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Abstract

Let us consider a quasilattice, spanned by the superposition of two

hexagonal lattices in the plane, differing by a rotation of angle α. We study

bifurcating quasipatterns solutions of the Swift-Hohenberg PDE, built on

such a quasilattice, invariant under rotations of angle π/3. For nearly all

α, we prove that in addition to the classical hexagonal patterns, there

exist two branches of bifurcating quasipatterns, with equal amplitudes on

each basic lattice.

1 Introduction

We look for quasipatterns, solutions of the steady Swift-Hohenberg PDE model
equation

(1 + ∆)2u − µu + u3 = 0, (1)

where u(x, y) is a real function of (x, y) ∈ R2, ∆ is the Laplace operator, µ a real
bifurcation parameter. Mathematical existence of quasipatterns is one of the
outstanding problems in pattern formation theory. The first proof of existence
appears in [6] already for the system (1). Quasipatterns are built as Fourier
expansions with wave vectors belonging to a quasilattice in the real plane. In
[6] it is obtained for a quasilattice built with integer combinations of 2q (q ≥ 4)
wave vectors equally spaced on the unit circle, existence of a bifurcating so-
lution, invariant under rotations of angle π/q is then proved. Quasipatterns
were discovered in nonlinear pattern-forming systems in the Faraday wave ex-
periment [1], [10], in which a fluid layer is subjected to vertical oscillations.
Since their discovery, they have also been found in nonlinear optical systems,
shaken convection and in liquid cristals (see references in [2]). It is shown in [7]
how to extend the existence of bifurcating quasipattern for the steady Bénard -
Rayleigh (fluid mechanics) convection problem. Bifurcating periodic hexagonal
patterns are proved to exist in such a system, since the sixties [16], [17], [14] and
the Swift-Hohenberg PDE is a paradigm of the Bénard - Rayleigh convection
problem.
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The purpose here is to superpose two such hexagonal patterns for the model
equation (1), one pattern being slightly rotated by an angle α with respect to
the other (α may be chosen in ]0, π/6] without any restriction). For most angles
α, the result is a quasipattern of a new type, still invariant by rotations of angle
π/3.

A curious experimental observation by S.Fauve, on superposed quasipatterns
is a sort of ”locking effect” while the small angle α varies. It looks like the pat-
tern keeps an hexagonal periodic superstructure, with a wave length decreasing
as the angle α grows (see Figures 2 and 3). We have no mathematical expla-
nation of this observation for any small α, while we can prove that for most of
angles α (in the Lebesgue sense) the solution is a quasipattern, i.e. is quasiperi-
odic in any directions. However, this hexagonal superlattice might be related to
the observation of Silber and Proctor, in [15], and Epstein and Fineberg in [11]
who explain the occurrence of an hexagonal periodic superlattice for special an-
gles α (forming a zero measure set) such that their cosine is a rational number
of a certain form (see (2) and the Remark after Lemma 5). The observation
mentionned above, that the periodic hexagonal superstructure persists for small
angles, might result from the proximity of our α to one of the special angles
satisfying (2). This remains an interesting open problem.

For the proof of existence of the new quasipatterns, we follow the lines of [6].
First we build a formal expansion in powers of an amplitude ε, for the function
u(x, y) and the bifurcation parameter µ. A truncation of this expansion is an
approximate solution of (1) which is a starting point for the Nash-Moser process,
based on a Newton iteration method. We find at Theorem 10 the eligible formal
expansions of two branches of bifurcating solutions, on which we need to apply
the method. This is done in section 3. In what follows, we only mention the
differences with respect to the simple case treated in [6]. In addition to the
two basic bifurcating hexagonal patterns which exist for all α, the result on the
existence of quasipatterns is summed up at Theorem 28. Roughly speaking,
our result is that, for most angles α, there exist two branches of bifurcating
quasipatterns invariant under rotations of angle π/3 (see Figures 2 and 3). The
quasipatterns have at leading order equal amplitudes on each critical mode.

1.1 Statement of the problem

In the Fourier plane, we have two pairs of 6 basic wave vectors {kj : j = 1, 2, ..6}
and {k′

j ; j = 1, 2, ..., 6} both equally spaced on the unit circle (angle π/3 between
kj and kj+1 and between k′

j and k′
j+1) and such that k1 is parallel to the x

axis, while k′
1 makes an angle α ≤ π/6 with the x axis (see Figure 1). The

quasilattice Γ is then defined by

Γ = {k ∈ R2;k =
∑

j=1,...6

mjkj + m′
jk

′
j , mj , m

′
j ∈ N}.
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Figure 1: Definition of the lattice Γ.

Notice that k and −k ∈ Γ since kj+3 = −kj , k′
j+3 = −k′

j for j = 1, 2, 3, and
notice that we also have

k1 − k2 + k3 = 0, k′
1 − k′

2 + k′
3 = 0.

It should be noticed that if α ∈ Qπ then Γ is a sublattice of the one which is
built with 2q equaly spaced wave vectors on the unit circle. In this latter case, it
is known that the lattice is dense in the plane. There are values of α for which Γ
is periodic, as this is noticed in [15], in particular we obtain a hexagonal lattice
in the case when Γ is a sublattice of a periodic lattice, built from two basic wave
vectors s1, s2 such that |s1| = |s2|, (s1, s2) = 2π/3 and

k1 = as1 + bs2, k′
1 = as1 + (a − b)s2, a, b ∈ Z,

cosα =
a2 + 2ab − 2b2

2(a2 − ab + b2)
∈ Q, sin α =

√
3a(a − 2b)

2(a2 − ab + b2)
. (2)

This leads to the following definition

Definition 1 The set Ep of special angles is defined as

Ep := {α ∈ R/2πZ; cosα ∈ Q, cos(α + π/3) ∈ Q}.

It is then clear that Ep contains the angles α which satisfy (2). Moreover we
have the following

Lemma 2 The set Ep has a zero measure in R/2πZ.
(i) If the wave vectors k1,k2,k

′
1,k

′
2 are not independent on Q, then α ∈ Ep.

(ii) If α ∈ Ep then the lattice Γ is periodic with an hexagonal symmetry,
and wave vectors k1,k2,k

′
1,k

′
2 are combinations of only two smaller vectors, of

equal length making an angle 2π/3.

This Lemma is proved in Appendix.
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Figure 2: Superposition of two hexagonal patterns for α = 4o, 7o, π/18, π/6.
Order ε and β1 = 1 in Theorem 10 is represented.
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Figure 3: Superposition of two hexagonal patterns for α = 4o, 7o, π/18, π/6.
Order ε and β1 = −1 in Theorem 10 is represented.
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Remark 3 The set EQ = Qπ∩]0, π/6] is included in Eqp = (Ep)
c. This results

from the fact that when α = pπ/q with q ≥ 7, then cosα is irrational as is
cosπ/6.

