
HAL Id: hal-01891599
https://hal.science/hal-01891599v1

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the Impact of Architectural and Software
Design Choices on Dynamic Allocation of Heterogeneous

Memories
Tristan Delizy, Stéphane Gros, Kevin Marquet, Matthieu Moy, Tanguy Risset,

Guillaume Salagnac

To cite this version:
Tristan Delizy, Stéphane Gros, Kevin Marquet, Matthieu Moy, Tanguy Risset, et al.. Estimating
the Impact of Architectural and Software Design Choices on Dynamic Allocation of Heterogeneous
Memories. RSP 2018 - 29th International Symposium on Rapid System Prototyping, Oct 2018, Turin,
Italy. pp.1-7. �hal-01891599�

https://hal.science/hal-01891599v1
https://hal.archives-ouvertes.fr

Estimating the Impact of Architectural and Software
Design Choices on Dynamic Allocation of

Heterogeneous Memories
Tristan Delizy1, Stephane Gros2 Kevin Marquet1, Matthieu Moy3, Tanguy Risset1, Guillaume Salagnac1

1: Univ Lyon, INSA-Lyon, Inria – Villeurbanne France firstname.lastname@insa-lyon.fr
2: eVaderis – Montbonnot France stephane.gros@evaderis.com

3: Univ Lyon, Inria, CNRS, ENS de Lyon, LIP – Lyon, France matthieu.moy@univ-lyon1.fr

Abstract—Reducing energy consumption is a key challenge to
the realization of the Internet of Things. While emerging memory
technologies may offer power reduction, they come with major
drawbacks such as high latency or limited endurance. As a result,
system designers tend to juxtapose several memory technologies
on the same chip. This paper studies the interactions between
dynamic memory allocation and architectural choices regarding
this heterogeneity. We provide cycle accurate simulations of
embedded platforms with various memory technologies and
we show that different dynamic allocation strategies have a
major impact on performance. We demonstrate that interesting
performance gains can be achieved even for a low fraction of heap
objects in fast memory, but only with a clever data placement
strategy between memory banks.

I. INTRODUCTION

In a low power system-on-chip the memory hierarchy is tra-
ditionally composed of Static RAM (SRAM) and NOR flash.
The main feature of SRAM is a fast access time, matching
the clock speed of the processor. Its downsides include low
integration density and continual power consumption. Flash
memory on the other hand is dense, and also non-volatile i.e.
it does not require power to retain data. But writing to flash is
costly both in time and energy, and also suffers from a very
limited write endurance. As a result, flash memory is mostly
used in a read-only fashion (e.g. for code) and the amount of
SRAM is kept to a minimum in order to lower leakage power.

Emerging memory technologies exhibit different trade-offs
and more heterogeneity. Non-Volatile RAM (NVRAM) tech-
nologies like MRAM or RRAM open new perspectives on
power-management since they can be switched on or off at
very little cost. Their characteristics are very dependent on
the technology used, but it is now widely known that they will
provide a high integration density and fast read access time
to persistent data. NVRAM is usually not as fast as SRAM
and some technologies have a limited endurance hence are
not suited to store frequently modified data. In addition, most
NVRAM technologies have asymmetric access times, writes
being slower than reads. For a given family of NVRAM tech-
nologies, changing design parameters allows different trade-
offs, between density and performance for instance.

In high performance computing systems, these technologies
allow for novel, attractive trade-offs [1], [2] when designing

the storage hierarchy. In the context of embedded systems, the
hardware architecture is evolving towards a model where dif-
ferent memory banks, with different hardware characteristics,
are directly exposed to software, as it has been the case for
scratchpad memories (SPM). This raises questions including:

• What is the expected performance impact of adding fast
memory to a system based on NVRAM? In particular:
will the addition of a small amount of fast memory result
in significant performance improvement?

• How should one adapt and optimize their software mem-
ory management to leverage these new technologies?

