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Abstract. Probabilistic relational models (PRMs) were introduced to
extend the modelling and reasoning capacities of Bayesian networks from
propositional to relational domains. PRMs are typically learned from re-
lational data, by extracting from these data both a dependency struc-
ture and its numerical parameters. For this purpose, a large and rich
data set is required, which proves prohibitive for many real-world ap-
plications. Since a PRM’s structure can often be readily elicited from
domain experts, we propose manual construction by an approach that
combines qualitative concepts adapted from qualitative probabilistic net-
works (QPNs) with stepwise quantification. To this end, we introduce
qualitative probabilistic relational models (QPRMs) and tailor an exist-
ing algorithm for qualitative probabilistic inference to these new models.

1 Introduction

The formalism of Bayesian networks (BNs) is generally considered an intuitively
appealing and powerful formalism for capturing knowledge from a problem do-
main along with its uncertainties [10, 17]. A BN is composed of a directed graphi-
cal structure, encoding the random variables of the domain and the probabilistic
(in)dependencies between them, and an associated set of conditional probabil-
ity distributions, capturing the strengths of the dependencies. For computing
probabilities from a Bayesian network, tailored algorithms are available that de-
rive their efficiency from exploiting the independencies read from the graphical
structure through the well-known d-separation criterion [17].

Bayesian networks are propositional in nature, as they describe a problem
domain from the perspective of a single object class. Modelling a domain involv-
ing multiple interacting classes by such a representation, in fact, may result in
unacceptable loss of information [15]. The formalism of probabilistic relational
models (PRMs) extends on the propositional modelling capacity of BNs by allow-
ing the representation of relational information [6, 9, 14]. A PRM describes the
object classes of a relational schema by a graphical dependency structure, with
relational dependencies across classes, and supplements this structure again with
conditional probability distributions. By instantiating object classes with sets of
concrete objects, a ground Bayesian network is obtained in which inference is
performed using any standard Bayesian-network algorithm.
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A propositional Bayesian network for a real-world application is constructed
automatically from data, using tailored machine-learning techniques [2, 7, 11, 16],
or manually, with the help of experts [13]. Automatically learning a Bayesian
network typically requires a large amount of sufficiently rich data, which may
prove prohibitive for various real-world applications. Since probabilistic rela-
tional models are more involved than Bayesian networks, this observation holds
unabatedly for the construction of a PRM. In fact, although tailored algorithms
for learning probabilistic relational models are available [5, 6, 15, 25], many real-
world relational contexts resist automated model construction. Now, experiences
with building propositional Bayesian networks with domain experts show that,
while assessing the typically large number of probabilities required is quite daunt-
ing for the experts involved [3], configuring the dependency structure is quite
doable. These experiences have given rise to a stepwise approach to building
Bayesian networks [19], that exploits qualitative notions of probability available
from the framework of qualitative probabilistic networks. In this paper, we adapt
and extend these qualitative notions for use with relational models, and thereby
define the framework of qualitative probabilistic relational models.

A qualitative probabilistic network (QPN) is a qualitative abstraction of a
propositional Bayesian network [22]. Having the same dependency structure as
its numerical counterpart, a QPN summarises the probabilistic relationships be-
tween its variables by qualitative signs instead of by conditional probability ta-
bles; these signs in essence indicate the direction in which a distribution changes
with observed values for the variables involved. For qualitative probabilistic infer-
ence with a QPN, an elegant message-passing algorithm is available that amounts
to propagating signs throughout the network [4]. This algorithm again exploits
the independencies read from the dependency structure through the d-separation
criterion, and is known to have a polynomial runtime complexity.

The advocated stepwise approach to building a Bayesian network with do-
main experts now amounts to first building a qualitative probabilistic network
and then stepwise replacing signs with numerical information. After configur-
ing the dependency structure of a BN in the making, a domain expert assigns
qualitative signs to the modelled dependencies to arrive at a QPN; specifying
qualitative signs is known to require considerably less effort from experts than
specifying numbers [4, 8]. This qualitative network is then used to perform an
initial study of the reasoning behaviour of the BN under construction. With
quantification efforts yielding conditional probability distributions for (some of)
the variables involved, signs are replaced with this numerical information. Before
proceeding with the quantification, the reasoning behaviour of the intermediate
network, with both signs and numbers, is studied [19]. Possible inadequacies
in the dependency structure can thus be detected, and amended, early on in
the quantification process. This process of quantifying parts of the network and
studying reasoning behaviour is continued until the network is fully quantified.