Let us assume that α ∈ Eqp = (Ep)
c. The function u(x, y) is a real function

which we put under the form of a Fourier expansion

u =
∑

k∈Γ

u(k)eik·x, u(k) = u(−k) ∈ C. (3)

We observe that any k ∈ Γ may be written as

k = z1k1 + z2k2 + z3k
′
1 + z4k

′
2, z = (z1, z2, z3, z4) ∈ Z4,

so that Γ spans a 4-dimensional vector space on Q since α /∈ Ep. The norm Nk

is defined by

Nk =
∑

j=1,...,4

|zj| = |z|.

To give a meaning to the above Fourier expansion we need to introduce Hilbert
spaces Hs, s ≥ 0 :

Hs =

{
u =

∑

k∈Γ

u(k)eik·x; u(k) = u(−k) ∈ C,
∑

k∈Γ

|u(k)|2(1 + N2
k)s < ∞

}
,

It is known that Hs is an Hilbert space with the scalar product

〈u, v〉s =
∑

k∈Γ

(1 + N2
k)su(k)v(k),

and that Hs is an algebra for s > 2 (see [5]), and possesses the usual properties
of Sobolev spaces Hs in dimension 4. We prove in Appendix the following useful
Lemmas:

Lemma 4 If α ∈ Eqp, a function defined by a convergent Fourier series as (3)
represents a quasipattern, i.e. is quasiperiodic in all directions.

Lemma 5 For nearly all α ∈ (0, π/6), in particular for α ∈ EQ = Qπ∩]0, π/6],
the only solutions of |k(z)| = 1 are ±kj ,±k′

j j = 1, 2 and k = ±k3, or ±k′
3,

i.e. corresponding to z = (±1,∓1, 0, 0) or (0, 0,±1,∓1).

Let us denote by E0 the set of α’s such that Lemma 5 applies.

Remark 6 In general, if α ∈ Ep then α ∈ E0.

Comments on this Remark are in Appendix.
Now we need the following Lemma, proved also in Appendix:
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Lemma 7 For nearly all α ∈ Eqp ∩ (0, π/6), and for ε > 0, there exists c > 0
such that, for all |z| > 0, such that |k(z)| 6= 1,

(|k(z)|2 − 1)2 ≥ c

|z|12+ε
(4)

holds.

Let us denote by E1 the set of α’s such that Lemma 7 applies.

Remark 8 In the case when α ∈ Ep, the lattice being periodic, by Lemma 2, we
have a much better estimate for a certain c > 0 :

(|k(z)|2 − 1)2 ≥ c, for any k ∈ Γ with |k(z)| 6= 1.

Remark 9 We notice that for α = rπ
q ∈ EQ, Lemma 5 applies, hence α ∈ E0.

It is shown in [12] that the diophantine estimate (4) holds with an exponent 4l0
instead of 12 + ε, where 2(l0 + 1) = φ(2q′), φ being the Euler totient function
and q′ = q if q is a multiple of 3, and q′ = 3q in the other cases. Hence the
lower bound (4) may be too optimistic in such cases, so that EQ is not included
into E1.

Notice that Lemma 7 indicates a possible small divisor problem when we
need to invert the operator (1 + ∆)2. This is the source of the main difficulties
of the problem, which needs the use of the strong implicit function theorem to
be solved (see [6]).

2 Formal solutions

For proving mathematically the existence of a quasipattern, we start with its
formal expansion in powers of an amplitude ε. A truncated expansion plays the
role of a first approximation, and is a starting point of the Newton iteration
process, ruling the Nash-Moser method.

2.1 Symmetries

Our problem possesses important symmetries. First, the symmetry S defined
by

Su = −u

which commutes with (1) because of the imparity of the equation. Let us define
L0 = (1 + ∆)2), then we have

SL0 = L0S, Su3 = (Su)3.

The system is invariant under rotations of the plane. Denoting by Rθ the
rotation of angle θ, centered at the origin we define classically

(Rθu)(x) = u(R−θx),
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so that
RθL0 = L0Rθ, Rθu

3 = (Rθu)3.

The third symmetry τ represents the symmetry with respect to the bisec-
trix of wave vectors k1 and k′

1. This changes (k1,k2,k3,−k1,−k2,−k3) into
(k′

1,−k′
3,−k′

2,−k′
1,k

′
3,k

′
2). We also have the commutation properties

τL0 = L0τ , τu3 = (τu)3. (5)

2.2 Formal series

In this section, we are looking for solutions, invariant under rotations of angle
π/3, under the form of formal power series in an amplitude ε:

u =
∑

n≥1

εnun, µ =
∑

n≥1

εnµn,

where ε is defined by the choice of u1, and un has the form of a Fourier series
(3) which is finite. At order ε we obtain classically

L0u1 = 0,

which means that u1 lies in the kernel of L0. In the class of functions invariant
under the rotation of angle π/3, and provided that α ∈ E0, the kernel is two
dimensional, spanned by

v =
∑

j=1,2,..,6

eikj·x, w =
∑

j=1,2,..,6

eik′
j ·x.

We observe that
τv = w, τw = v. (6)

We then set
u1 = w + β1v (7)

where the coefficient in front of w fixes the choice of the scale ε, provided that
we choose to impose

〈un, w〉0 = 0, n = 2, 3, ...

since the linear operator L0 is selfadjoint in H0. The coefficient β1 is chosen
later. Then we can prove the following

Theorem 10 Let us consider the Swift-Hohenberg model PDE (1). The super-
position of two hexagonal patterns, differing by a small rotation of angle α leads
to formal expansions in powers of an amplitude ε, of new bifurcating patterns
invariant under rotations of angle π/3. For α ∈ E0 we only have the bifurcating
(classical) periodic hexagonal patterns and two branches of new patterns (see
Figure 4), with formal expansions of the form

u = ε(w + β1v) + ε3ũ3 + ...ε2n+1ũ2n+1 + .., β1 = ±1, (8)

〈ũ2n+1, v〉 = 〈ũ2n+1, w〉 = 0, τ ũ2n+1 = β1ũ2n+1, τu = β1u,

µ = ε2µ2 + ε4µ4 + ... + ε2nµ2n + .., µ2 > 0,
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τu=Su=-u
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0

Figure 4: Bifurcating branches of quasipatterns. Actions of symmetries are
indicated with arrows.

v =
∑

j=1,2,..,6

eikj ·x, w =
∑

j=1,2,..,6

eik′
j ·x, (k1,k

′
1) = α.

For ε ∈ Ep∩E0 the expansions (8) converge, giving periodic patterns with hexag-
onal symmetry (superhexagons indicated in [15] and [11]).

Remark 11 We show on Figures 2 and 3 the order ε of the branches with
β1 = 1 and β1 = −1 respectively, for different values of α.

