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Abstract

This paper establishes the existence of quasipatterns solutions of the Swift-Hohenberg
PDE. In a former approach [BIS], we avoided the use of Nash-Moser scheme, but our
proof contains a gap. The present proof of existence is based on the works by Berti et
al [BBP10], [BB10], [BCP] related to the Nash-Moser scheme. For solving the small
divisor problem, we need to introduce a new free parameter related to the freedom in
the choice of parameterization of the bifurcating solution. Thanks to a transversality
condition, the result gives only a bifurcating set, located in a small hornlike region cen-
tered on a curve, with the origin at the bifurcation point.
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1 Introduction

The object of the paper is the existence of a special kind of stationary solutions (i.e.
independent of t), bifurcating from 0 (i.e. tending towards zero when the parameter λ
tends towards 0), called quasipatterns of the 2-dimensional Swift-Hohenberg PDE

∂U

∂t
= λU − (1 + ∆)2U − U3 (1)

where U is the unknown real-valued function on R+ × R
2
, ∆ :=

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
and λ is a pa-

rameter. We are interested in two-dimensional patterns that have no translation symmetry
and are quasiperiodic in any spatial direction.

Mathematical existence of quasipatterns is one of the outstanding problems in pattern
formation theory. To our knowledge, hereafter is the first proof of existence of such quasipat-
terns of a PDE. Quasipatterns were discovered in nonlinear pattern-forming systems in the
Faraday wave experiment [BCM92, EF94], in which a layer of fluid is subjected to vertical
oscillations. Since their discovery, they have also been found in nonlinear optical systems,
shaken convection and in liquid crystals (see references in [AG12]) . In spite of the lack
of translation symmetry (in contrast to periodic patterns), the solutions are π/q-rotation
invariant for some integer q (most often observed, 2q is 8, 10 or 12).

In many of these experiments, the domain is large compared with the size of the pattern,
and the boundaries appear to have little effect. Furthermore, the pattern is usually formed
in two directions (x1 and x2), while the third direction (z) plays little role. Mathematical
models of the experiments are therefore often posed with two unbounded directions, and
the basic symmetry of the problem is E(2), the Euclidean group of rotations, translations
and reflections of the (x1, x2) plane.

The above model equation is the simplest pattern-forming PDE, and is extremely suc-
cessful for describing primary bifurcations (the first symmetry breaking) of hydrodynamical
instability problems such as the Rayleigh - Bénard convection. Its essential properties are
that

i) the system is invariant under the group E(2);
ii) the instability occurs for a certain critical value of the parameter (here λ = 0) for

which critical modes are given by wave vectors sitting on a circle of non zero radius (here
the unit circle);

iii) the linear part is selfadjoint and contains the main derivatives.
The steady Swift-Hohenberg equation reads

(1 + ∆)2U − λU + U3 = 0. (2)

The parameter λ is supposed to be real and small in absolute value. The solutions we are
interested in should tend towards zero as the parameter goes to zero.
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Figure 1: Example 8-fold quasipattern after [IR10]. This is an approximate solution of the
steady Swift–Hohenberg equation (2) with λ = 0.1, computed by using Newton iteration
to find an equilibrium solution truncated to wavenumbers satisfying |k| ≤

√
5 and to the

quasilattice Γ27 obtained with Nk ≤ 27.

We study equation (2) for λ > 0. Namely, let 2q be an even integer and let kj =

exp iπ(j−1)
q , j = 1, . . . , 2q be the 2q unit vectors of the plane, identified with roots of unity.

Let Γ be the lattice of linear combinations of vectors kj with nonnegative integer coefficients.
We look for the existence of a (nonzero) π/q-rotation invariant solution of the form

U(x) =
∑

k∈Γ

u(k)eik.x (3)

which belongs to a Sobolev space Hs, s ≥ 0 :

‖U‖2
s :=

∑

k∈Γ

|u(k)|2(1 + N2
k
)s < +∞.

The natural number Nk denotes a norm of k in the lattice Γ, which we define below. We
indicate on Figure 1 a computation made on this model equation for q = 4, keeping only
Fourier modes such that Nk ≤ 27. We then would like to show that such a solution exists
indeed, for small positive parameters λ. Our main result is:

Theorem 1. Let q ≥ 4 be an integer and let d be the dimension of the Q-vector space
spanned by the wave vectors kj , j = 1, ..., 2q. Moreover, assume that Condition 2 is verified.
Then, there exists s0 > d/2, ǫ0 > 0, such that, for any s ≥ s0, and for any ǫ with 0 < ǫ < ǫ0
there exist λǫ such that the steady Swift-Hohenberg equation, for λ = λ2ǫ

2 − ǫ4λǫ admits a
quasipattern solution U in Hs, invariant under rotations of angle π/q of the form

U = ǫu0 + ǫ3v(ǫ),
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where u0 is given by (16) and where λ2 = 3(2q − 1) > 0, λǫ tends towards −λ4 as ǫ tends
towards 0. The quasiperiodic function u0 spans the kernel of (1+∆)2, and coefficients λ2, λ4

occurring in formulae above, are the ones defined in the truncated asymptotic expansion of
the solution, computed in section 2.2, see also [IR10]. The set Λǫ of all such λǫ is close to
−λ4 and has asymptotic full measure as ǫ tends to 0.