Building upon the experience that the dependency structure of a PRM can
often be readily elicited from domain experts, we envision a similar approach
to stepwise quantification of probabilistic relational models as for propositional
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Bayesian networks. In view of this goal, we introduce in this paper QPRMs,
that is, qualitative probabilistic relational models. We will argue that the notion
of qualitative sign from the framework of QPNs readily fits a relational frame-
work. Since not all probabilistic notions employed in PRMs have qualitative
counterparts in the framework of QPNs, we define additional qualitative proba-
bilistic notions, such as qualitative aggregation functions, for use with QPRMs.
We then tailor the basic algorithm for qualitative probabilistic inference with
QPNs, to application with ground models constructed from a QPRM.

The paper is organised as follows. In Sect. 2 we review PRMs and introduce
our notational conventions. Throughout the paper we will use the example intro-
duced in Sect. 3. Section 4 then introduces QPRMs, focusing on qualitative signs
and qualitative aggregation functions. In Sect. 5 we will present our algorithm
for inference with a QPRM and in Sect. 6 we will demonstrate its application to
our example. The paper closes in Sect. 7 with our future plans.

2 Preliminaries

Relational data involve different types of object and multiple relationships be-
tween them. For modelling and reasoning about such data, we build in this paper
on the framework of probabilistic relational models [9]. In this section, we briefly
review the notions involved and thereby introduce our notational conventions;
we assume basic knowledge of propositional Bayesian networks throughout.

2.1 A relational schema and its instances

A relational schema is a pair S = (X ,R), where X is a finite non-empty set
of object classes and R models the reference relationships between them. Each
class X ∈ X has associated a finite, possibly empty, set F(X) of descriptive
features. A feature F of a class X will be denoted as X.F and its set of possible
values will be indicated by Ω(X.F ). We assume that Ω(X.F ) = {false, true} for
all F ∈ F(X), X ∈ X . A known value true for the feature F of the class X will
be indicated as X.F = true, or X.f for short; X.f̄ is used to indicate that F has
the value false in X. A class X ∈ X can be instantiated with a finite, possibly
empty, set of concrete objects IS(X) = {x1, . . . , xn(X)}, n(X) ≥ 0.

The set R(X) of reference slots of a class X describes the relationships of ob-
jects inX with objects in other classes of the relational schema. A slot R of a class
X, indicated by X.R, has associated a class pair, composed of a domain class and
a range class. The domain class of the slot X.R is denoted by Dom(X.R) and
equals X by definition. The range class of X.R is indicated by Range(X.R) and
equals some class X ′ ∈ X with X ′ 6= X, that is, we do not allow self-referencing
slots. Each reference slot X.R further has associated an inverse slot X ′.R−1 with
Dom(X ′.R−1) = Range(X.R) = X ′ and Range(X ′.R−1) = Dom(X.R) = X.
Upon instantiation of the slot X.R, the reference is a set of pairs (x, x′) of re-
lated objects with x ∈ X and x′ ∈ X ′. The slot is a one-to-one reference slot if
for each object x ∈ X there exists at most one object x′ ∈ Range(x.r) for which
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(x, x′) ∈ x.r; the slot is of type one-to-many if for each object x ∈ X there may
be multiple objects x′i ∈ X ′ for which (x, x′i) ∈ Range(x.r). Many-to-one and
many-to-many reference slots are defined analogously.

While a reference slot describes a direct relationship between two classes,
references can also be indirect through other classes. A slot chain of length k is
a sequence X.ρ = X.R1 . . . Rk, k ≥ 1, of (possibly inversed) reference slots Ri
with Range(Ri) = Dom(Ri+1). The domain class of the slot chain X.ρ equals
the domain of the first reference slot X.R1, that is, Dom(X.ρ) = X; the range
of X.ρ equals the range class of the chain’s final slot, that is, Range(X.ρ) =
Range(X ′.Rk) with X ′ = Range(X.R1 . . . Rk−1). A slot chain X.ρ describes a
relation between the objects from its domain and range classes and, upon in-
stantiation, also is a set of pairs of related objects. A slot chain can again be of
type one-to-one, one-to-many, many-to-one and many-to-many.

An instance IS of a relational schema S includes an assignment of sets of
objects to the classes in S, as described above. The instance may further include
assignments to the features and reference slots of the classes. In the sequel, we
assume that instances have feature uncertainty only, that is, while features may
not have an assigned value, the values of all reference slots are known.