Other issues like write endurance and (non-)volatility are
also relevant but left out of the scope of this paper: we consider
only memories with enough endurance to be used as working
memory, and keep the non-volatility for future work. We focus
on the performance variability between memory banks, and
take into account the potential asymmetry between read and
write performance.

These issues have already been extensively studied for
static memory allocation [3] (code and globals), and important
improvements have been obtained with a small portion of
fast memory. The problem is however still open for dynamic
allocation in the heap, on which we focus in this paper.

The goal of this paper is to provide answers to these
questions, through the following contributions:

• We expose the problem of dynamic allocation in multiple
heaps located in heterogeneous memories.

• We propose a set of reference software dynamic mem-
ory allocation strategies for multi-heap dynamic memory
management, we also provide an upper and a lower bound
on performance to be reached.

• A cycle accurate simulation environment with precise
heterogeneous memory models is used to estimate the
performance impact of a change in memory architecture
and the impact of the above proposed strategies on
performance.

We show that using fast memory for a small portion of
the heap (5 to 25 %) can result in a significant performance
improvement, almost as high as changing the complete mem-
ory into a fast memory. However we also show that this

performance gain can only be achieved with a clever dynamic
memory allocation strategy.

II. CONTEXT AND RELATED WORK

A. Non-Volatile Embedded Systems

One of the motivations for this work is the new chal-
lenges for power-management raised by the Internet of Things
(IoT) [4]. Ultra low-power systems must switch off energy-
consuming components (including memories) when inactive
to extend the battery life or allow working without battery [5].
An obvious major contribution of NVRAM for these systems
is to allow the persistence of the data and state of the program.

Of course handling non-volatility is not that easy [6]–[9],
but still many research teams are exploring the design of
micro-controller containing NVRAM at various levels [10],
[11]. These works are all considering that the future low power
sensors will include a mix of different memory technologies:
SRAM, possibly different NVRAM technologies, maybe even
embedded-DRAM et cetera. This is the motivation for our
paper: this memory heterogeneity, that we explain below,
will require many new optimization techniques in run-time
or compile-time memory allocation.

B. Non-Volatile Memory Technologies

One of the first NVRAM technologies to gain commercial
market is the FeRAM [12], based on a ferro-electric compo-
nent, they have been deployed on TI MSP430 FRAM series
for several years. Magnetic RAM (MRAM, STT-MRAM)
are based on spintronics and should provide a very good
endurance and power consumption. Resistive RAM technolo-
gies, (RRAM, such as OxRAM for instance) are based on
resistivity of isolating materials. Phase Change Memory RAM
(PCM) use crystal conductivity [13]. The design of these
technologies is not mature yet but the important point for
computer scientists is that these technologies vary from one
to another along various criteria: cost, endurance, read and
write speed, power consumption, retention. Depending on the
characteristics of the technologies used and of the type of
application executed (memory intensive or compute-intensive),
the performance may vary a lot.

Another important research topic is the memory archi-
tecture: will these new memories be close or far from the
processor? Exploring heterogeneous memory architecture is
an important open research problem today. We are willing to
contribute to this research by evaluating the impact of dynamic
heterogeneous memory management.

C. Memory Management

We refer to memory heterogeneity when several memory
banks with different performance characteristics co-exist on
the same system. This is not to be confused with memory
hierarchy which has been studied a lot in non uniform mem-
ory architecture (NUMA) machines. We have chosen in this
paper to study architecture without memory management unit
(MMU) as it is the most common case in low-power systems.

1) Scratch Pad Management: A particular case of memory
heterogeneity has been studied in the context of Scratch Pad
Memories. A Scratch Pad Memory (SPM) plays the same role
as a hardware cache, but is managed explicitly in software.
SPMs for embedded systems have received a lot of interest [3]
because of performance predictability.

In general, the objective of an SPM management policy is
to allocate as much code and/or data to the SPM as possible.
In its simplest form, this allocation is static, i.e. it is fixed
at compile-time either via static analysis or by profiling the
execution, typically on a simulated platform.

A more flexible approach is to allow for dynamic re-
placement of SPM content. The allocation is still decided
at compile time, but the program gets instrumented with
additional instructions to perform the required loading and
unloading operations [14]. Going even further, some papers
delay the decision until runtime. For instance Egger et. al.
[15] propose to load code fragments on-demand via a software
cache approach. Cho et al. [16] use run time information
collected using dedicated hardware to chose between pre-
computed profiles.

In most instances, the Scatchpad is used for code [15],
global variables [17] and/or (parts of) the execution stack [18].
Few papers mentioned hereafter address the issue of heap
management.

2) Dynamic Allocation: SPM for heap objects have been
studied by Mc Ilroy et al. [19], their proposal concerns the
optimization of an allocator for small heaps, but the choice
of the destination memory bank for objects is not in their
focus. Mück et al. [20] propose to place a subset of the heap
objects into a fast memory, but their approach requires from
the programmer to adapt the application code to the memory
architecture and is unfeasible in the context of legacy code.
Dominguez et al. [21] have extended a method for placing
code, global data and stack into an SPM to also address heap
data, but only on examples making a light usage of dynamic
memory allocation.

3) Heterogeneity Management for Scratch Pads: Some
researchers have already studied the interaction between
NVRAM technology and scratch pad management. Rodriguez
et al. [17] study the design of an MRAM-based SPM, exploit-
ing this particular technology trade-off between write energy
and retention time to use less energy to write short-lived data.
Li et al. [22] considered static allocation for a hybrid SPM
containing NVRAM and SRAM, Hu et al. [23] use dynamic
replacement on a similar architecture, with a focus on read
/ write asymmetry and endurance aspects of the NVRAM
considered (PCM).

Hence the interest for SPM software management and for
their interaction with NVRAM technologies, no work has
yet studied the impact of memory heterogeneity on dynamic
memory management.

D. Scope of the Paper

Our long-term objective is to provide tools for generalizing
dynamic heap allocation in embedded systems with hetero-

geneous memories such as the architecture presented in [10].
In this paper, we first show that a straightforward adaptation
of classical allocation techniques to manage multiple heaps
would yield unsatisfactory results. For this purpose, we im-
plement a platform simulator with a configurable memory
architecture, as illustrated in Fig. 1. We run several embedded
benchmarks on different memory configurations and study the
variations on performance. This study focuses on a scenario
with only two heaps, backed by two memory banks with
different access latencies, i.e. “fast” and “slow” memory. Our
experiments show that the placement of each data object
in either fast or slow memory has a significant impact on
performance.

In order to focus our experiments on heap allocation, we
try and minimize the impact of other memory accesses, i.e. to
code, global data, and the execution stack. This is achieved
by storing these elements in another, separate Scratch Pad
bank with no latency penalty. Our justification for doing so
is that memory allocation of code, global and stack data has
been studied extensively in the literature. In other words, we
assume that state-of-the-art techniques like those presented in
the previous section work perfectly. Studying the interaction
between heap allocation and code/globals/stack allocation is
outside the scope of this paper.

In this paper, all memory access latencies are expressed in
time units of CPU clock cycles. Because the platform has no
CPU cache, all instructions are fetched from the scratchpad.
Thus, the clock frequency of the CPU must match the read
latency of the fastest bank. Of course all these hypotheses
are simplifications, but they allow us to focus on the issue
of interest, i.e. the impact of dynamic allocation on the
performance of the program.

III. MULTI-HEAP DYNAMIC ALLOCATION: MECHANISMS
AND STRATEGIES

In this section, we discuss how the usual malloc() and
free() API should be implemented for multi-heap systems.

A. Heap allocation mechanisms

1) Allocating from a single heap: When dealing with data
objects whose size and/or number is unknown at compile
time, programs have to resort to dynamic memory allocation.
Each time the application needs a new object, it issues an
allocation request indicating the required size. The role of the
memory manager is then to search for a free memory block of
sufficient size and mark it as occupied. Symmetrically, each
time the application issue a deallocation request regarding an
object, the memory manager marks the corresponding block
as free, and also might decide to merge it with other adjacent
free blocks. All of that happens in a fixed region of memory
referred to as the heap. Because the arrival of requests is un-
predictable, it may happen that free space becomes fragmented
into too many small blocks, to the point of becoming unusable
for allocation. This so-called heap fragmentation issue has
been studied extensively for decades [24]. Theoretical results
show that no “perfect” allocation algorithm can be designed.