Condition 2. For n ∈ N, let Nn := N2n

0 for some constant N0 = Mǫ3 as defined in (42).
Let Nn be the dimension of the finite-dimensional subspace ENn of elements (3) such that
Nk ≤ Nn (see definition 9).

We assume that there is a constant c1 > 0 such that, for any j ∈ {1, 2, ...,Nn}, the
following inequality holds for any 0 < ǫ < ǫ3, |ν| ≤ ǫ0|λ′|, |λ′| ≤ ǫ0|λ4|,

|〈u2
0ζ

(Nn)
j (ǫ, λ′, ν), ζ

(Nn)
j (ǫ, λ′, ν)〉0 − (2q − 1)| > c1. (4)

Here, the ζ
(Nn)
j (ǫ, λ′, ν)′s are the eigenvectors, with norm 1, of the linear operator

ΠNnΠ0Lǫ,λ′,ν,V (ǫ,λ′,ν)ΠNnΠ0, (5)

where Lǫ,λ′,ν,V (ǫ,λ′,ν) is defined in (36), V ∈ U (Nn)
M (see (44)), and ΠN is the orthogonal

projection on EN and Π0 the orthogonal projection on the complement of the kernel Ru0 of
(1 + ∆)2.

Remark 3. Condition 2 is a transversality condition. It concerns only eigenvalues of
Lǫ,λ′,ν,V (ǫ,λ′,ν) which are very close to 0. In case when these eigenvalues are simple, then
Condition 2 is satisfied near ǫ = 0 for any q (see Remark 28).

Remark 4. The good set Λǫ is of asymptotic full measure. This means the following:

1

2ǫ
meas

{
Λǫ ∩ (−λ4 − ǫ,−λ4 + ǫ)

}
→
ǫ→0

1.

Remark 5. For λ < 0 the solution U = 0 is isolated in an open ball of radius
√

|λ| (see
[BIS][Remark 3]).

Remark 6. The expression that we obtain for the bifurcating set solution of (2), does not
say anything on its structure as a curve U function of

√
λ, as it would be the case in usual

bifurcation problems. However we show that the bifurcating set (λ,U) lies in a hornlike
region centered on a curve, with the tip at the bifurcation point (see Remark 29).

One of the main difficulties is that the linearized operator at U = 0, has an unbounded
inverse. Indeed, it is easy to show that the eigenvalues of (1 + ∆)2 in Hs are (1 − |k|2)2
where k ∈ Γ. These numbers accumulate at any point of R+. It creates a small divisor
problem, such that if λ ≥ 0 nothing can be said a priori about the inverse of (1+ ∆)2 −λI.

We use the first terms of the asymptotic expansion of the solution and change the
unknown as U = Uǫ + ǫ2W and λ = ǫ2λ2 − ǫ3λ′ for some well chosen (Uǫ, λ2), λ2 being
positive and for (ǫ, λ′) ∈ (0, ǫ0) × [−1, 1]. The parameter λ′ is used here for providing some
elasticity to the parameterization of the bifurcating solution, which would be classically
parameterized by ǫ only, in usual bifurcation problems. The choice of the factor ǫ3 in front
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of λ′ means that any λ′ ∈ [−1, 1] does not modify much the relationship between λ and ǫ,
i.e. the principal part of the bifurcating solution is nearly independent of λ′.

Let L
ǫ,λ′,W

be the linear part at W , close to 0, of the nonlinear equation so obtained.