2.2 The PRM and its ground Bayesian network

A relational schema S has associated a dependency structure GS , which es-
sentially is a directed acyclic graph composed of nodes, modelling the classes’
features, and their interrelationships; this structure is a meta-model, accommo-
dating possible instances of the relational schema [6].

The dependency structure GS associated with a schema S includes a node
X.Fi for every feature Fi ∈ F(X) of each class X ∈ X . The arcs of GS capture
the dependencies between the modelled features. The set of all parents of a node
X.Fi in GS is denoted as ΠGS (X.Fi). A parent of X.Fi can be either a feature
X.Fj of the same class or a feature X.ρ.Fj of the class reachable through the slot
chain X.ρ; the associated arc is called a type-I arc in the former case and a type-
II arc in the latter case. When the slot chain underlying a type-II arc is of type
many-to-one or many-to-many, the value of the feature x.Fi of some concrete
object x upon instantiation may depend on the values of the features x′.Fj of
multiple objects x′ ∈ IS(X ′) with X ′ = Range(X.ρ). The exact dependency
then is described by an aggregation function γ which takes a multiset of values
from Ω(X ′.Fj) and outputs a single such value; the function is indicated over the
corresponding arc in the dependency structure. Common aggregation functions
include the minimum, maximum and mode functions for numerical features [9].

A probabilistic relational model (PRM) for a relational schema S now is
composed of the dependency structure GS of the schema, supplemented with a
conditional probability table Pr(X.Fi | ΠGS (X.Fi)) for each node X.Fi. The
conditional probability table for the node X.Fi thereby includes conditional
probability distributions over X.Fi given each possible value combination for
its parents, as in a propositional Bayesian network. For an instance IS of the
relational schema, a ground Bayesian network is constructed by replicating the
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Fig. 1. The dependency structure of the example PRM, with five features (ellipses)
for three classes (rounded boxes); the structure is supplemented with qualitative signs
(the product synergies involved and their signs are not shown).

PRM for every concrete object in IS . The dependency structure of this ground
network includes, for each node X.Fi from GS and for every object x ∈ IS(X), a
replicate node x.Fi, along with copies of the original incident arcs from GS . For
the aggregation function associated with a many-to-one type-II arc X ′.Fj→X.Fi
in GS , an auxiliary node is included in the dependency structure of the ground
network, with incoming arcs from all replicate nodes x′k.Fj with x′k ∈ IS(X ′)
and a single emanating arc to x.Fi with x ∈ IS(X); for the aggregation function
associated with a many-to-many type-II arc, a similar construct is included. The
nodes modelling features are further assigned copies of the conditional proba-
bility tables from the PRM, and the auxiliary nodes are assigned a conditional
probability table conform the semantics of their associated aggregation function.

3 An example

To illustrate a PRM and an associated ground Bayesian network, we introduce
a small fictitious model for our example. The example pertains to customer
satisfaction with restaurants. We assume that the quality of the food served at
a restaurant is a determinant of a customer’s level of satisfaction. This level can
be read from the tip left by the customer after dining, although the size of the
tip is dependent of her income as well. For the various restaurants involved, an
internet ranking is maintained, reflecting customer satisfaction.

The example corresponds to a relational schema S which includes the three
object classes Restaurant, Dinner and Customer, with five features in all, and the
two reference slots R and C, defining the restaurant and customer, respectively,
related to a specific dinner. The dependency structure of the PRM, shown in
Fig. 1, includes a single type-I arc, between the Satisfaction level and Tips nodes
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Fig. 2. The dependency structure of the ground Bayesian network constructed for
an instance with two restaurants, two customers and four dinners; the structure is
supplemented with qualitative signs (product synergies and their signs are not shown).

of the Dinner class. It further includes three type-II arcs: the arc labelled Dinner.C

between the Income and Tips nodes describes the dependency between the Din-

ner.Tips and Dinner.C.Income features; the many-to-one type-II arc between the
Restaurant.Ranking and Restaurant.R−1.Satisfaction level features expresses the infor-
mation that the ranking of a restaurant is dependent of the satisfaction levels of
all dinners taken there, with their joint effect captured by the aggregation func-
tion AGG; the third type-II arc describes the dependency between the satisfaction
level of a specific dinner and the food quality at that specific restaurant.

Fig. 2 shows an example ground Bayesian network constructed from the
relational schema and dependency structure of Fig. 1, for an instance with
two restaurants, four dinners and two customers. We note that instantiation
of the many-to-one arc between the Restaurant.R−1.Satisfaction level and Restau-

rant.Ranking features in the dependency structure has resulted, in the ground
Bayesian network, in an auxiliary node with a single emanating arc to the rank-
ing of the restaurant and incoming arcs from the satisfaction levels of all dinners
taken there; we will return to the semantics of the auxiliary node in Sect. 4.2.

4 Qualitative probabilistic relational models

Building upon the relational concepts reviewed above, we introduce in this sec-
tion qualitative probabilistic relational models (QPRMs). Like a PRM, a qualita-
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tive relational model takes a relational schema and has an associated dependency
structure. It differs from a PRM in its associated uncertainty specifications: while
a PRM specifies a conditional probability table for each node in the dependency
structure, a QPRM specifies a qualitative sign for each arc. These signs are taken
from the propositional framework of qualitative probabilistic networks (QPNs)
[22] and are now fitted into the relational framework.

4.1 Qualitative signs for QPRMs

The qualitative signs of propositional QPNs assume an ordering on the value
sets of all variables involved [22]. For using these signs in qualitative probabilistic
relational models therefore, we have to define orderings on the value sets of the
variables of such a model. We recall from Sect. 2.1 that we assumed all features
of a relational model to be binary. Without loss of generality, we now assume
the total ordering on the value set Ω(X.F ) of a feature X.F to be f̄ ≤ f .
The orderings per feature induce a partial ordering � over the set of value
combinations for any (sub)set of features. We say that a value combination f for
some feature set F ⊆

⋃
X∈X F(X) is higher-ordered than a value combination

f ′ for F, if f ′ � f ; if f � f ′, we say that f is lower-ordered than f ′.
A propositional QPN has associated with each arc in its dependency structure

a qualitative sign δ ∈ {+,−, 0, ?}. Although these signs are qualitative in nature,
they have a well-defined probabilistic meaning in terms of the orderings on the
value sets per variable [22]; stated informally, the sign δ = ‘+’, for example,
for an arc A → B in a QPN’s dependency structure means that observing the
higher value for the variable A causes the probability of the higher value of the
variable B to increase, regardless of any other such influences on the probability
distribution of B. In the dependency structure of a relational model, we now
likewise associate qualitative signs with arcs. The sign δ = ‘+’ for the (type-I
or type-II) arc X ′.Fj → X.Fi, for example, is taken to indicate that

Pr(X.fi | X ′.fj ,w) ≥ Pr(X.fi | X ′.f̄j ,w)

for all value combinations w ∈ Ω(W) for the set W = ΠGS (X.Fi) \ {X ′.Fj} of
parents of X.Fi other than X ′.Fj . This sign thus expresses that observing the
higher value of the feature X ′.Fj induces an increased probability for the higher
value of the featureX.Fi, regardless of the values of the other parents ofX.Fi; the
sign thereby has essentially the same semantics as in a propositional QPN. The
signs ‘−’ and ‘0’ have analogous meanings, replacing ≥ in the inequality above
by ≤ and =, respectively. A ‘?’-sign for the arc X ′.Fj → X.Fi indicates that
there are value combinations w1,w2 ∈ Ω(W), w1 6= w2, such that observing
the higher value of X ′.Fj induces an increased probability of the higher value of
X.Fi in the context of w1 and causes a decrease of this probability in the context
of w2. The sign thus indicates that the direction of change in the probability
distribution of X.Fi depends on the context and, hence, is not unambiguous.

In addition to the signs per arc, a propositional QPN associates two qual-
itative signs with each pair of parents per node. As in a numerical Bayesian
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Table 1. The sign-product operator ⊗ and the sign-plus operator ⊕ for combining
qualitative signs.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

network, an observed value for a multi-parent node A of a QPN induces a mu-
tual dependency, called a product synergy, between each parent pair of A [4, 23].
The sign of this dependency is dependent of the specific value observed for A.
The two qualitative signs associated with a parent pair of the node A now are
the signs of the dependencies induced by the two possible values of A. In the
dependency structure of a relational qualitative model, we similarly associate
two signs with each parent pair X ′.Fj , X

′′.Fk of a node X.Fi. The parent pair is
said to exhibit a product synergy of sign δ = ‘−’ for the value fi of X.Fi if

Pr(X.fi | X ′.fj , X ′′.fk,w) · Pr(X.fi | X ′.f̄j , X ′′.f̄k,w)−

Pr(X.fi |X ′.fj , X ′′.f̄k,w) · Pr(X.fi |X ′.f̄j , X ′′.fk,w) ≤ 0

for all value combinations w of W = ΠGS (X.Fi) \ {X ′.Fj , X ′′.Fk}. Product
synergies of signs ‘+’, ‘0’ and ‘?’ for fi again are defined analogously; a negative
product synergy for the value f̄i of X.Fi is defined by replacing fi by f̄i in the
formula above. Since product synergies in essence are induced between pairs
of parents of a node with an observed value, their signs are defined for parent
pairs [4, 23]; an extended concept encompassing all parents of a node has been
proposed, however [1].

Qualitative signs exhibit various useful properties upon combination within a
propositional QPN [22]. The symmetry property states that, if a node A exerts
a qualitative influence on a node B over the arc A → B, then B exerts an
influence of the same sign over this arc on A. The property of transitivity states
that, if a node A exerts a qualitative influence of sign δi on a node B which
in turn has an influence of sign δj on node C, then the net influence of A on
C over the trail of associated arcs is of sign δi ⊗ δj , with the ⊗-operator as in
Table 1. The composition property states that influences along multiple parallel
trails convening at a node A combine into a net influence on A of a sign given by
the ⊕-operator from Table 1. The three properties of symmetry, transitivity and
composition underlie the basic algorithm for qualitative probabilistic inference
with a propositional QPN; we will return to this observation in Sect. 5, where
we adapt this algorithm to the relational context of QPRMs.

4.2 Qualitative aggregation functions

Thus far, we fitted the notion of qualitative sign from propositional QPNs into
the framework of QPRMs. A relational dependency structure with such signs
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can now in essence be instantiated to a ground QPN. This ground network is
constructed in a similar way as a ground Bayesian network is constructed from
a numerical PRM, that is, by replicating the qualitative relational model for
every concrete object of the instance at hand. Each replicate arc thereby inherits
the qualitative sign of the original arc from the dependency structure and each
parent pair per node inherits the two signs of the induced product synergies.
Upon constructing a ground Bayesian network from a numerical PRM however,
instantiation of a many-to-one or many-to-many type-II arc is more involved
than simple replication. We recall from Sect. 2.2 that such an arc has associated
an aggregation function that takes a multiset of values from the value set of
some feature and outputs a single such value. Upon instantiation, an auxiliary
node is created with a conditional probability table encoding the semantics of
this aggregation function. Since propositional QPNs include just type-I arcs, the
notion of aggregation function does not have a qualitative counterpart as yet.
We now define qualitative aggregation functions and detail the instantiation of
a type-II arc upon construction of a ground qualitative model from a QPRM.

While a ground Bayesian network encodes the semantics of an aggregation
function from a PRM in the conditional probability table of an auxiliary node,
a ground QPN only offers qualitative signs and their combination for this pur-
pose. Based upon this observation, we take a qualitative aggregation function to
be a function that takes for its input a multiset of qualitative signs and out-
puts a single such sign. We say that the function is ‘+’-preserving if it returns
a ‘+’ whenever its input includes at least one ‘+’; it is called ‘−’-preserving if
it returns a ‘−’ whenever its input includes at least one ‘−’. If a qualitative ag-
gregation function is neither ‘+’- nor ‘−’-preserving, it is called non-preserving.
An example non-preserving function is the parity function which returns a ‘+’
if the number of ‘+’s in its input is even and a ‘−’ otherwise. In Sect. 5, we
will see that non-preserving aggregation functions like this parity function are
undesirable in QPRM applications as these will lead to ambiguous results upon
inference. To accommodate possible dependencies induced between its input fea-
tures upon inference, a qualitative aggregation function has further associated
two qualitative signs to describe the product synergies involved.

We now address instantiation of a type-II arc of a QPRM. We consider to this
end the many-to-one type-II arc X ′.Fj → X.Fi, with an associated qualitative
aggregation function γ and sign δ. For the ground QPN given an instance IS ,
again an auxiliary node A is created, with multiple incoming arcs x′k.Fj → A from
all objects x′k ∈ IS(X ′), k = 1, . . . , n(X ′), and a single emanating arc A→ x.Fi
for x ∈ IS(X). The sign δ of the original arc from the QPRM is assigned to
this latter arc. For embedding the semantics of the aggregation function γ, we
build on the idea underlying the composition property of qualitative influences
and introduce a new operator ⊕γ for combining signs of multiple parallel trails.
Where the ⊕-operator gives a combined sign for multiple trails convening at
any feature node in general, the ⊕γ-operator does so for trails convening at the
auxiliary node A specifically. All arcs x′k.Fj → A are further assigned the ‘+’-sign
to mimic the partial order � on the value combinations of the set {x′k.Fj | k =
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procedure PropagateSign(trail ,from,to,messagesign):

sign[to] ← sign[to] ⊕ messagesign;
trail ← trail ∪ {to};
for each active neighbour x′.Fj of to
do linksign ← sign of (induced) influence between to and x′.Fj ;

messagesign ← sign[to] ⊗ linksign;
if x′.Fj /∈ trail and sign[x′.Fj ] 6= sign[x′.Fj ] ⊕ messagesign
then PropagateSign(trail ,to,x′.Fj ,messagesign).

Fig. 3. A sketch of the sign-propagation algorithm for qualitative probabilistic inference
with ground QPNs.

1, . . . , n(X ′)}. The thus specified signs now guarantee that, for example, with
a ‘+’-preserving aggregation function, a higher-ordered value combination f for
the feature x′k.Fj from all objects x′k, results in an influence of sign ‘+’ ⊗ δ on
x.Fi. To conclude, for each parent pair of the auxiliary node A, the signs of the
two possible product synergies are copied from the aggregation function γ.

5 Qualitative inference with a ground QPN

Probabilistic inference with an instance of a numerical PRM essentially amounts
to inference in the ground Bayesian network constructed from the instance. Since
this ground network is a BN, essentially any standard inference algorithm can be
used for this purpose, although various tailored algorithms are available as well
[12, 18, 24]. In this section, we detail an algorithm for qualitative probabilistic
inference with an instance of a QPRM, which builds more or less directly on the
basic sign-propagation algorithm available for propositional QPNs.

The basic idea of the sign-propagation algorithm for inference with QPNs
is to trace the effect of observing the value of a specific node on the other
nodes in the dependency structure, by passing messages between neighbours.
The algorithm thereby establishes qualitative signs for the nodes, which indicate
the direction of change in the node’s probability distribution, occasioned by the
new observation [4]. A sketch of the basic algorithm is given in Fig. 3, stated in
terms of the feature nodes of a ground QPN. Initially, all node signs are set to
‘0’. To enter a new observation, the appropriate sign is sent to the observed node,
that is, either a ‘+’ for the value true or a ‘−’ for false. In a ground QPN, this
observed node is taken as the perspective from which probabilistic effects will
be traced along trails in the dependency structure. Each feature node receiving
a message updates its own sign with this message, by application of the ⊕-
operator; dependent of the origin of the message, an auxiliary node applies the
⊕γ-operator for its aggregation function γ to this end. If its sign changes, the
node sends a sign-message to each active neighbour that is not yet on the trail
being traversed from the perspective. An active neighbour of a node x.Fi is a
non-instantiated node x′.Fj that satisfies one of the following conditions:
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(i) x′.Fj is directly connected to x.Fi either by an emanating arc or an incoming
arc; or,

(ii) x′.Fj is connected to x.Fi indirectly through a head-to-head trail x′.Fj →
x′′.Fk ← x.Fi such that either x′′.Fk or one of its descendants is observed.

In the first case, the sign of the message sent by x.Fi to x′.Fj is computed
through application of the ⊗-operator to the (possibly new) sign of x.Fi and the
sign of the arc over which the message is sent. In the second case, the message
will be sent over the dependency that is induced by observation of the value
of (a descendant of) x′′.Fk; we recall that the resulting product synergy has an
associated sign that is available from the observed node or from the appropriate
auxiliary node. The sign of the message sent over the induced dependency to the
node x′.Fj now is established through application of the ⊗-operator to the sign
of x.Fi and the sign of the product synergy involved. This process of message
passing is repeated throughout the network, visiting nodes along trails starting
at the perspective, until nodes no longer change sign. The algorithm is known to
run in polynomial time as node signs can change at most twice, from the initial
‘0’ to either ‘+’ or ‘−’, and then to ‘?’ [4].

The original sign-propagation algorithm for propositional QPNs was designed
for propagating the observed value of a single node, possibly in a context of pre-
viously entered evidence; multiple observations were dealt with essentially by
entering them one at a time and combining results by means of the ⊕-operator.
Later it was shown that multiple observations could be propagated simultane-
ously throughout a QPN by determining, for each observed node separately, to
which nodes its effects should be traced; for further details, we refer to [21].

6 The example revisited

To illustrate qualitative probabilistic inference in a ground QPN, we consider
again the dependency structure of our example QPRM, from Fig. 1. We further
consider the ground network from Fig. 2, which resulted from the instance de-
scribed in Sect. 3; we note that the OR function modelled in the ground network
is a ‘+’-preserving qualitative aggregation function.

We suppose that we know that the quality of the food served at restaurant
R1 is good, which is expressed by the value true. After entering this observa-
tion into the ground network, the sign-propagation algorithm traces its effects
throughout the dependency structure. It thereby establishes the sign ‘+’ for the
nodes R1.Food quality, R1.Ranking, Di.Satisfaction level and Di.Tips, i = 1, 2, 3; all
other nodes retain their initial node sign ‘0’. Although a high food quality will
serve to increase the probability of large tips being left at the three dinners at
this restaurant, it does not affect the probability distributions of the customers’
incomes nor that of the food quality at the other restaurant.

We now suppose that customer C1 left large tips (expressed by the value
true) at her first dinner at restaurant R1, and that customer C2 was less satisfied
with his dinner at this restaurant and left just small tips (false). We further
suppose that the product synergies given either value of the Tips node are equal
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Table 2. The node signs returned by the sign-propagation algorithm for our example
ground QPN, given D1.Tips = true and D3.Tips = false.

node name node sign node name node sign

R1.Food quality ? C1.Income +
R1.Ranking ?
R2.Food quality 0 C2.Income −
R2.Ranking 0

D1.Satisfaction level ? D3.Satisfaction level ?
D1.Tips + D3.Tips −
D2.Satisfaction level ? D4.Satisfaction level 0
D2.Tips ? D4.Tips −

to ‘0’, which expresses that regardless of the size of the tips left, a customer’s
income and satisfaction with a specific dinner are independent. The two findings
are entered into the ground network and are propagated throughout the depen-
dency structure to the appropriate nodes by the sign-propagation algorithm; the
resulting node signs are given in Table 2. The propagation results demonstrate,
for example for the node R1.Food quality, that combining parallel qualitative in-
fluences by the ⊕-operator can yield ambiguous signs. Such an ambiguity, in
fact, results whenever influences with opposite signs are combined; we say that
the trade-off that is reflected by the conflicting influences cannot be resolved at
the level of detail offered by the qualitative signs. In contrast, the ⊗-operator
cannot introduce ambiguities by itself; it will cause ambiguous signs to spread
throughout the network once they have arisen, however, as can be seen by the
propagation result for, for example, the node D1.Satisfaction level.

7 Conclusions and future research

Real-world application of PRMs is often prohibited by the need of a large amount
of sufficiently rich data for their automated construction. For practical con-
struction with the help of domain experts, we envision an approach to stepwise
quantification of probabilistic relational models similar to the approach pro-
posed before for propositional Bayesian networks. As this approach builds upon
qualitative probabilistic notions, we introduced in this paper the framework of
qualitative probabilistic relational models. For this purpose, we adapted and ex-
tended available qualitative notions of probability to the relational framework
and have adapted an existing algorithm for qualitative probabilistic inference
to ground qualitative networks. Our qualitative probabilistic relational models
are expected to allow ready construction by domain experts; in addition, they
provide for efficiently studying reasoning behaviour, as the associated inference
algorithm in essence is polynomial in the number of variables involved.

Straightforward use of qualitative probabilistic networks, be they proposi-
tional or relational, in real-world applications is associated with some disad-
vantages originating from their lack of representation detail. It is well known,
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for example, that qualitative probabilistic inference shows a tendency to lead to
weak, and even uninformative, results. Researchers have attributed this tendency
to the granularity of the qualitative signs employed and have proposed solutions
such as including a notion of strength of qualitative signs [20]. It is expected
that these and other extensions of the framework of propositional QPNs can
be incorporated in our framework of qualitative probabilistic relational models.
Another approach to forestalling uninformative results upon inference may be
to further tailor the propagation algorithm to the prospective use of QPRMs.
As the next step in our research, we intend to now first study the practicability
of our new relational framework in a real-world application, in animal ecology.
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