However, in the standard case of a contiguous heap with
uniform latency, some algorithms behave well enough to be
used by default in programming language implementations.
This is the case of the dlmalloc [25] algorithm that we use
in this study.

2) Allocating from multiple heaps: Things get more com-
plicated with heterogeneous memories. We can either decide
to split the heap across several memory banks, or to maintain
one distinct heap for each bank. The first approach has the
advantage of preserving the malloc/free API but requires
to adapt allocation algorithm to architecture specifics. With the
second approach, we can just use a state-of-the-art allocation
algorithm in each heap.

But still one need to decide in which bank to allocate each
object, and as we show, these placement decisions have a
significant impact on the overall program performances.

We cannot leave these decisions to application programmer
as he may not be aware about the hardware architecture
specifics and moreover, understanding precisely the dynamic
allocation profile of an application increases the development
complexity.

We propose to structure the memory manager in two layers:
one dispatcher and (possibly many) allocators. The dispatcher
receives all allocation requests and is in charge of deciding
which heap to allocate to, according to some placement
strategy. It then forwards the request to the corresponding
allocator.

As dynamic allocation handles variables whose size is
unknown before execution, it may happen, because of heap
fragmentation, that the chosen allocator fails. In that case, the
dispatcher must redirect the allocation to another heap. We
refer to this situation as a fall back.

B. Placement Strategies

The role of the dispatcher is to choose among the available
heaps. In this study, we assume that dynamic allocation
happens in only two heaps which we refer to as the fast heap
and the slow heap.

1) The “Fast First” placement strategy: The most straight-
forward strategy is to always try the fast heap first, and only
fall back to the slow heap in case of failure. In our experiments,
we use this as our baseline strategy.

However, we cannot implement this strategy naively, as it
would yield poor performance. Indeed, after the fast heap has
filled up, almost all allocations will have to fall back to the
slow heap. Running the full allocation algorithm for every
request, just to discover that the heap is full, is a waste of
time.

To overcome this problem, we tweak the implementation
of dlmalloc in order to optimize for the case of allocation
failure. With this modification, the cost of repeatedly falling
back remains low enough that the performance of the Fast
First strategy remains acceptable.

2) Using profiling to devise “Offline strategies”: The goal
of this study is to evaluate the potential benefits of a clever
placement strategy. In other words, we want to know how our

“Fast First” strategy compares to the optimal placement. With
this in mind, we design and evaluate clairvoyant strategies: by
knowing the future in advance, the dispatcher can always take
the right decisions.

To predict the future, we leverage the fact our target system
is deterministic, both in terms of hardware (single core, in-
order CPU) and of software (bare-metal sequential programs).
In other words, running the same application twice with
the same inputs will produce the same results. Even if we
change the memory architecture (number of banks, latencies)
and/or the memory manager (dispatcher, allocators), objects
will be allocated and deallocated in the exact same order, and
accesses to each object will remain the same. This allows us
to collect a detailed profile for each application, and then
take all placement decisions statically, by formulating and
solving an optimization problem. Moreover, because our target
architecture have no caches the order of the requests have only
a marginal impact on performance.

We refer to this approach as using an offline place-
ment strategy, because the dispatcher merely follows a pre-
computed placement sequence. On the contrary we use the
term online strategy when the placement decisions are taken
at runtime.

3) The “ILP” placement strategy: The first offline strategy
that we study consists in formulating the placement problem
as an Integer Linear Program and feeding it to an ILP solver.
The optimization problem is very close to a knapsack problem:
for each object, we know its size, lifetime, and number of
read/writes accesses, so we can deduce the cost of placing it
in either heap, taking into account possible latency asymmetry.
We also introduce constraints to model the bank capacity: at
every instant, the total size of the objects in one heap should
be smaller than the bank size.

The utility of this strategy is to approximate an optimal
placement. However, it is only an approximation, as we will
discuss in Sec. III-B5.

4) The “Density” placement strategy: This strategy is
based on a simple, greedy algorithm. The idea is to go through
all objects in the profile and rank them according to some
metric. Then, only the “most relevant” objects are considered
for placement in the fast heap, until the heap is full. To assess
relevance, we propose a so-called access density metric which
we define as the number of accesses to a heap object b divided
by its space-time contention with other objects:

Density(b) =
Access_count(b)

Size(b) × Overlap(b)

Beside the access count to the object and the size it occupies
in memory, we consider Overlap(b), the number of objects
allocated during its lifetime, allowing to take into account the
number of times the associated memory block will be occupied
when allocating other objects.

The utility of this strategy is to investigate which statistics
are relevant for object placement, and help us to design online
strategies in the future.

5) Offline Strategies and Heap Fragmentation: In both
strategies described above, we have to make an important
simplification to make the problem tractable: we assume that
the total size of objects allocated in one heap can reach
up to the total capacity of the heap. However, because of
the fragmentation problem, this is typically not the case
in practice. Ignoring fragmentation while solving the offline
placement problem is thus an overly optimistic assumption.
This is a problem because an overly optimistic placement
sequence will cause the allocator to fail repeatedly (at a cost,
cf Sec. III-B1) and also many objects will end up in the
“wrong” bank.

It would not be practical to include every implementation
detail of the allocator in the model, so we cannot calculate
fragmentation in advance. This means that our offline strate-
gies are not implementing the optimal placement. Instead,
they each yield an under-approximation of the optimum. To
improve this approximation, we run the solvers using a smaller
heap capacity which ensures that the allocations will succeed
at run time despite heap fragmentation.

6) Finding an Upper Bound on Achievable Performance:
On the other hand, we also want an over-approximation. For
that we use the ILP solver with the real heap capacity, and
then we apply the result on a “relaxed” architecture where
all memory banks have their usual characteristics but with
no capacity limit. In this conditions, the allocator never fails,
and the overly optimistic placement sequence can be applied
exactly. This “pseudo-strategy” guarantees a better (or equal)
performance that would be achievable on the real system.

As our experimental results will show, in practice both
approximations are quite close to each other, which allows
us to talk about “the optimum” and use it to evaluate concrete
strategies.

IV. EXPERIMENTS

A. Experimental Setup

Our simulation environment is built using SystemC/TLM
libraries and based on MIPS32 Instruction Set Simulator from
the SoCLib project [26]. We consider an SPM with multiple
memory banks including a fast memory and slow memory
which will contain heap data. As was discussed in Sec. II-D,
everything else (code, static variables and the stack) is assumed
to be stored in a SRAM-like memory with no latency penalty.
This allows our experiments to highlight the performance
impact of heap management. The architecture is illustrated
in Fig. 1.

Our experiments consists in running several benchmarks on
the simulator of this architecture, with varying parameters such
as the proportion of heap in fast memory bank or the memory
bank latencies. The read and write latencies for the considered
technologies (see fig. 3) are given in cycles, and as stated in
Section II-D, in the presence of memory heterogeneity, the
fastest memory on the platform yields read latency of a single
cycle.

1) Application benchmarks: We choose several embedded
programs to serve as application benchmarks. Each of them

32b CPU
(MIPS32 ISS) Bank 2

Bank 1

Bank 3SP
M

co
nt

ro
lle

r

L/S
fetch

Bus

Peripherals Other
memories

Fig. 1. Overview of our simulated platform.

App. Object
Count

Maximum
Heap Size

json 1638 38 kB
dijkstra 14980 10 kB
jpg2000 10257 1665 kB
h263 53821 1232 kB

(a)

Arch. Fast Slow
A0 100% 0%
A1 75% 25%
A2 50% 50%
A3 25% 75%
A4 10% 90%
A5 5% 95%
A6 0% 100%

(b)
Fig. 2. (a) Applications and (b) Memory Architectures

makes significant use of dynamic allocation: Fig. 2.(a) shows
the total number of allocation requests (i.e. object count) as
well as the maximum heap size for each program. The json
application is based on an embedded JSON parsing and seri-
alization library [27]. The dijkstra program is taken from the
Mibench suite [28]. It computes shortest paths through a graph
represented by an adjacency matrix. The h263 application
is based on a video compression algorithm. It comes from
the Mediabench 2 video benchmark suite [29]. Finally the
jpg2000 application is an image compression algorithm, also
from Mediabench 2 video. We consider here only application
making a significant use of dynamic memory allocation.

2) Memory architectures: In our experiments, we vary the
distribution of the heap between the fast and slow memory
banks. Because each benchmark has a different maximum heap
size, we set the total size of both banks to this maximum. Then,
each memory architecture is expressed as a percentage of fast
vs. slow memory, as illustrated in Fig. 2.(b). Our reference
execution time is obtained on architecture A6, i.e. with the
whole heap stored in slow memory. The best execution time
is always obtained on architecture A0, i.e. with the whole heap
stored in fast memory. However for architectures A1–A5, each
placement strategy yields different performance gains.

3) Experiments Sets: As illustrated in figure 3, we consider
two pairs of memory technologies for the fast and slow
memory banks. In our first experiment set, SRAM is used
to compensate for the access times of a generic, symmetric
NVRAM with a 10 cycles latency both for reading and writing.
The second experiment set is a more realistic scenario where

Experiment Set Fast (R/W) Slow (R/W)
(1) SRAM + NVRAM 1/1 10/10

(2) fast MRAM + dense MRAM 1/3 2/30

Fig. 3. Read and Write latencies for heap memory banks (in CPU cycles).

we consider two actual MRAM types from the industry [30]
with different flavors: “fast MRAM” favors low access times
and “dense MRAM” achieves high density at the cost of slower
access.

4) Strategies for Dynamic Allocation: Each experiment set
consists in evaluating, given the considered memory tech-
nologies, each application on each architecture (A0 to A6,
see fig. 2). The architectures A0 and A6 are evaluated with
single heap, along with our baseline (Fast First strategy) for
architectures A1 to A5. The ILP and Density offline solutions
are evaluated on architectures A1 to A5 and we also provide
an upper bound for ILP strategy, as explained in section III.

B. Results and Discussion

Our experimental results are shown on Fig. 4 for both set of
experiments referenced in Fig. 3. While the overall trends are
similar in both columns, the vertical scale is typically smaller
on the right. This is because, even for heap objects, programs
tend to read much more than they write. As such, the 10-cycle
read latency of the slow heap in experiment set 1 is actually
a lot worse than the 30-cycle write latency. Some programs
however (json, jpg2000) have more balanced access profiles
and show more similar speedups.

In all graphs, the blue curve is the performance obtained
by our baseline “Fast First” placement strategy. Most often,
adding fast memory to the system results in a shorter execution
time. However, for some applications (json, dijkstra) the
performance curve is not strictly increasing. We even observe
a slight slowdown when we replace 5% of the heap with fast
memory (A1), compared to having only slow memory (A0).
This is caused by the multi-heap strategy overhead. In other
words, the Fast First strategy is sometimes unable to exploit
additional, faster memory.

On the contrary, offline strategies generally perform very
well on A5. For instance jpg2000 and h263 experience
speedups which are almost equivalent to replacing all memory
with fast memory. This means that even a small amount of fast
memory is enough to get significant gains, provided that we
have a clever placement strategy for heap objects.

In this regard, the Fast First strategy performs quite poorly.
In most cases, Fast First would require about 50% of fast
memory just to reach the same speedup than offline strategies
achieve with 5%. This means that, for dynamic allocation in
heterogeneous memory systems, a good online strategy should
be designed.

We designed the Density strategy with the objective of
exploring which criteria are relevant for object placement.
Indeed, while the ILP strategy yields near-optimal results,
it does not help us understand which objects are the most
relevant. In most cases Density performs almost as well as
ILP, which is promising: we could imagine an online strategy

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

2

4

6

8

10

12

14

S
p
e
e
d
u
p
 (

%
)

json

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

2

4

6

8

S
p
e
e
d
u
p
 (

%
)

dijkstra

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 (

%
)

jpg2000

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

5

10

15

S
p
e
e
d
u
p
 (

%
)

h263

Fast First

Upper Bound

ILP

Density

(a)

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

5

10

15

S
p
e
e
d
u
p
 (

%
)

json

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

1

2

3

4

S
p
e
e
d
u
p
 (

%
)

dijkstra

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

2

4

6

8

10

12

14

S
p
e
e
d
u
p
 (

%
)

jpg2000

Fast First

Upper Bound

ILP

Density

A6
0%

A5
5%

A4
 10%

A3
25%

A2
50%

A1
75%

A0
100%

Fraction of heap in fast memory

0

1

2

3

4

S
p
e
e
d
u
p
 (

%
)

h263

Fast First

Upper Bound

ILP

Density

(b)
Fig. 4. Experimental results: normalized execution speedup compared to A6 i.e. entire heap in “slow” memory. The left column (a) is experiment set 1
(SRAM + NVRAM) and the right column is experiment set 2 (fast MRAM + slow MRAM).

that would measure and then use access density to help with
object placement.

However in some cases offline strategies fail to reach
the Upper Bound. As was discussed in Sec. III-B5, this is
largely due to the inability of the optimization problem to
account for heap fragmentation (json, dijkstra). But it also
reveals interesting properties of our benchmarks. For instance
in dijkstra and jpg2000, the green and red lines are a lot
further apart in experiment set 2, i.e. with asymmetric R/W
latencies, than they are in experiment set 1. This shows a
limitation of our Density strategy: sometimes it would be
worth distinguishing between read and write accesses to each
object. But even on asymmetric memory, the Density strategy
still seems quite promising.

V. CONCLUSION AND FUTURE WORK

We show in this paper that dynamic memory allocation
can leverage memory heterogeneity to improve application
performance in low power systems. And besides, our results
highlight the importance of the software placement strategy to
achieve these improvements at low memory costs. Indeed our
experiments show that the straightforward "fast first" strategy
performs badly with small amounts of fast memory.

Using application profiling is an interesting lead to elaborate
efficient online strategies. However these strategies would
remain specific to one application. We are currently working
on the proposal of efficient online placement strategies for
multi-heap dynamic allocation.

A solution to avoid the profiling phase is to consider
hardware counters integration, granting to the software infor-
mation required for an adaptive efficient online strategy. In this
perspective, the good results shown by our metric of access
density are promising.

Funding: Région Auvergne-Rhône-Alpes, Insa-Spie IoT Chair

REFERENCES

[1] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, 2011.

[2] H. Volos, S. Panneerselvam, S. Nalli, and M. M. Swift, “Storage-class
memory needs flexible interfaces,” in Proceedings of the 4th Asia-Pacific
Workshop on Systems. New York, NY, USA: ACM, 2013, p. 11.

[3] S. Alam and N. Horspool, “A survey: Software-managed on-chip mem-
ories,” Computing and Informatics, vol. 34, no. 5, 2015.

[4] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghu-
nathan, “Powering the internet of things,” in IEEE/ACM International
Symposium on Low Power Electronics and Design. IEEE, 2014.

[5] A. S. Adila, A. Husam, and G. Husi, “Towards the self-powered Internet
of Things (IoT) by energy harvesting,” in International Symposium on
Small-scale Intelligent Manufacturing Systems, 2018.

[6] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” IEEE Embedded
Systems Letters, vol. 7, no. 1, 2015.

[7] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Pe-
ripheral State Persistence For Transiently Powered Systems,” INRIA,
Research Report RR-9018, Feb. 2017.

[8] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on rfid-scale devices,” SIGARCH Comput. Archit.
News, 2011.

[9] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power cycles
in transiently powered computers,” in International Conference on VLSI
Design and International Conference on Embedded Systems, 2014.

[10] Layer, Javerliac, Bernard-Granger, Decloedt, Becker, Jabeur, Claireux,
Dieny, Prenat, Pendina, Di, and et al., “Reducing System Power Con-
sumption Using Check-Pointing on Nonvolatile Embedded Magnetic
Random Access Memories,” ACM Journal on Emerging Technologies
in Computing Systems, 2016.

[11] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), IEEE.
Washington, DC, USA: IEEE, 2015, pp. 526–537.

[12] Z. Fan, J. Chen, and J. Wang, “Ferroelectric hfo 2 -based materials
for next-generation ferroelectric memories,” Journal of Advanced Di-
electrics, vol. 06, no. 02, p. 1630003, Jun 2016.

[13] S. Yu and P. Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43–56, Spring 2016.

[14] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Towards
energy efficient hybrid on-chip scratch pad memory with non-volatile
memory,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011. Washington, DC, USA: IEEE, 2011.

[15] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, and H. Shin, “Scratchpad
Memory Management Techniques for Code in Embedded Systems
without an MMU,” IEEE Transactions on Computers, vol. 59, no. 8,
p. 1047–1062, Aug 2010.

[16] D. Cho, S. Pasricha, I. Issenin, N. D. Dutt, M. Ahn, and Y. Paek,
“Adaptive scratch pad memory management for dynamic behavior of
multimedia applications,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 4, pp. 554–567, 2009.

[17] G. Rodríguez, J. Touriño, and M. T. Kandemir, “Volatile STT-RAM
Scratchpad Design and Data Allocation for Low Energy,” ACM Trans-
actions on Architecture and Code Optimization, vol. 11, no. 4, 2014.

[18] A. Shrivastava, A. Kannan, and J. Lee, “A software-only solution to
use scratch pads for stack data,” IEEE Transactions on computer-aided
design of integrated circuits and systems, vol. 28, no. 11, 2009.

[19] R. McIlroy, P. Dickman, and J. Sventek, “Efficient dynamic heap allo-
cation of scratch-pad memory,” in Proceedings of the 7th international
symposium on Memory management, 2008.

[20] T. R. Mück and A. A. Fröhlich, “Run-time scratch-pad memory man-
agement for embedded systems,” in 37th Annual Conference on IEEE
Industrial Electronics Society.

[21] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” Journal of Embedded
Computing, vol. 1, no. 4, pp. 521–540, 2005.

[22] Q. Li, Y. Zhao, J. Hu, C. J. Xue, E. Sha, and Y. He, “Mgc: Mul-
tiple graph-coloring for non-volatile memory based hybrid scratchpad
memory,” in 16th Workshop IEEE Interaction between Compilers and
Computer Architectures, 2012.

[23] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Data
allocation optimization for hybrid scratch pad memory with SRAM
and nonvolatile memory,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 6, p. 1094–1102, Jun 2013.

[24] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic stor-
age allocation: A survey and critical review,” in Memory Management.
New York, NY, USA: Springer, 1995, pp. 1–116.

[25] D. Lea, “A memory allocator,” http://g.oswego.edu/dl/html/malloc.html,
2012.

[26] SOCLIB, “Projet SOCLIB: Plate-forme de modélisation et de simulation
de systèmes integrés sur puce. Technical report, CNRS, 2003.”

[27] K. Gabis, “Parson: Lightweight JSON library written in C,” https:
//github.com/kgabis/parson, 2012.

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization, 2001.

[29] J. E. Fritts, F. W. Steiling, and J. A. Tucek, “Mediabench II video: expe-
diting the next generation of video systems research,” Microprocessors
and Microsystems, vol. 33, 2009.

[30] G. Foundries, “Embedded memory: emram, eflash, sip,” https://www.
globalfoundries.com/sites/default/files/product-briefs/pb-emem.pdf,
2018.