For ǫ = 0, the operator L0 = (1+∆)2 is a positive selfadjoint operator in Hs. It is bounded
from Hs+4 into Hs, and it is not Fredholm, since its range is not closed. Its spectrum is an
essential spectrum filling the half line [0,∞). The set of eigenvalues is dense in the spectrum.
The linear operator L

ǫ,λ′,W
is the sum of L0 and a bounded operator (multiplication by a

small function O(ǫ2)) selfadjoint in H0.
Writing W as νu0 + 3νǫ2u1 + ǫ2V , where u1 is a known function and V are orthogonal

to the kernel Ru0 of L0, the projection of (2) onto the range of L0 (i.e the orthognal to
its kernel) reads F(ǫ, λ′, ν, V ) = 0. It is called the range equation. The most difficult part
of the problem consists in finding good parameters (ǫ, λ′, ν) for which there is a solution of
the range equation in some Sobolev space. It is solved using a version of the Nash-Moser
theorem due to Berti, Bolle and Procesi [BBP10]. To apply such a result, we investigate
for ǫ > 0, |ν/λ′| small enough, and λ′ ∈ [−1, 1], not only the invertibility in some Hs but
also the bound of the inverses of the ”truncated-restricted” of the linear operator L

ǫ,λ′,ν,V

which is the differential with respect to V of the projection F(ǫ, λ′, ν, V ) of (2) on the
orthogonal complement of the kernel. The ”truncated-restricted” of a linear operator A is
the projection onto ”small frequencies” of the restriction of A to ”small frequencies” (here
”small” is in the sense of the norm Nk, k ∈ Γ).

For this analysis we use intensively the Nash-Moser technique developed in [BB10],
[BBP10], [BCP], which is based here on separation properties of the set {(1−|k|2)2;k ∈ Γ},
the set of eigenvalues of L0. Notice that our former approach to the problem [BIS], that
avoided the use of Nash-Moser scheme, contains a gap.

Using the main result of [BBP10], we obtain the existence of a C1 function V of all
parameters and a 3-dimensional set G of parameters over which V is solution of the range
equation. The key point is that this set of good parameters G is such that for any ǫ ∈ [0, ǫ1]
we need to choose (ν, λ′) ∈ Gǫ, where the set Gǫ is the complement of ”bad strips” in the
(ν, λ′) plane, and has asymptotically full measure as ǫ tends towards 0 (see Remark above).
It remains to solve the bifurcation equation (i.e. the projection onto the kernel of (2)).
Plugging the solution V obtained by the Nash-Moser theorem, we obtain a C1 equation
linking ǫ, ν and λ′. The knowledge of the main part of this equation allows us to solve λ′ as
a C1 function of ǫ and ν. For each ǫ, the graph of ν 7→ λ′(ǫ, ν) intersects transversally Gǫ,
leading to a solution that solves the range equation as well as the bifurcation equation, that
is the full nonlinear problem. This solution is W (ǫ, ν) := νu0 + 3νǫ2u1 + ǫ2V (ǫ, λ′(ǫ, ν), ν).

2 Setting of the problem

2.1 Function spaces

In this section, we introduce the function spaces we use.
Let q ≥ 4 be an integer. Let us define the unit wave vectors (identifying C with R2)

kj := eiπ j−1

q , j = 1, . . . , 2q.
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We define the quasilattice Γ ⊂ R2 to be the set of points spanned by (nonnegative)
integer linear combinations of the kj ’s :

km =

2q∑

j=1

mjkj , m = (m1, . . . ,m2q) ∈ N2q. (6)

We know (see [Wash97]) that the Q− vector space spanned by {kj , j = 1, 2, .., 2q} has
dimension d = ϕ(2q) = 2(l0 + 1) where ϕ is the Euler totient function, and l0 + 1 is the
order of the algebraic integer ω := 2 cos π/q (l0 = 1 for q = 4, 5, 6, l0 = 2 for q = 7...)
with 2(l0 + 1) ≤ q. Let us define the subset of the d vectors {k∗

j , j = 1, 2, .., d} of {kj ,
j = 1, 2, .., 2q} which forms a basis. Then

kj =

d∑

s=1

αjsk
∗
s, αjs ∈ Q.

and any k ∈ Γ may be written in two different ways

k =

2q∑

j=1

mjkj =
d∑

s=1

rsk
∗
s, mj ∈ N, rs ∈ Q

where rs =
∑2q

j=1 mjαjs.

Let us define αjs :=
njs

djs
with irreducible fractions and

d = l.c.mj=1,..2q
s=1,..d

{djs}, then dαjs = βjs ∈ Z.

Remark 7. Notice that we have d = 1 for example for q = 4, 5, 6, 7, 8, 9, 10, 11, 12. We can
choose k∗

s = ks, s = 1, .., d as this results from

kj+q = −kj, j = 1, ..., q,

for q = 4 or 8 (d = q), and from the identities

k5 = k4 − k3 + k2 − k1 for q = 5 (d = 4)

k5 = k3 − k1, k6 = k4 − k2 for q = 6, (d = 4)

k7 = k6 − k5 + k4 − k3 + k2 − k1 for q = 7 (d = 6)

k7 = k4 − k1, k8 = k5 − k2, k9 = k6 − k3 for q = 9, (d = 6)

k9 = k7 − k5 + k3 − k1, k10 = k8 − k6 + k4 − k2 for q = 10, (d = 8)

k11 = k10 − k9 + k8 − k7 + k6 − k5 + k4 − k3 + k2 − k1 for q = 11 (d = 10)

k9 = k5 − k1, k10 = k6 − k2, k11 = k7 − k3, k12 = k8 − k4 for q = 12, (d = 8).

Then m∗
s := drs =

∑2q
j=1 mjβjs ∈ Z and

k = d
−1

d∑

s=1

m∗
sk

∗
s := k(m∗) (7)
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where m∗ := (m∗
1, . . . ,m

∗
d) and we define the following norm in the lattice Γ, identified with

a subset of Zd :

Nk :=
d∑

s=1

|m∗
s|. (8)

Remark 8. If d = 1 we can identify Γ with Zd. If d > 1 , for an arbitrary m∗ ∈ Zd\{0},
we don’t know a priori if there exists k ∈ Γ such that k(m∗) = k.

In what follows we use Sobolev spaces defined as

Hs =

{
W =

∑

k∈Γ

W (k)eik·x; ||W ||2s =
∑

k∈Γ

(1 + N2
k)s|W (k)|2 < ∞

}
, (9)

which are Hilbert spaces with the scalar product

〈W,V 〉s =
∑

k∈Γ

(1 + N2
k)sW (k)V

(k)
. (10)

Definition 9. Let N > 1 be an integer. We define the projection ΠN acting in Hs: for
V ∈ Hs

V =
∑

k∈Γ

V (k)eik·x ∈ Hs, ΠNV :=
∑

k∈Γ,Nk≤N

V (k)eik·x.

The two following Lemmas are similar to classical results on Sobolev spaces.

Lemma 10. [BIS][lemma 5] Assume q ≥ 4, then for s > d/2, for any U ∈ Hs and any
V ∈ H0, we have

||UV ||0 ≤ cs||U ||s||V ||0
for a certain constant cs > 0.

Lemma 11. [BIS][lemma 6] (Moser-Nirenberg inequality) Assume q ≥ 4, and let s ≥ s′ >
d/2 and let U, V ∈ Hs. Then,

‖UV ‖s ≤ C(s, s′)(‖U‖s‖V ‖s′ + ‖U‖s′‖V ‖s) (11)

for some positive constant C(s, s′) that depends only on s and s′. For ℓ ≥ 0 and s > ℓ+d/2,
Hs is continuously embedded into Cℓ.

Let us conclude this subsection in giving precisions on the small divisors occurring when
we need to invert the operator (1 + ∆)2. It appears that the quantities

(1 − |k|2)2,k ∈ Γ

occur in the denominator of the inverted terms. So we need to bound the inverse of these
quantities when they are not 0. We can show

Lemma 12. Assume q ≥ 4, then for any k ∈ Γ such that |k| 6= 1, i.e. k 6= kj, j = 1, ..., 2q
the following estimate holds true

||k|2 − 1| ≥ c

(1 + N2
k
)l0

, (12)

for a certain c > 0 only depending on q.
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Proof. From (7) we obtain, as in [IR10]

d
2(|k|2 − 1) = 〈

d∑

s=1

m∗
sk

∗
s,

d∑

s=1

m∗
sk

∗
s〉 − d

2 = q0 − d
2 + q1ω + ... + ql0ω

l0

where ω = 2cos π/q and the integer coefficients qj are quadratic in m∗. It is shown in
[IR10] (see Lemma 2.1) that if it is not 0, there exists C > 0 such that the right hand side
is bounded from below by

C

(|q0 − d2| + |q1| + ... + |ql0 |)l0
.

Now, since we have |qj | ≤ c′N2
k
, j = 1, .., l0, it is easy to conclude to the existence of c > 0

in estimate (12).

2.2 Formal computation

Let us look for formal solutions of the steady Swift–Hohenberg equation

λU − (1 + ∆)2U − U3 = 0, (13)

We characterize the functions of interest by their Fourier coefficients on the quasilattice Γ
generated by the 2q equally spaced unit vectors kj (see (6)):

U(x) =
∑

k∈Γ

u(k)eik.x, x = (x1, x2) ∈ R2.

We seek a non trivial solution, bifurcating from 0, parameterized by ǫ, and which is
invariant under rotations by π/q. As it is shown for example in [IR10], a formal computation
with identification of orders in ǫ leads to (classically, it is easier to formulate the bifurcating
branch with the parameter ǫ instead of expanding U in powers of

√
λ)

U(x1, x2) = ǫu0(x1, x2) + ǫ3u1(x1, x2) + . . . λ = ǫ2λ2 + ǫ4λ4 + . . . (14)

and gives at order O(ǫ)
0 = (1 + ∆)2u0. (15)

We take as our basic solution a quasipattern that is invariant under rotations by π/q:

u0 =

2q∑

j=1

eikj ·x. (16)

At order O(ǫ3) we have
λ2u0 − u3

0 = (1 + ∆)2u1. (17)

In order to solve this equation for u1, we must impose a solvability condition, namely that
the coefficients of eikj ·x, j = 1, ..., 2q on the left hand side of this equation must be zero.
Because of the invariance under rotations by π/q, it is sufficient to cancel the coefficient of
eik1·x. For the computation of the coefficient, we need the following property

8



Property (see the proof in [BIS] and a related argument in Remark 28): If we have

kj + kl + kr + ks = 0 for j, l, r, s ∈ {1, 2q}

then either kj + kl = 0, or kj + kr, or kj + ks = 0 (there are two pairs of opposite unit
vectors).

This yields
λ2 = 3(2q − 1) (18)

which is strictly positive. Moreover we fix the uniqueness of functions un, n ≥ 1 by imposing
the orthogonality of un with u0. This also fixes the relationship between ǫ and λ. Hence

u1 =
∑

k∈Γ,|k|6=1

αkeik·x, αk = 0 for k 6= kj + kl + kr, and (19)

α3kj
= −1/64, α2kj+kl

= − 3

(1 − |2kj + kl|2)2
, kj + kl 6= 0,

αkj+kl+kr = − 6

(1 − |kj + kl + kr|2)2
, j 6= l 6= r 6= j,

kj + kl 6= 0, kj + kr 6= 0, kr + kl 6= 0.

We notice that for any k, αk < 0 in u1. At order O(ǫ5) we have

λ4u0 + λ2u1 − 3u2
0u1 = (1 + ∆)2u2. (20)

The solvability condition gives λ4 equal to the coefficient of eik1·x in 3u2
0u1, hence λ4 < 0

(see [BIS][section 2.2]).
It is shown in [IR10] that the series (14) is of Gevrey type. Moreover it is shown that

a Borel resummation of this series, provides a quasi-periodic function which is solution of
equation (2) up to an exponentially small term with respect to the bifurcation parameter
ǫ. We indeed wish a better result, i.e. the proof of the existence of a solution having the
above asymptotic expansion (14) at the origin.

2.3 Formulation of the problem

Let us define the new unknown function W in rewriting (14) as:

U = Uǫ + ǫ2W,

Uǫ = ǫu0 + ǫ3u1 (21)

λ = ǫ2λ2 − ǫ3λ′

where u0, u1, λ2 are as above. Given a particular value of (λ, λ′), λ > 0 small enough and
λ′ ∈ [−λ0, λ0], we get ǫ by the implicit function theorem, and since λ2 > 0, we obtain a
unique positive ǫ. All the corrections are in W . The aim is to show that the quasi-periodic
function W exists and is small as ǫ tends towards 0. By construction we have

(1 + ∆)2Uǫ − ǫ2λ2Uǫ + U3
ǫ =: ǫ5fǫ

9



with
fǫ = −λ2u1 + 3u2

0u1 + 3ǫ2u0u
2
1 + ǫ4u3

1, (22)

where fǫ is quasi-periodic, of order O(1) with a finite Fourier expansion, and is function of
ǫ2.

Definition 13. Let us define the orthogonal projections Π0 on {u0}⊥ and Π1 = I − Π0.

Applying Π0 just consists in cancelling the terms with |k| = 1 in the Fourier expansion
of W ∈ Hs. This projection is orthogonal in any Hs, s ≥ 0.

After substituting (21) into the PDE (13), and dividing by ǫ2, we obtain an equation of
the form

F (ǫ, λ′,W ) := Lǫ,λ′W + ǫ3fǫ + λ′ǫUǫ + 3ǫ2UǫW
2 + ǫ4W 3 = 0, (23)

where

Lǫ,λ′u := [(1 + ∆)2 − ǫ2λ2 + ǫ3λ′]u + 3U2
ǫ u, (24)

Lǫ,λ′,W u := DW F (ǫ, λ′,W )u = Lǫ,λ′u + 6ǫ2UǫWu + 3ǫ4W 2u. (25)

We notice that

(1 + ∆)2V =
∑

k∈Γ

(1 − |k|2)2V (k)eik·x,

|k| ≤ d
−1Nk ≤ Nk,

hence
(1 − |k|2)2 ≤ (1 + N2

k
)2, (26)

so, the linear operator (1 + ∆)2 is bounded from Π0Hr to Π0Hr−4 for r ≥ 4.
It is clear (see Lemma 10) that for a fixed W ∈ Hs, s > d/2, the operator Lǫ,λ′,W

is an operator acting from any Hr, r ≥ 4, to Hr−4 being uniformly bounded in ǫ, λ′, for
ǫ ≤ ǫ0, λ

′ ∈ [−1, 1].
The operator Lǫ,λ′,W has not a bounded inverse, due to the small divisor problem men-

tioned in section 1.1. Notice however that we have from (12) the estimate

1

(|k|2 − 1)2
≤ c0(1 + N2

k)2l0 , (27)

which gives an upper bound of [L̃0]
−1, where L0 := L0,λ′,W and the superscript ˜means the

pseudoinverse acting from Π0Hr = Hr ∩ {u0}⊥ into Π0Hr−4l0 .
In formal computations, we may choose λ′ = −ǫλ4 + O(ǫ3) so that W = ǫ3u2 +

O(ǫ5){u0}⊥. The introduction of λ′ 6= 0 modifies the definition of ǫ as the parameter de-
scribing the bifurcating solution curve. For an arbitrary λ′ in [−1, 1], it results that W is
no longer in {u0}⊥, having now a component along u0 depending on λ′.

Let us decompose W ∈ Hs as (see Remark 15 below):

W = νu0 + 3νǫ2u1 + ǫ2V, V ∈ {u0}⊥. (28)
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Equation (23) decomposes into the bifurcation equation (projection onto the kernel of (1 +
∆)2):

0 = (−λ2 + ǫλ′)νu0 + λ′u0 + ǫΠ1fǫ + 3Π1[ǫ
−2U2

ǫ (νu0 + 3νǫ2u1 + ǫ2V )] +

+3Π1Uǫ(νu0 + 3νǫ2u1 + ǫ2V )2 + ǫ2Π1(νu0 + 3νǫ2u1 + ǫ2V )3, (29)

and the range equation (projection onto {u0}⊥):

0 = [(1 + ∆)2 − ǫ2λ2 + ǫ3λ′](3νu1 + V ) + ǫΠ0fǫ + λ′ǫ2u1 + 3Π0[ǫ
−2U2

ǫ (νu0 + 3νǫ2u1 + ǫ2V )] +

+3Π0[Uǫ(νu0 + 3νǫ2u1 + ǫ2V )2] + ǫ2Π0[(νu0 + 3νǫ2u1 + ǫ2V )3]. (30)

After using the identities

Π1u
3
0 = λ2u0, 3Π1u

2
0u1 = λ4u0, (1 + ∆)2u1 + Π0u

3
0 = 0,

and from the expression (22) of fǫ, (29) and (30) become

[2νλ2 +ǫλ4 +λ′]u0 + f̃(ǫ, ν)+ǫ2Π1[f1(ǫ, ν)V ]+ǫ5Π1[f2(ǫ, ν)V 2]+ǫ8Π1[f3(ǫ, ν)V 3] = 0 (31)

F(ǫ, λ′, ν, V ) = 0. (32)

Here, we have set

F(ǫ, λ′, ν, V ) := Lǫ,λ′,νV + g(ǫ, λ′, ν)+3ǫ4Π0(UǫV
2)+ ǫ6Π0[3ν(u0 +3ǫ2u1)V

2 + ǫ2V 3], (33)

where the linear operator Lǫ,λ′,ν is defined by

Lǫ,λ′,νV := [(1 + ∆)2 − ǫ2λ2 + ǫ3λ′]V + 3Π0(U
2
ǫ V ) +

+6νǫ2Π0(Uǫ(u0 + 3ǫ2u1)V ) + 3ǫ4ν2Π0[(u0 + 3ǫ2u1)
2V ], (34)

and

g(ǫ, λ′, ν) := ǫ2λ′(1 + 3ǫν)u1 + ǫΠ0fǫ + 3νǫ2Π0[(2u0u1 + ǫ2u2
1)u0] − 3νǫ2λ2u1 +

+9νΠ0(U
2
ǫ u1) + 3ν2Π0[Uǫ(u0 + 3ǫ2u1)

2] + ǫ2ν3Π0[(u0 + 3ǫ2u1)
3], (35)

f̃(ǫ, ν) := (ν2ǫλ2 +νǫ2(4+3νǫ)λ4)u0 +3ǫ3(1+3νǫ)2Π1(u0u
2
1)+ ǫ5(1+νǫ)−1(1+3νǫ)3Π1(u

3
1)

f1(ǫ, ν) := (1 + νǫ)−1[3U2
ǫ + 6νǫ2Uǫ(u0 + 3ǫ2u1) + 3ν2ǫ4(u0 + 3ǫ2u1)

2],

f2(ǫ, ν) := 3(1 + νǫ)−1[ǫ−1Uǫ + νǫ(u0 + 3ǫ2u1)],

f3(ǫ, ν) := (1 + νǫ)−1.

are analytic in their arguments (ǫ, λ′, ν) ∈ [0, ǫ0] × [−1, 1] × [−ǫ0, ǫ0] for ǫ0 small enough.
We notice that g(ǫ, λ′, ν) ∈ Hs for any s ≥ 0 and has a finite Fourier expansion.
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Remark 14. Even though the above computations are elementary, let us give more details
for obtaining f̃(ǫ, ν) which corresponds to the part independent of V in equation (29), divided
by (1 + νǫ) :

(1 + νǫ)([2νλ2 + ǫλ4 + λ′]u0 + f̃(ǫ, ν))

= (−λ2 + ǫλ′)νu0 + λ′u0 + ǫΠ1fǫ + 3Π1[ǫ
−2U2

ǫ (νu0 + 3νǫ2u1)] +

+3Π1Uǫ(νu0 + 3νǫ2u1)
2 + ǫ2Π1(νu0 + 3νǫ2u1)

3

= (1 + νǫ)λ′u0 − νλ2u0 + ǫλ4u0 + ǫΠ1(3ǫ
2u0u

2
1 + ǫ4u3

1) + 3νλ2u0 + 5νǫ2λ4 +

+21νǫ4Π1u0u
2
1 + 9νǫ6Π1u

3
1 + 3ν2ǫλ2 + 7ν2ǫ3λ4 + 45ν2ǫ5Π1u0u

2
1 +

+27ν2ǫ7Π1u
3
1 + ν3ǫ2λ2 + 3ν3ǫ4λ4 + 27ǫ6ν3Π1u0u

2
1 + 27ǫ8ν3Π1u

3
1

= (1 + νǫ)[λ′ + (2ν + ν2ǫ)λ2 + (ǫ + 4νǫ2 + 3ν2ǫ3)λ4]u0 +

+(1 + νǫ)3ǫ3(1 + 3νǫ)2Π1u0u
2
1 + ǫ5(1 + 3νǫ)3Π1u

3
1.

Remark 15. We notice that the choice to add the term 3νǫ2u1 in the decomposition of W
in (28), allows to define a function g(ǫ, λ′, ν) such that

g(0, λ′, ν) = 0.

This is due to the fact that 3νΠ1[ǫ
−2U2

ǫ u0] + (1 + ∆)2(3νu1) = 3νǫ2Π0[(2u0u1 + ǫ2u2
1)u0].

We expect to find, for any 0 < ǫ ≤ ǫ0, a small eligible λ′, with a solution V of (32),
function of (ǫ, λ′, ν) of order O(|ν|+ǫ). Then putting V (ǫ, λ′, ν) into the bifurcation equation
(31), we expect to find, λ′ of order ǫ for any a = ν/λ′ in the small interval [−ǫ0, ǫ0], which
would lead to W solution of (23).

2.4 Strategy

The main task is to solve (32) with respect to V . The lower bound (12) shows that the
inverse of L0,λ′,ν is an unbounded operator in Π0Hs, only bounded from Π0Hs to Π0Hs−4l0 .
In other words, 0 belongs to the continuous spectrum of L0,λ′,ν . We then intend to use a
Nash-Moser scheme.

Let us denote by Lǫ,λ′,ν,V the differential with respect to V of F(ǫ, λ′, ν, V ) defined in
(32), then the main difficulty to be solved below is to find a suitable bound for the inverse
L−1

ǫ,λ′,ν,V for small values of ǫ. Notice that Lǫ,λ′,ν,V is selfadjoint in Π0H0 but not in Π0Hs

for s > 0. This is due to the fact that the operator ”multiplication by a function” is not
self adjoint in Hs, s > 0. It is tempting to work on the small (real) eigenvalues to obtain a
bound of its inverse. However, we are in an infinite dimensional space, the set of eigenvalues
is dense on R+, and the spectrum does not contain only eigenvalues, since it is a closed
subset of R. This does not allow to use standard perturbation theory.

A reduction method, currently used in PDE systems, such as in water waves problems
for example [IPT05], [IP09], [IP11], [AB15], is to use a change of coordinates which trans-
forms the linear operator (here Lǫ,λ′,ν,V ) into a diagonal operator, plus a small regularizing
perturbation, such that the inversion is made via a Neumann series. It seems that this
method is unpracticable here due to the ellipticity of L0,λ′,ν .

The option we choose is to truncate the space to functions with finite Fourier expansions
(with k such that Nk ≤ N). Then we solve the system (32) with respect to V for (ǫ, λ′, ν) ∈
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(0, ǫ1) × [−1, 1] × [−ǫ0, ǫ0] where ǫ1 < ǫ0 are small enough, and λ′ suitably chosen for any
fixed ǫ. Using good separation properties of the spectrum of (1 + ∆)2, we use the version
of the Nash-Moser implicit function theorem developped by Berti-Bolle in [BB10], Berti-
Bolle-Procesi in [BBP10], and Berti, Corsi and Procesi in [BCP]. This is the object of the
rest of section 2, and of sections 3 and 4.

Definition 16. Let s ≥ 0 and let N > 1 be an integer, we define

EN := ΠNΠ0Hs,

which consists in keeping in the Fourier expansion of V ∈ Π0Hs only those k ∈ Γ such that
Nk ≤ N.

2.5 Tame properties

In all what follows in the paper, we use the following classical notation for the Banach space
of bounded linear operators from the Banach space E into the Banach space F :

L(E,F ), L(E) if E ≡ F.

In the case where E = Π0Hr, we use the notation || · ||r for the norm in L(Π0Hr), as for
the norm in Π0Hr, if there is no possible confusion.

Let us consider (32)
F(ǫ, λ′, ν, V ) = 0,

then, due to (11) and to (26), F is analytic from [0, ǫ0]×[−1, 1]×[−ǫ0, ǫ0]×Π0Hr to Π0Hr−4,
for r > d/2. Moreover for v ∈ Π0Hr, r > d/2 let us define

Lǫ,λ′,ν,V v := DV F(ǫ, λ′, ν, V )v.

Hence
Lǫ,λ′,ν,V v = Lǫ,λ′,νv + ǫ5M(ǫ, ν, V )v, (36)

where Lǫ,λ′,ν is defined in (34), and where

M(ǫ, ν, V )v := 6Π0(ǫ
−1UǫV v) + 6νǫΠ0[(u0 + 3ǫ2u1)V v] + 3ǫ3Π0(V

2v).

We have the following decomposition

Lǫ,λ′,ν,V v = L0v + ǫ2T (ǫ, λ′, ν, V )v (37)

with the ”diagonal” operator L0 defined by

L0 = Π0(1 + ∆)2, (38)

and

ǫ2T (ǫ, λ′, ν, V )v := (−ǫ2λ2 + ǫ3λ′)v + 3Π0(U
2
ǫ v) + 6νǫ2Π0[Uǫ(u0 + 3ǫ2u1)v]

+3ǫ4ν2Π0[(u0 + 3ǫ2u1)
2v] + ǫ5M(ǫ, ν, V )v. (39)
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It follows from Lemma 10 that the operator T (ǫ, λ′, ν, V ) is analytic in its arguments
for (ǫ, λ′, ν, V ) ∈ [0, ǫ0] × [−1, 1] × [−ǫ0, ǫ0] × Π0Hs, s ≥ s0 > d/2, taking values in
L(Π0Hr), for 0 ≤ r ≤ s.

Let s ≥ s0 > d/2 and (ǫ, λ′, ν, V ) ∈ [0, ǫ0]× [−1, 1]× [−ǫ0, ǫ0]×Π0Hs, ||V ||s0
< 1. Then

we have
F(0, λ′, ν, 0) = 0, (40)

as well as

max(||∂ǫF(ǫ, λ′, ν, V )||s, ǫ−2||∂λ′F(ǫ, λ′, ν, V )||s, ǫ−2||∂νF(ǫ, λ′, ν, V )||s) ≤ C(s)(1 + ||V ||s).
Using Lemma 11, we also obtain

||Lǫ,λ′,ν,V v||s ≤ C(s)[||v||s+4 + ǫ5||v||s0
||V ||s],

||D2
V F(ǫ, λ′, ν, V )(h, v)||s ≤ C(s)ǫ5(||h||s||v||s0

+ ||h||s0
||v||s + ||V ||s||h||s0

||v||s0
),

ǫ−1||∂ǫLǫ,λ′,ν,V v||s + ǫ−3||∂λ′Lǫ,λ′,ν,V v||s + ǫ−3||∂νLǫ,λ′,ν,V v||s ≤ C(s)[||v||s + ǫ3||v||s0
||V ||s].

2.6 Estimate of (ΠNΠ0Lǫ,λ′,ν,V ΠNΠ0)
−1 in Hs for small N

Lemma 17. Let S > s0 > l0 + 1 and ǫ0 > 0 small enough. Then there exists c2 > 0 with

the following property. For 0 < ǫ ≤ ