are averaged over all runs to ensure statistical
significance.
Figure 1 presents the probability density function (PDF) of
the normalized mean squared estimation error (nMSE) for
mixing coefficients αnk, defined as nMSE (αnk, α̂nk) =

1/K ·
∑K
k=1

[∑N
n=1 (αnk − α̂nk)

2
/
∑N
n=1(αnk)2

]
, with αnk

being the real mixing coefficients and α̂nk being the estimated

mixing coefficients. Figure 2 presents similar results for linear
modes βk. All PDFs where computed from the 100 simulation
runs using a non-parametric Gaussian kernel based estima-
tion. The dictionary-based LLOD algorithm yields a better
reconstruction performance for both αnk and βk, with an
error PDF presenting higher values around zero and a rapidly
decaying tail for higher error levels. By contrast, the two ALS
schemes depict similar patterns for the estimation of regression
matrices βk, with a secondary mode of the PDF centered
around high nMSE values. These patterns indicate that the
ALS algorithms do not converge for a significant fraction
of cases. For 11% (resp.12%) of the simulations, the nMSE
is greater than 0.5 for the ALS-direct (resp. ALS-gradient)
scheme, whereas it remains at 0% for the LLOD algorithm. For
mixing coefficients αnk, ALS-gradient presents a wider, non-
zero-centered mode, which reflects a lower parameter identi-
fication performance. As far as the ALS-direct is considered,
even though it depicts higher probability levels around zero,
its PDF presents, nonetheless, a slowly decaying tail, which
reflects a higher instability, with high error values (greater
than 0.5) for a significant percentage (approximately 20%) of
the simulations. Of the considered algorithms, only the LLOD
approach displays consistent and stable performance for the
identification of both mixing coefficients αnk and linear modes
βk.
Regarding convergence properties, we report in Figures 3
and 4 the median nMSE (at convergence) as a function of
the iteration number for mixing coefficients αnk and linear
modes βk. The LLOD approach presents a much slower
and smoother convergence than the two ALS schemes for
mixing coefficients αnk, while also converging to the a lower
nMSE value. Conversely, for linear modes βk, convergence
is significantly slower for the ALS-gradient algorithm, while
both the ALS-direct scheme and the LLOD approach present
fast convergence towards low nMSE values. Overall, the ALS-
direct scheme depicts a fast convergence (about 10 iterations)
for both parameters, but we may underline that the conver-
gence towards the actual parameters is not guaranteed as
shown above. Regarding the LLOD approach, convergence is
reached in about 10 iterations for linear modes βk and 100
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Fig. 3. Normalized mean squared estimation error (nMSE) median evolution
for mixing coefficients αnk . Results presented for the ALS algorithm using a
gradient descent approach (ALS-gradient), the ALS algorithm using a direct
minimization (ALS-direct) and the dictionary-based decomposition of local
linear operators (LLOD).
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Fig. 4. Normalized mean squared estimation error (nMSE) median evolution
for linear modes βk . Results presented for the ALS algorithm using a
gradient descent approach (ALS-gradient), the ALS algorithm using a direct
minimization (ALS-direct) and the dictionary-based decomposition of local
linear operators (LLOD).

iterations for mixing coefficients αnk.
A complementary experiment addresses the evaluation of
estimation performance with respect to the number of classes
K. We vary the number of classes K = 2, . . . , 10 and
generate observations using the same procedure as previously.
The experience is repeated 100 times for each number of
classes K and results are averaged over all runs for each
value of K. Figures 5 and 6 present the median nMSE (at
convergence) for mixing coefficients αnk and linear modes
βk as a function of the number of classes K, for the different
algorithms considered. We also depict the median nMSE
(at convergence) for the reconstruction of variables {yn} in
Figure 7. Obtained results show that the LLOD outperofrms
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Fig. 5. Normalized mean squared estimation error (nMSE) final median value
(at convergence) for mixing coefficients αnk as a function of the number
of classes K considered. Results presented for the ALS algorithm using a
gradient descent approach (ALS-gradient), the ALS algorithm using a direct
minimization (ALS-direct) and the dictionary-based decomposition of local
linear operators (LLOD).
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Fig. 6. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for linear modes βk as a function of the number
of classes K considered. Results presented for the ALS algorithm using a
gradient descent approach (ALS-gradient), the ALS algorithm using a direct
minimization (ALS-direct) and the dictionary-based decomposition of local
linear operators (LLOD).

both variants of the ALS for the recovery of both mixing
coefficients αnk and linear modes βk. As expected, ALS-direct
is the least performant algorithm, which can be explained
by a greater numerical instability and a higher estimation
variance. Specifically, results show that the high performance
degradation for K > 3 for ALS-direct is related to the
existence of rapid oscillations between multiple local minima
at each iteration, most probably due to the instabilities brought
about by the alternating projections onto the constrained and
unconstrained solution spaces. Overall, parameter recovery
performance is degraded as K increases, so that we report
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Fig. 7. Normalized mean squared yn reconstruction error (nMSE) final
median value (at convergence) as a function of the number of classes K
considered. Results presented for the ALS algorithm using a gradient descent
approach (ALS-gradient), the ALS algorithm using a direct minimization
(ALS-direct) and the dictionary-based decomposition of local linear operators
(LLOD).

good parameter recovery performance only for a low number
of classes (K < 4). Reconstruction performance, on the other
hand, is weakly affected by the number of classes K, with
low nMSE values for LLOD and rather poor nMSE levels
both ALS variants (and particularly ALS-direct). These results
relate to the identifiability of the model. This identifiability
becomes weaker as the number of classes K increases, since
so does the number of parameters to be estimated (given by
K(N + IJ)), while the quantity of available information to
estimate these parameters remains constant (since N , I and
J , the number and dimensions of observations xn and yn,
remain unchanged).

C. Estimation performance with noisy mixing coefficients

We further evaluate the robustness of the proposed algo-
rithms in the case of noisy mixing coefficients, that is to
say that for a given observation index n in Equation (4) not
all auxiliary observations pairs with index m and non-zero
coefficients Wn

m may share exactly the same mixing coeffi-
cients αnk. The considered experiment proceeds as follows. A
random Gaussian noise is added to the initially cluster-specific
mixing coefficients αnk in order to obtain observation-specific
coefficients, which will no longer be shared by observations in
the same cluster. To prevent the existence of negative mixing
coefficients due to the addition of Gaussian noise, the initial
cluster-specific mixing coefficients are now sampled from a
uniform distribution U[100Ga,101Ga].
This simulation setting implies that the M = 100 nearest-
neighbors of sample n involve varying mixing coefficients,
such that model (3) does not hold exactly and is only an
approximation. In this respect, parameter similarity for close
observations will now depend on the noise variance and,
thus, on the signal-to-noise ratio (SNR) between the gener-
ated mixing coefficients αnk and the added noise. As noise
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Fig. 8. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for mixing coefficients αnk as a function of mixing
coefficient SNR when Guassian noise is added to cluster-specific mixing
coefficients. Results presented for the ALS algorithm using a gradient descent
approach (ALS-gradient), the ALS algorithm using a direct minimization
(ALS-direct) and the dictionary-based decomposition of local linear operators
(LLOD).
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Fig. 9. Normalized mean squared estimation error (nMSE) final median value
(at convergence) for linear modes βk as a function of mixing coefficient SNR
when Guassian noise is added to cluster-specific mixing coefficients. Results
presented for the ALS algorithm using a gradient descent approach (ALS-
gradient), the ALS algorithm using a direct minimization (ALS-direct) and
the dictionary-based decomposition of local linear operators (LLOD).

variance increases (SNR decreases), the relationship between
observation similarity (in terms of distance and of belonging
to a given cluster) and parameter similarity becomes weaker.
The minimal inter-cluster distance dmin verifies dmin > 6σx,
which ensures a nearest neighbour search will only select
points within the same cluster. All considered algorithms
(ALS-direct, ALS-gradient, LLOD) where applied to a dataset
generated considering I = 30, J = 2, K = 2, Nc = 100,
Nx = 300, σ2

c = 1 and σ2
x = d2min/360. Again, no observation

noise is present, so that noise process ωn in Equation (3)
represents modeling error only. M = 100 nearest neighbours
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Fig. 10. Normalized mean squared yn reconstruction error (nMSE) final
median value (at convergence) as a function of mixing coefficient SNR
when Guassian noise is added to cluster-specific mixing coefficients. Results
presented for the ALS algorithm using a gradient descent approach (ALS-
gradient), the ALS algorithm using a direct minimization (ALS-direct) and
the dictionary-based decomposition of local linear operators (LLOD).

are used to estimate model parameters for each observation
pair (xn,yn), with uniform weighting Wn

m = 1/M,∀n,m.
The experience is repeated 100 times and results are averaged
over all runs, to ensure statistical significance. Moreover, these
100 simulation runs are repeated considering varying SNR
levels: SNR = {10−1, 100, . . . , 105}.
Figures 8 and 9 present the median nMSE (at convergence) for
mixing coefficients αnk and linear modes βk as a function of
the SNR of mixing coefficients. We also depict the median
nMSE (at convergence) for the reconstruction of variables
{yn} in Figure 10. The LLOD approach is clearly the most
sensitive to noisy mixing coefficients. Linear modes βk are
highly affected even for low noise levels. For SNR values
below 104, the approach converges to linear modes signifi-
cantly different from the groundtruth ones. By contrast, the
retrieval of mixing coefficients αnk as well as reconstruction
performance for variables {yn} from observations {xn} seems
consistent for SNR levels greater than 101. As far as ALS
algorithms are concerned, their performance is weakly affected
by noisy mixing coefficients αnk as illustrated by Figures 8
and 9. They however lead to poor estimation performance for
the identification of linear modes βk even for SNR values
greater than 104. Overall, these experiments suggest identi-
fiability issues for model (3) for noisy mixing coefficients
even at high SNR values. It seems that there may exist
a set of estimated linear regression matrices β̂k, different
from the true modal regression matrices βk, that lead to
low reconstruction errors (typically nMSE values below 0.01).
This implies that the proposed algorithms will be suitable
for reconstruction applications, but will also suffer from non-
unique solutions for the identification of regression modes
{βk}. Nonetheless, it is worth noting that the non-uniqueness
of the solution will not necessarily prevent the algorithms to be
considered for identification/segmentation applications using
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Fig. 11. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for mixing coefficients αnk as a function of the ratio
between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the

ALS algorithm using a gradient descent approach (ALS-gradient), the ALS
algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD).

mixing coefficients {αnk} as illustrated in [35], [38]. From
a computational point of view, one may investigate additional
constraints or priors onto mixing coefficients αnk and/or linear
modes βk to overcome such identifiability issues.
We further evaluate the extent to which we may account
for other noise configurations, especially when neighbours in
the observation space may not share similar mixing patterns.
To study such situations, we simulate possibly overlapping
clusters. As such, neighboring observation pairs (xm,ym)
and (xn,yn), which are associated with non-null weighing
coefficients Wn

m, may belong to different clusters and have,
hence, different mean mixing coefficients αmk and αnk.
Numerically, we proceed as follows to simulate such datasets.
Initial cluster centroids are sampled from a multivariate Guas-
sian distribution N (0, σ2

c ). To ensure initial cluster separation,
an additional acceptance/rejection sampling strategy is used
to reject all cluster centroids that are too close to other
centroids, according to a minimal distance dmin. Given the
Gaussian nature of the centroid sampling distribution, the
distance between cluster centroids will follow a Rayleigh
distribution with scale parameter σc. Taking this into account,
the minimal distance is chosen as dmin = σc/e, which ensures
a relatively uniform spatial distribution of cluster centroids.
For each cluster, we sample observation data {xn} from
Gaussian distributions N (xc, σ

2
x) with a standard deviation σx

ranging from 1
100dmin to 30

100dmin. For a standard deviation
of 1

100dmin, the simulation leads to non-overlapping clusters,
whereas overlapping starts to occur from standard deviation
values of 1

6dmin and above. We then evaluate estimation
performance as a function of parameter λ = 6 σx

dmin
. Figures

11 and 12 present the median nMSE (at convergence) for
mixing coefficients αnk and linear modes βk as a function of
parameter λ = 6 σx

dmin
. Obtained results indicate, most notably,
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Fig. 12. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for linear modes βk as a function of the ratio
between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the

ALS algorithm using a gradient descent approach (ALS-gradient), the ALS
algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD).

that ALS-gradient seems to be unable to correctly recover
mixing coefficients αnk as soon as clusters are close enough so
that observations from neighbouring clusters start to intervene
in the estimation of model parameters, which occurs at around
σx/dmin = 1/6, i.e. when λ = 6σx/dmin = 1. ALS-direct,
on the other hand, seems more robust to cluster overlapping,
with a slightly increasing nMSE as clusters merge. Moreover,
LLOD seems to perform worst in the intermediate variance
ranges, where parameters for observations near the cluster
edge will be computed using wrongly selected neighbours
from nearby clusters, while parameters for observations closer
to the centroid will be estimated correctly from observations
selected from the same cluster. Such behaviour can be also
observed for the estimation of linear modes βk, whereas ALS-
based algorithms seems to remain relatively robust to cluster
overlap for the recovery of regression matrices βk.
Taking all previous considerations into account, it seems clear
that ALS-direct should be used when cluster overlap may
exist or when doubts may arise over how many auxiliary
observations should be used and whether the chosen number
of auxiliary observations may lead to the incorrect selection
of nearest neighbours from nearby clusters. LLOD, on the
other hand, should be used for cases where cluster overlap
and the correct selection of the number of neighbours M are
not an issue, since in such cases it will allow for a better
model identification performance, both in terms of mixing
coefficients αnk and linear modes βk.
We specifically investigate robust estimation schemes to im-
prove the performance of LLOD w.r.t. such overlap patterns.
When cluster overlapping occurs, local linear operators Θn

for points near the clusters’ edge are computed using observa-
tions from both the current and neighbouring clusters. When
compared to local linear operators computed for observations
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Fig. 13. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for mixing coefficients αnk as a function of the ratio
between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the

original dictionary-based local linear operator decomposition (LLOD) and for
two robust variants, namely Filtered LLOD, a filtering of local linear operators
with mean value deviation higher than fc = σΦ (where σ2

Φ is the local linear
operator mean value variance), and Robust LLOD, which involves the iterative
re-weighted least squares estimation of local linear operators Θn.

closer to the cluster centroid (which are estimated using only
observations from the current cluster), the later local linear
operators tend to involve considerably larger values and will
thus dominate the dictionary-based decomposition (Equation
(20)). To tackle this problem, two different strategies are
explored. The first strategy comes to compute the mean mΦ

and standard deviation σΦ of mean values of estimated local
linear operators and filter all observations whose associated
local linear operator Θn mean value deviates from mΦ, with
cutoff values mΦ ± fc, where fc = nσΦ, for n = {1, 2, 3}.
The second strategy involves the robust estimation of lo-
cal linear operators Θn using an iterative re-weighted least
squares approach (considering i = 25 iterations) [39].Figures
13 and 14 present the median nMSE (at convergence) for
mixing coefficients αnk and linear modes βk as a function
of parameter λ = 6 σx

dmin
, for the original LLOD and for the

two robust variants considered. For the sake of simplicity, only
the most performant filtering strategy, namely that considering
fc = σΦ, is depicted. Reported results suggest that both
approaches increase the robustness of LLOD, with best results
obtained with the filtering scheme with the lowest cutoff value,
closely followed by the robust regression approach, which has
the additional advantage of not discarding any observations.
These approaches consistently improve the working range of
LLOD, which we define as the range of values for λ in which
nMSE < 0.1. The working range of the original LLOD is
λ ∈ [0,∼1.08], which corresponds to a maximum overlap
(in term of percentage of overlapping points between two
clusters) of 0.55%, while the working range of the robust
LLOD variants is λ ∈ [0,∼1.26], which corresponds to a
maximum overlap of 1.73%.
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Fig. 14. Normalized mean squared estimation error (nMSE) final median
value (at convergence) for linear modes βk as a function of the ratio
between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the

original dictionary-based local linear operator decomposition (LLOD) and for
two robust variants, namely Filtered LLOD, a filtering of local linear operators
with mean value deviation higher than fc = σΦ (where σ2

Φ is the local linear
operator mean value variance), and Robust LLOD, which involves the iterative
re-weighted least squares estimation of local linear operators Θn.

V. CONCLUSION

In this paper, we addressed the extension of constrained
blind source separation models to the observation-based de-
composition of operators. We formally introduced a non-
negative additive mixing model for operators, including a
dictionary-based reformulation, and derived associated esti-
mation algorithms. The dictionary-based formulation led to
a greater modeling flexibility and possible straightforward
extensions to sparsity-based priors. We performed numerical
experiments to evaluate the estimation performance of the pro-
posed algorithms. Overall, the dictionary-based decomposition
of local linear operators seems to provide the best performance
in terms of model identification, stability and computational
complexity under favorable settings. Alternatively, under non-
ideal settings, less stable algorithms, such as the ALS-direct,
may nonetheless prove useful for model identification and
observation reconstruction. In this respect, reported results
suggest the need for additional regularization constraints or
priors to tackle identifiability issues for model (3) in non-
ideal configurations. Indeed, even though our experiments
suggest that the proposed model and algorithms have good
reconstruction performance in most settings, which makes
them suitable for most reconstruction/prediction issues, model
identification appears to be considerably sensitive to non-ideal
settings, where the parameter sharing hypothesis is relaxed
or where the number or selection of auxiliary observations
for parameter estimation induces errors. Results also suggest
that model identifiability can be improved by introducing
robust estimation approaches for local linear operators and/or
additional model constraints. The proposed models and al-
gorithms, however, have been successfully used in both re-
construction/forecasting and segmentation applications [35],

[38], [40]. These applications stress the relevance of the
proposed non-negative decomposition of operators compared
with orthogonality-based or latent class settings, which are
considered in most previous works [19], [27]–[29].
Future work will focus on developing strategies for increasing
model robustness and algorithm performance, further explor-
ing sparsity and/or other alternative or additional constraints,
and identifying and evaluating new possible applications.
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