Proof. At order ε2 we obtain

L0u2 = µ1u1,

and the compatibility condition gives that there exists β2 ∈ R such that

µ1 = 0, u2 = β2v. (9)

Order ε3 then leads to
L0u3 = µ2u1 − u3

1, (10)

with the compatibility conditions

aµ2 − c − 3bβ2
1 = 0,

aβ1µ2 − 3bβ1 − cβ3
1 = 0,
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where (in all cases)

a = 〈v, v〉 = 〈w, w〉 = 6,

b = 〈v2w, w〉 = 〈w2v, v〉 = 36,

c = 〈w3, w〉 = 〈v3, v〉 = 90,

〈v2w, v〉 = 〈w2v, w〉 = 〈v3, w〉 = 〈w3, v〉 = 0.

For example, the term 〈w3, v〉 is 0 because there does not exist m′
1, m

′
2 ∈ Z such

that
m′

1k
′
1 + m′

2k
′
2 = kj

due to Lemma 5, for α ∈ E0. This gives

(c − 3b)(β3
1 − β1) = 0, (11)

and there exists β3 ∈ R such that

µ2 =
c

a
+ 3

b

a
β2

1,

u3 = β3v + ũ3, 〈ũ3, v〉 = 〈ũ3, w〉 = 0.

The term ũ3 only contains Fourier modes eik·x with k = m′
1k

′
1 + m′

2k
′
2.

Then, we can show easily
(i) u2n = 0, µ2n+1 = 0, for n = 1, 2, ....
(ii) For β1 = 0 we recover the classical periodic hexagonal pattern

u = εw + O(ε3), µ = ε2µ2 + O(ε4), µ2 = 15,

and using the symmetry τ , the other classical hexagonal pattern

τu = εv + O(ε3), µ = ε2µ2 + O(ε4), µ2 = 15.

(iii) For β1 = ±1, µ2 = 33 and the series for u and τu = β1u are uniquely
determined. Then, the uniqueness of the series implies β3 = 0 (see the proof of
(33)).

Remark 12 Su = −u is the solution which corresponds to change ε into −ε,
which does not change µ. So, we only have two branches of bifurcating solutions
(8) (see Figure 4).

Remark 13 For α ∈ Eqp ∩ E0, the proof of existence of a quasipattern with
asymptotic expansion (8) is made at next section.

Remark 14 For α ∈ Ep ∩ E0 the proof of convergence of the series (8) is stan-
dard in the frame of analytical functions of ε (Lyapunov-Schmidt method).

Remark 15 When α is close to 0, it can be shown that the coefficient u3 is
of order (α)−4. This is due to 2kj − k′

j and 2k′
j − kj occuring as wave vectors,

and which have a norm 4(1−cosα) appearing with a square at the denominator.
This factor (α)−4 also appears in higher orders in the expansion.
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3 Existence of quasipatterns

Let us consider the quasipatterns corresponding to a formal expansion of the
form (8) where α ∈ Eqp ∩ E0. We may use the same scaling as in [7]:

u = Uε + ε4W, W = ũ + βv, ũ ∈ {v, w}⊥, (12)

Uε = ε(w + β1v) + ε3ũ3, β1 = ±1,

µ = µε + µ̃, µε = ε2µ2 + ε4µ4,

SUε = U−ε, Rπ/3Uε = Uε, τUε = β1Uε,

with ε ∈ [−ε0, ε0]. Then

L0Uε = µεUε − U3
ε + ε5fε,

fε = f0 + ε2f (1)
ε , f0 = −L0u5,

where fε is a known quasiperiodic function with a finite Fourier expansion, even
in ε. We obtain

[L0 − µε − µ̃ + 3U2
ε ]W = µ̃ε−4Uε − εfε − 3ε4UεW

2 − ε8W 3,

which splits in using the projections P0 on the kernel of L0, and Q0 = I − P0

on its range:

ε3[−µεβv + 3P0(U
2
ε W ) − µ̃βv] = µ̃(w + β1v) − ε6P0f

(1)
ε (13)

−3ε7P0Uε(ũ + βv)2 − ε11P0(ũ + βv)3,

[L0 − µε − µ̃]ũ + 3Q0(U
2
ε (ũ + βv)) = µ̃ε−1ũ3 − εQ0fε − 3ε4Q0Uε(ũ + βv)2

−ε8Q0(ũ + βv)3. (14)

The idea is to solve first (14) with respect to ũ as a C1 function V (ε, µ̂, β),
where µ̃ = ε2µ̂, and to replace it into (13) which is two dimensional. The
projection on w and v of (13) allows to solve with respect to µ̃(ε), β(ε)). Indeed,
V (ε, µ̂, β) is expected to satisfy V (ε, µ̂, β) = −V (−ε, µ̂,−β) (by uniqueness of
the solution) and to be of order ε for |µ̂| ≤ 1 and using the identity (notations
of previous section)

aµ2 = c + 3b,

we obtain

aµ̃ − 6ε5bβ1β − 3ε5〈u2
1V, w〉 = ε6〈f (1)

ε , w〉 + O(ε7), (15)

−β1aµ̃ + 2cε5β + 3ε5〈u2
1V, v〉 = −ε6〈f (1)

ε , v〉 + O(ε7). (16)

Since we expect to obtain V (ε, µ̂, β) as a C1 function of its arguments, and of
order ε, it is clear that the implicit function theorem applies for solving (15,16)
with respect to (µ̃, β), so that finally

µ̃ = O(ε6), β = O(ε),
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then we prove that β(ε) ≡ 0 by using the uniqueness of the result.
Our problem now is to prove the existence of such a solution V (ε, µ̂, β)

provided that the parameter (ε, µ̃, β) belongs to a ”good set” in its 3-dimensional
space. Then we need to check that the solution (ε, µ̃(ε), β(ε)), which we find as
indicated above, belongs to the good set.

3.1 Inverse of the differential

We want to solve (14) with respect to ũ. For this purpose we follow the lines of
[6] and [7]. Let us define the differential of (14) at some ũ = V in a neighborhood
of 0 in Hs :

Lε,β,V − µ̃I (17)

where the linear operator Lε,β,V is acting in the space Q0Ht, t ≥ 0 and is
defined by

Lε,β,V = L0−µεI+3Q0(U
2
ε ·)−6ε4Q0[Uε(V +βv)(·)]−3ε8Q0[(V +βv)2(·)]. (18)

We notice that for s > 2, Lε,β,V is analytic in (ε, β, V ) ∈ (−ε0, ε0)× (−M, M)×
Q0Hs, taking values in L(Q0Ht,Q0Ht−4), for any t ≥ 4. In fact, the perturba-
tion term (after L0) is a bounded operator in L(Q0Ht) for any t ≥ 0. Taking
the advantage of the selfadjointness of Lε,β,V in H0, we wish to have a bound
for the inverse of Lε,β,V − µ̃I for a given function V (ε, β, µ̃) in a suitable class of
functions, and for suitable values of µ̃. The difficulty comes from the unbound-

edness of the pseudo-inverse L̃0

−1
in Q0Hs for any s ≥ 0, due to the small

divisor problem, controlled by the (loss) estimates of Lemma 7 and Remark 9,
which give

||L̃0

−1
ũ||s−13 ≤ ||ũ||s for α ∈ E1 ∩ E0,

||L̃0

−1
ũ||s−4l0 ≤ ||ũ||s for α =

rπ

q
∈ EQ,

where 2(l0 + 1) = φ(2q′), q′ = q or 3q if q = 0 or 6= 0 mod 3.

Let us introduce the projection ΠN :

Definition 16 Let s ≥ 0 and N > 1 be an integer, we define

EN := ΠNQ0Hs,

which consists in keeping in the Fourier expansion of ũ ∈ Q0Hs only those
k(z) ∈ Γ such that |z| ≤ N. By construction, with Lemma 7 and Remark 9, we
obtain

||(ΠNL0ΠN )−1||s ≤ c0(1 + N2)2l′
0 ,

where l′0 is defined by
4l′0 = max{13, 4l0}.

Then, as in [6] we have the following Lemma which gives a bound of the
inverse of ΠN (Lε,β,V − µ̃I)ΠN for small values of N.

12



Lemma 17 Let S > s0 > 2 and ε0 > 0 small enough and assume that α ∈
(E1 ∩ E0) ∪ EQ. Then there exists c1 > 0 with the following property. For
0 < ε ≤ ε0 we assume N ≤ Mε with

Mε :=
[ c1

ε1/2l′
0

]
(integer part of) (19)

and (ε, µ̃, β, V ) ∈ [−ε0, ε0]×[−ε2, ε2]×[−β0, β0]×EN . Then, the following holds
for s ∈ [s0, S] and V such that ||V ||s ≤ 1,

||(ΠN (Lε,β,V − µ̃I)ΠN )−1||s ≤ 2c0(1 + N2)2l′
0

In the Lemma above, the perturbation term after ΠNL0ΠN is very small for
small values of N . The serious difficulty occurs for N large.

Let us now define Λ = {ε, µ̃); ε ∈ [−ε0, ε0], µ̃ ∈ [−ε2, ε2]}, and for M > 0,
s0 > 2,

U (N)
M : =

{
V ∈ C1[Λ × [−β0, β0], EN ] ; V (0, µ̃, β) = 0, (20)

||V ||s0
≤ 1, ||∂ε,βV ||s0

≤ M, ||∂eµV ||s0
≤ (M/ε2)

}
.

Assuming that V ∈ U (N)
M , we consider now the operator

ΠN (Lε,β,V (ε,eµ,β)−µ̃I)ΠN = ΠNL0ΠN−µ̃IN+ε2B(N)
1 (ε)+ε5B(N)

2 (ε, β, V (ε, µ̃, β)),
(21)

where B(N)
1 and B(N)

2 are analytic in their arguments. Moreover all operators
in (21) are selfadjoint in ΠNQ0H0.

The eigenvalues of ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN have the form

σj(ε, µ̃, β) = fj(ε, µ̃, β) − µ̃, (22)

where fj is Lipschitz in (ε, µ̃, β) as this results from the Lidskii theorem (see [13]
theorem 6.10 p.126). Moreover fj is C1 in µ̃ for (ε, β) fixed, as this results from
the selfadjointness and from [13] theorem 5.11 p.115. We have the following
estimates with a constant c > 0 independent of (ε, µ̃, β) ∈ Λ × [−β0, β0]

|∂fj

∂µ̃
| ≤ cε3, (23)

|fj(ε, µ̃, β2) − fj(ε, µ̃, β1)| ≤ cε5|β2 − β1|, (24)

|fj(ε2, µ̃, β) − fj(ε1, µ̃, β)| ≤ c max
j=1,2

{|εj |}|ε2 − ε1|. (25)

We now define the ”bad set” of µ̃ for certain τ and γ to be determined later,
as (below N ≤ bN4 denotes the dimension of EN )

B
(N)
ε,β,γ(V ) =

{
µ̃ ∈ [−ε2, ε2]; (ε, β, V ) ∈ [−ε0, ε0] × [−β0, β0] × U (N)

M ,

∃j ∈ {1, ...N}, |σj(ε, µ̃, β)| <
γ

N τ

}
.
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Because of (23) we know that σj is strictly monotone in µ̃, hence we obtain that

the set B
(N)
ε,β,γ(V ) is a union of intervals

B
(N)
ε,β,γ(V ) = ∪N

j=1(µ̃
−
j (ε, β), µ̃+

j (ε, β)),

with

σj(ε, µ̃
±
j , β) =

∓γ

N τ
.

Because of (23) we know that, for ε0 small enough

0 < µ̃+
j (ε, β) − µ̃−

j (ε, β) ≤ 4γ

N τ
,

so that the measure of B
(N)
ε,β,γ is bounded as

meas(B
(N)
ε,β,γ(V )) ≤ 4bγ

N τ−4
.

Moreover, because of (23,24,25) the functions µ̃±
j (ε, β) are Lipschitz continuous,

and there exists c′ > 0 independent of (ε, µ̃, β),such that

|µ̃±
j (ε2, β) − µ̃±

j (ε1, β)| ≤ c′ max
j=1,2

{|εj |}|ε2 − ε1|, (26)

|µ̃±
j (ε, β2) − µ̃±

j (ε, β1)| ≤ c′ε5|β2 − β1|. (27)

We may define ”bad layers” of degree N, in the 3-dimensional space (ε, µ̃, β) as

BSN (V ) := {(ε, µ̃, β) ∈ Λ × [−β0, β0]; ∃j; µ̃ ∈ (µ̃−
j (ε, β), µ̃+

j (ε, β))}.

We see that BSN (V ) is a union of thin layers, bounded by Lipschitz surfaces,
nearly parallel to the β direction.

Let us now define the ”good set” of µ̃ for (ε, β, V ) fixed:

G
(N)
ε,β,γ(V ) := [−ε0, ε0]\B(N)

ε,β,γ(V ).

It is important to notice that if µ̃ ∈ G
(N)
ε,β,γ(V ), then all eigenvalues of

ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN are at a distance ≥ γ
Nτ from 0, and since the op-

erator is selfadjoint, we obtain (same proof as in [6])

Lemma 18 Assume γ ≤ γ̃ = 1/(22l′
0
+1c0) and τ > 7 + 12l′0. For V ∈ U (N)

M and

(ε, β) ∈ [−ε0, ε0] × [−β0, β0] fixed, then if µ̃ ∈ G
(N)
ε,β,γ(V ) ∩ [−ε2, ε2], N > 1

||(ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN )−1||0 ≤ N τ

γ
. (28)

Moreover, for N > Mε, the measure of the ”bad set”B
(N)
ε,β,γ(V ) is bounded by

4bγ/N τ−4, while it is 0 for N ≤ Mε. The measure of the ”bad set” ∪Mε<K≤NB
(K)
ε,β,γ(V )

is bounded by c′′γε6/M2
ε , with c′′ independent of (ε, β, V ).
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The above estimate is in L(Q0H0). In fact, we need to obtain a tame estimate
for (ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN )−1 in L(Q0Hs) for s > 0, with an exponent on
N not depending on s. This needs to use results of Bourgain in [8], and Craig
in [9] with ideas of Berti and Bolle in [3], as is done in [6].

We first need to show ”separation properties” of ”singular sites” which gen-
erate small divisors. The eigenvalues of the unperturbed operator ΠNQ0L0ΠN

are
(1 − |k(z)|2)2, k(z) ∈ Γ, k 6= kj ,k

′
j , j = 1, ..6, |z| ≤ N.

Let us define for a certain ρ > 0, the singular set

SN = {z ∈ Z4; k(z) ∈ Γ, (1 − |k(z)|2)2 < ρ,k 6= kj ,k
′
j , j = 1, ..6, |z| ≤ N}.

We define A , the positive definite matrix in R4, defined by

|k(z)|2 = 〈z,Az〉 = q1 + q2 cosα + q3

√
3 sin α,

q1 = z2
1 + z2

2 + z2
3 + z2

4 + z1z2 + z3z4

q2 = 2z1z3 + 2z2z4 + z1z4 + z2z3

q3 = z2z3 − z1z4.

So, we have

A = A0 + ω1A1 + ω2A2,

2Aj have integer coefficients,

ω1 = cosα, ω2 =
√

3 sin α.

Then we can prove the following

Lemma 19 Let S be a subset of Z4 such that 〈z,Az〉 is bounded on S. Then
for nearly all α ∈ (0, π/6), (α ∈ E2 defined below), there exists r > 0 such that
for all B ≥ 2 and for any sequence {zj}j=0,1,...K of distinct points of S such
that |zj+1 − zj | < B, we have K < Br.

Proof. In the cases when α ∈ Qπ, the proof is the same as the one in [6].
For the cases when α ∈ E1 ∩ E0 and /∈ Qπ, we use the diophantine estimate (4)
and the following key ingredient in Proposition 20, replacing Lemma 2.1 in [12],
then the proof is the same as in [6].

Let us consider the matrix M defined by

Mlm = 〈el,Aem〉, l, m = 1, ...d ≤ 4,

where vectors ej have integer coordinates in Q4, and {ej; j = 1, ..d} are linearly
independent. The determinant of M is of the form

detM =
1

2d
(

∑

0≤n+m≤d

anmωn
1ωm

2 ). (29)
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Since the coefficients of 2A are integers, bounded by 2, the coefficients anm are
integers bounded by

S = 2d[max
m

{|em|}]2d.

Replacing ω2
2 by 3−3ω2

1, we replace the polynomial in (ω1, ω2) by the polynomial

P (a, α) =: a0 +
∑

1≤n≤d

an0ω
n
1 + an−1,1ω

n−1
1 ω2,

where the coefficients are still integers now bounded by 3dS.
Notice that a ∈ Z(2d+1)\{0} since detM 6= 0 due to the fact that the vectors

{em; m = 1, ..d} are independent and A is positive definite.

Proposition 20 For nearly all α ∈ (0, π/6), there exists c > 0 such that for all
a ∈ Z(2d+1)\{0} and for l = 2d(2d + 1),

detM ≥ c

|a|l ,

where a = (a0, an0, an−1,1, n = 1, ..d) and

|a| = |a0| +
∑

1≤n≤d

|an0| + |an−1,1|.

Proof. The proof of the above Proposition is in Appendix.
We denote by E2 the full measure set of α’s satisfying Proposition 20. This

set contains EQ and is a subset of E1 ∪ EQ.
Now this Lemma allows to prove (see [6])

Lemma 21 Assume α ∈ E2. There exists ρ0 > 0 independent of N such that if
ρ ∈ (0, ρ0], then there exists a decomposition of SN = ∪a∈AΩa into a union of
disjoint clusters Ωa satisfying:

(i) For all a ∈ A, Ma ≤ 2ma where Ma = maxz∈Ωa
|z| and ma = minz∈Ωa

|z|;
(ii) There exists δ ∈ (0, 1) independent of N such that if a, b ∈ A, a 6= b,

then

dist(Ωa, Ωb) := min
z∈Ωa,z′∈Ωb

|z − z′| ≥ (Ma + Mb)
δ

2
.

Then this last Lemma allows (as in [3]) to prove

Lemma 22 Assume α ∈ E2. Let γ and τ be as in Lemma 18, and choose
s0 ≥ 3 + τ+4

δ where δ is the number introduced in Lemma 21, and define

m = 2τ + 6.

Assume (ε, µ̃, β, V ) ∈ [−ε1, ε1] × [−ε2, ε2] × [−β0, β0] × U (N)
M , with ε1 small

enough and µ̃ ∈ G(N)
ε,β,γ(V ), where

G(N)
ε,β,γ(V ) = ∩Mε<K≤NG

(K)
ε,β,γ(V ).
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Let S > s0. Then for all s ∈ [s0, S] there exists K(s) > 0 such that for any
ũ ∈ ΠNQ0Hs, we have for any N > 1

||(ΠN (Lε,β,V (ε,eµ,β) − µ̃I)ΠN )−1ũ||s ≤ K(s)
Nm

γ
(||ũ||s + ||V ||s||ũ||s0

).

3.2 Resolution of the range equation (14)

The proof of Proposition 25 in [6] leads to

Proposition 23 Choose N2 ≥ N1 ≥ Mε, and V1 ∈ U (N1)
M , V2 ∈ U (N2)

M and for
(ε, β) ∈ [−ε1, ε1] × [−β0, β0] consider the set of µ̃ which are ”good” for V1, and
”bad” for V2 :

µ̃ ∈
(
G(N2)

ε,β,γ(V2)
)c

∩ G(N1)
ε,β,γ(V1),

where the apex c denotes the complementary in [−ε1, ε1]. Assume that ||V2 −
V1||s0

≤ N−σ
1 , with σ > 7, and τ > 7 + 12l′0, then for ε1 small enough (ε1 <

γ2l′
0) :

meas
[(

G(N2)
ε,β,γ(V2)

)c

∩ G(N1)
ε,β,γ(V1)

]
≤ C1

γε5

N1
.

We now set µ̃ = ε2µ̂ for being able to write (14) under the form

F(ε, µ̂, β, ũ) = 0, (30)

with F : [−ε1, ε1]× [−1, 1]× [−β0, β0] ×Q0Ks → Q0Ks−4, s ≥ s0 ≥ 4 , defined
by

F(ε, µ̂, β, ũ) : = [L0 − µε − µ̂ε2]ũ + 3Q0(U
2
ε (ũ + βv)) − µ̂εũ3 + εQ0fε

+3ε4Q0Uε(ũ + βv)2 + ε8Q0(ũ + βv)3,

analytic in (ε, µ̂, β) and satisfying good tame properties with respect to ũ ∈
Q0Ks as in [6], and such that

F(0, µ̂, β, ũ) = L0ũ, F(−ε, µ̂,−β,−ũ) = −F(ε, µ̂, β, ũ).

We finally obtain (see the proof in [6], using a Berti-Bolle-Procesi theorem in
[4]).

Theorem 24 Assume α ∈ E2∩E0∩Eqp and let s0 be as in Lemma 22. Then for
all 0 < γ ≤ γ̃ there exist ε2(γ) ∈ (0, ε0) and a C1− map V : (0, ε2(γ))×[−1, 1] →
Hs0+4 such that V (0, µ̂, β) = 0 and if ε ∈ (0, ε2(γ)), µ̂ ∈ [−1, 1]\Cε,β,γ , the func-
tion ũ = V (ε, µ̂, β) is solution of (30). Here Cε,β,γ is a subset of [−1, 1], which
is a Lipschitz function of (ε, β) and has a Lebesgue measure less than Cγ|ε|3
for some constant C > 0, independent of (ε, β, γ). Moreover V (−ε, µ̂,−β) =
−V (ε, µ̂, β).

Remark 25 We notice that for Ṽ (ε, µ̃, β) ∈ U (N)
M , then Ṽ (ε, ε2µ̂, β) = V (ε, µ̂, β) ∈

C1 and its first derivatives are bounded by M .
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3.3 Bifurcation equation

The 2-dimensional bifurcation system (13) leads to (15), (16). With µ̃ = ε2µ̂,
and V replaced by V (ε, µ̂, β), the terms O(ε7) are C1 functions of (ε, µ̂, β), and
we notice that the matrix

(
a −6bβ1

−aβ1 2c

)

has for determinant 2a(c − 3b) 6= 0. Hence, we may use the implicit function
theorem to solve with respect to (µ̂, β) and find

µ̃ = ε2µ̂ = ε6h(ε), (H) (31)

β = εg(ε),

with h and g even functions of ε, and where εh(ε) and εg(ε) are C1 functions
of ε ∈ [0, ε1]. Now we should check that in the 3-dimensional space (ε, µ̃, β) the
curve (31) crosses transversally, in the 3-dimensional parameter space, the bad
set formed by the infinitely many thin layers

∪n∈NBnSNn
(Vn−1)

where Nn = [N0(γ)]2
n

, and Vn are the successive points obtained in the Newton
iteration of the Nash-Moser method.

3.4 Transversality condition

Let us consider for a given N one bad layer, bounded in the 3-dimensional
parameter space, by the two surfaces

µ̃ = µ̃−
j (ε, β), µ̃ = µ̃+

j (ε, β).

We already know that the two functions µ̃±
j (ε, β) are Lipschitz in (ε, β) such

that (26,27) holds. It results that, on the surface β = β(ε)) (see (31)) we have

|µ̃±
j (ε2, β(ε2)) − µ̃±

j (ε1, β(ε1))| ≤ |µ̃±
j (ε2, β(ε2)) − µ̃±

j (ε1, β(ε2))|
+|µ̃±

j (ε1, β(ε2)) − µ̃±
j (ε1, β(ε1))|

≤ c′ max
j=1,2

|εj ||ε2 − ε1| + c′ max
j=1,2

|εj |5|β(ε2) − β(ε1)|

≤ c′1 max
j=1,2

|εj ||ε2 − ε1|.

It results that the intersection of the surfaces µ̃ = µ̃±
j (ε, β) with the surface β =

β(ε) (parallel to the µ̃ axis), are two Lipschitz curves (µ̃, β) = (µ̃±
j (ε, β(ε)), β(ε)).

The problem is now to study the intersection of these curves with the surface
(H) given by µ̃ = ε6h(ε). If the intersection is transverse, this gives a little ”bad”
interval, corresponding to an interval δε which we would like to measure. This
leads to a transversality condition
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Transversality condition: Let µ̃(ε) be any one of the limiting curves of
the bad strips given by {β = εg(ε)}∩n∈N BSNn

(Vn−1). Then we assume that for
any of these curves, there exists c > 0 independent of N, such that for h ∈ R
in a neighborhood of 0, the following inequality holds:

|µ̃(ε + h) − µ̃(ε)| ≥ c|ε|3|h|. (32)

Remark 26 This is a very weak assumption for µ̃±
j (ε, β(ε)), since this means

that the slope t(ε) has a lower bound |t(ε)| > c|ε|3. Indeed, in the cases (the most
probable cases) when the eigenvalue σj(ε, µ̃

±, β) given by (22) is not multiple,
it is C1 in its arguments, and a classical result on derivatives of eigenvalues,
leads to

∂σj

∂ε
∼ 2ε〈B(N)

1 (0)ζj(ε, µ̃
±, β), ζj(ε, µ̃

±, β)〉 = O(ε),

B(N)
1 (0) = ΠN (−µ2I + 3Q0[(w + β1v)2·])ΠN ,

where ζj(ε, µ̃
±, β) is the eigenvector with norm 1, belonging to the eigenvalue

σj(ε, µ̃
±, β) of the operator ΠN (Lε,β,V (ε,eµ±,β) − µ̃±I)ΠN . It results that in such

cases µ̃±(ε, β(ε) has a slope |t(ε)| > c2|ε|, and this is in general the case. If
unluckily the eigenvalue σj(ε, µ̃

±(ε, β(ε)), β(ε)) is multiple, as this might occur
for a certain set of ε for a fixed N, we have no a priori lower bound for the
slope t(ε), since it is even not defined. After all the Nash-Moser process (where
N = [N0(γ)]2

n

, n ∈ N), this leads to eliminate a set of ε’s on which we have no
control, and which has to be of small measure. This is why we make the above
transversality condition.

Let us denote by δµ̃ the measure of the ”bad” µ̃, and by δε the corresponding
measure for bad ε’s. Then we have,

δε <
δµ̃

|t| <
δµ̃

c|ε|3 .

For a fixed ε, we have a bound of the total measure of ”bad” intervals δµ̃,
as this is given by Theorem 24: Cγε5 (recall that µ̃ = ε2µ̂). Hence, with the
transversality condition (32) this gives

meas(bad set of ε) ≤ Cγε2

c
.

The complementary subset in (0, ε2(γ)), constitutes the good set of |ε|, which

is of asymptotic full measure since [|ε| − Cγε2

c ]/|ε| → 1 as ε → 0.

Remark 27 If we start in taking µε in (12) at a higher order than ε4, we should
find µ̃ of higher order than ε6, which flattens the slope of the bifurcation curve
(H). Then we might weaken the transversality condition (32) and replace ε3 by
an order larger than 3, which still garantees transversality with (H). Then notice
that we can increase the order (here ε3) for the size of the bad µ̂ in Theorem
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24, just in increasing τ in Lemma 22 and Proposition 23, so that we can keep
an order of smallness ε2 for the bad set of ε’s. Finally, this shows that the
transversality condition (32) reduces to assume that the limiting curves of bad
strips µ̃(ε) are not flat.

Now, we observe that
τUε = β1Uε,

then, for β1 = 1,
τ (ũ(ε) + β(ε)v) = τ ũ(ε) + β(ε)w

is the solution ũ(ε) + β(ε)v by the uniqueness of the result. Hence, β(ε) ≡ 0.
For β1 = −1, τ ũ(ε) + β(ε)w is the solution corresponding to −u, i.e.

τ ũ(ε) + β(ε)w = −ũ(ε) − β(ε)v,

which implies that
τ ũ(ε) = β1ũ(ε), β(ε) ≡ 0 (33)

in all cases.
Finally we have

Theorem 28 Assume α ∈ E2∩E0∩Eqp which is a full measure set, and assume
that the transversality condition (32) holds (condition which may be weakened,
see Remark 27). Then there exist s0 > 2 and ε2 > 0 such that for an asymp-
totically full measure set of values of |ε| ∈ (0, ε2), there exist two branches of
bifurcating quasipattern solutions of (1), invariant under rotation of angle π/3,
of the form

u = Uε + ε4ũ(ε), ũ ∈ {v, w}⊥,

Uε = ε(w + β1v) + ε3ũ3, β1 = ±1, τu = β1u,

µ = ε2µ2 + ε4µ4 + µ̃(ε),

where ũ(ε) ∈ Q0Hs0
, w, v, ũ3, µ2, µ4 are defined at Section 2, and functions of ε

are C1 with ũ(0) = 0, µ̃(ε) = O(ε6). Su = −u corresponds to change ε into −ε.

4 Appendix

Proof of Lemma 4. When α /∈ Ep, a term eik·x in the Fourier expansion is
such that

k · x = [m1 +
m2

2
+ (m3 +

m4

2
) cosα − m4

2

√
3 sin α]x +

+[
3

2
m2 +

3

2
m4 cosα + (m3 +

m4

2
)
√

3 sin α]
y√
3
,

with (m1, m2, m3, m4) ∈ Z4. Since at least one of the terms cosα or
√

3 sinα is
irrational, the sets

{m1 +
m2

2
+ (m3 +

m4

2
) cosα − m4

2

√
3 sin α; (m1, m2, m3, m4) ∈ Z4}
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and

{3

2
m2 +

3

2
m4 cosα + (m3 +

m4

2
)
√

3 sin α; (m1, m2, m3, m4) ∈ Z4}

are dense on the real line. This is sufficient to show that a function u with a
convergent expansion as (3) is quasiperiodic in each direction (with a rational
or an irrational slope), with a Fourier spectrum built with integer combinations
of two or three basic incommensurate frequencies.

Proof of Lemma 2. The set of rational values for cosα is of measure 0,
hence the measure of Ep is zero.

Assume that k1,k2,k
′
1,k

′
2 are not independent on Q. This means that there

is a non trivial solution z = (z1, z2, z3, z4) ∈ Z4 of

z1k1 + z2k2 + z3k
′
1 + z4k

′
2 = 0,

where we can assume that zj ∈ Z after multiplication by the common denomi-
nator. It then results that

z1 +
z2

2
+ (z3 +

z4

2
) cosα −

√
3

2
z4 sin α = 0,

√
3

2
z2 +

√
3

2
z4 cosα + (z3 +

z4

2
) sin α = 0.

Hence

cosα = −2z1z3 + 2z2z4 + z1z4 + z2z3

2(z2
3 + z2

4 + z3z4)
,

sin α =

√
3(z1z4 − z2z3)

2(z2
3 + z2

4 + z3z4)
,

and α ∈ Ep.
Now assume that α ∈ Ep, then cosα = p/q and since cos(α+π/3) is rational

we can state that
√

3 sin α ∈ Q and we can always assume that
√

3 sin α = p′/q
(with the same denominator q). Now, any point of the lattice Γ may be written
as z1k1 + z2k2 + z3k

′
1 + z4k

′
2 = (x, y) with

x = z1 +
z2

2
+ (z3 +

z4

2
)
p

q
− z4

p′

2q

y
√

3 =
3

2
z2 +

3

2

p

q
z4 + (z3 +

z4

2
)
p′

q
,

hence any point of Γ has coordinates of the form

(
n

2q
,

m

2q
√

3
), (n, m) ∈ Z2,

where n and m have the same parity. This shows that these points belong to
an hexagonal lattice, of length side 1

q
√

3
, so that the wave vectors are integer
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combinations of only 2 basic vectors of equal length making an angle 2π/3, as
in [15].

Proof of Lemma 5. We have

|k|2 − 1 = q1 − 1 + q2 cosα + q3

√
3 sin α,

with

q1 = z2
1 + z2

2 + z2
3 + z2

4 + z1z2 + z3z4,

q2 = 2z1z3 + 2z2z4 + z1z4 + z2z3,

q3 = z2z3 − z1z4.

Assume that in the plane (cos α, sin α) the line

D : q1 − 1 + q2 cosα + q3

√
3 sin α = 0

exists. This means that (q2, q3) 6= (0, 0). This gives two possible solutions for
α, as soon as |q1 − 1| ≤

√
q2
2 + 3q2

3 . For all possible couples(q2, q3) 6= (0, 0) we
then obtain a denumerable set of possible angles α. Hence, choosing α outside
this zero measure set does not allow any solution α of D = 0. It then follows
that q2 = q3 = 0, q1 = 1, i.e.

z2
1 + z2

2 + z2
3 + z2

4 + z1z2 + z3z4 = 1,

2z1z3 + 2z2z4 + z1z4 + z2z3 = 0,

z2z3 − z1z4 = 0.

Then we notice that z2
1 +z2

2 +z1z2 ≥ 0, as z2
3 +z2

4 +z3z4 ≥ 0. If z2
1 +z2

2 +z1z2 = 0
then z1 = z2 = 0 and z2

3 + z2
4 + z3z4 = 1. The solutions (z3, z4) = (±1, 0) or

(0,±1) correspond to ±k′
j j = 1, 2. Now, for the other cases we have z2

3 +z2
4 ≥ 2

and

z2
3 + z2

4 + z3z4 =
1

2
(z3 + z4)

2 +
1

2
(z2

3 + z2
4) = 1.

Hence
z2
3 + z2

4 = 2, z3 + z4 = 0,

which corresponds to ±(k′
1 − k′

2). The other solutions are obtained similarly
with z2

3 + z2
4 + z3z4 = 0 and z2

1 + z2
2 + z1z2 = 1.

In the cases where α ∈ Qπ ∩ (0, π/6), an equation with integer coefficients
as

a1 + a2 cosα +
√

3a3 sinα = 0

with α = rπ/q, q > 6 implies that

a1 = a2 = a3 = 0.

Indeed 2 cosα is an algebraic integer which is solution of a polynomial of degree
1
2φ(2q) where φ is the Euler totient function (see [12]). Now, since 0 < α < π/6,
we have q ≥ 7, hence 1

2φ(2q) ≥ 3. This comes into contradiction with

(a3

√
3 sin α)2 = −(a1 + a2 cosα)2

= 3a2
3(1 − cos2 α)
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which would mean that 2 cosα is a quadratic algebraic number.
In the case α = π/6, the result of Lemma 5 is already shown in [12] since

this is the case of 12 points equally spaced on the unit circle.
Comments on Remark 6

Let us define the rational numbers cosα = p/q and
√

3 sin α = p′/q, hence

3p2 + p′2 = q2,

where we can assume that p, p′, q have no common divisor. From the proof of
Lemma 2, for α ∈ Ep the lattice corresponds to points (n, m) ∈ Z2 such that

n = q(2z1 + z2) + p(2z3 + z4) − p′z4,

m = 3qz2 + 3pz4 + p′(2z3 + z4),

with
3n2 + m2 = 12q2, (34)

when the points lie on the unit circle. We already know 12 solutions (n, m) =
(±2q, 0), (±q,±3q),±(2p, 2p′),±(p−p′, 3p+p′),±(p+p′, p′−3p), corresponding
to ±k1,±k2,±k3,±k′

1,±k′
2,±k′

3. The number of solutions z ∈ Z4 of (34) for q
fixed, is out of the scope of this paper.

Another way to look at this problem, is to come back to (2) and notice that

q − p = (a − 2b)2 = β2,

2q = 3a2 + β2,

2p = 3a2 − β2,

p′ = aβ.

Now we have

|k|2 − 1 = q1 + q2 cosα + q3

√
3 sin α

=
1

q
(q1q + q2p + q3p

′),

with

q1 = z2
1 + z2

2 + z2
3 + z2

4 + z1z2 + z3z4 − 1,

q2 = 2z1z3 + 2z2z4 + z1z4 + z2z3

q3 = z2z3 − z1z4.

We show in the proof of Lemma 5 that (q1, q2, q3) = 0 implies that k = ±kj ,±k′
j

j = 1, 2 which correspond to zj = ±1, zj′ = 0 for j 6= j′, or k = ±k3, or ±k′
3,

which correspond to z = (±1,∓1, 0, 0) or (0, 0,±1,∓1).
Points of Γ on the unit circle satisfy |k|2 − 1 = 0, i.e.

q1q + q2p + q3p
′ = 0,
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hence
β2(q1 − q2) + 2aβq3 + 3a2(q1 + q2) = 0,

which implies that there exists k ∈ Z such that

q2
3 + 3(q2

2 − q2
1) = k2.

This property means that z is forced to belong to a set (varying k) of algebraic
hypersurfaces of degree 4. This is in general not realized, except for (q1, q2, q3) =
0.

Proof of Lemma 7. Let us define

P = (q1 − 1)2, Q = q2
2 + 3q2

3 ,

θ(z) ∈ [0, 2π]; cos θ(z) = q2/
√

Q, sin θ(z) =
√

3q3/
√

Q.

We observe that

|z|2
2

≤ |q1| ≤
3|z|2

2
, |q2| ≤

3

2
|z|2, |q3| ≤

1

2
|z|2, Q ≤ 3|z|4.

Then
|k(z)|2 − 1 = q1 − 1 +

√
Q cos(α − θ(z)). (35)

Choose ε > 0, it is known that for nearly all Ω /∈ Q, there exists C > 0 such
that (classical diophantine estimate)

|P/Q − Ω| ≥ C

Q2+ε
, for all Q ∈ Z\{0}.

Since the function Ω = cos2 β is smooth with a non zero derivative in nearly
all angles (observe that for β = π/2 − h, then Ω ∼ h2, while for β close to 0,
1 − Ω ∼ β2/2, so that a zero measure set in Ω corresponds to a zero measure
set in β), the set of angles β such that there exists C(β) > 0 such that

|P/Q − cos2 β| ≥ C(β)

Q2+ε
, for all Q ∈ Z\{0}

is of full measure. For each Q there corresponds a finite set {zj}, hence a finite
set {θ(zj)}, so that the set of α ∈ (0, π/6) such that there exists C′(α) and

|P/Q − cos2(α − θ(z))| ≥ C′(α)

Q2+ε
, for all Q ∈ Z\{0}

is, for each Q, the intersection of the sets above for a finite number of θ(zj).
This set is then also of full measure.

Now a simple study of hyperbolas y2 − ω2 = ±C′

Ql and an estimate of the
distance to the asymptote for ω = 1, implies that

∣∣∣∣∣

√
P

Q
− | cos(α − θ)|

∣∣∣∣∣ ≥
C′

4Q2+ε
, for Q large enough.
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Then this leads to

|q1 − 1 +
√

Q cos(α − θ(z))| ≥ C′

4Q3/2+ε
,

and, since Q ≤ 3|z|4, the Lemma follows.
Proof of Proposition 20

We wish to bound the measure of the set of ”bad α” such that cosα = ω1,√
3 sin α = ω2 and for a certain c > 0, and l to be determined,

|P (a, α)| ≤ c

|a|l
, for a 6= 0.

Let us introduce
τ =

√
3 tanα/2,

then

P (a, α) = a0+

∑

1≤n≤d

an0

(
3 − τ2

3 + τ2

)n

+ an−1,1

(
3 − τ2

3 + τ2

)n−1(
6τ

3 + τ2

)

=
Q(a, τ )

(3 + τ2)d
,

where, because of α ∈ (0, π/6) we observe that

|τ | ≤
√

3 tan(π/12) < 1/2,

(3 + τ2)n ≥ 1, for any n ∈ [0, d].

Now it is sufficient to consider the ”bad τ ’s” such that

|Q(a, τ )| ≤ c

|a|l
, (36)

where we now work on a polynomial of degree 2d not identical to 0, and with
integer coefficients. Let us write this polynomial as a product

Q(a, τ ) = (a0 +
∑

1≤n≤d

(−1)nan0)Πj=1,...2d(τ − τ j),

then, since the coefficient (a0 +
∑

1≤n≤d

(−1)nan0) is an integer, for any τ there

exists j(τ ) such that
|τ − τ j(τ)|2d ≤ |Q(a, τ)|,

where, in the case τ j(τ) is complex, we replace τ j(τ ) by its real part. Notice
that if the coefficient of higher order in (36) is 0, we need to choose the next
non zero leading coefficient, which then gives an exponent in the left hand side,
smaller than 2d. Hence, in all cases, the bad τ ’s satisfy

|τ − τ j(τ)| ≤
(

c

|a|l

)1/2d

.
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Summing for j = 1, ...2d, the measure |δτ | of such τ solution of (36) is bounded
by

|δτ | ≤ 4d

(
c

|a|l

)1/2d

. (37)

This leads to the measure of bad α , for a fixed:

|δα| ≤ 2√
3
|δτ | ≤ 8dc1/2d

√
3|a|l/(2d)

.

We now need to count the number of coefficients a of polynomials corresponding
to |a|. This number is bounded by (2|a|)(2d+1). Hence the measure of the set of
bad α’s for all a ∈ Z(2d+1)\{0} with a fixed norm |a| is bounded by

dc1/2d22−2d

√
3|a|l/(2d)−(2d+1)

.

We choose to take
l/(2d)− (2d + 1) = 0,

i.e.
l = 2d(2d + 1).

Since c is arbitrary, this finishes the proof of the Proposition.
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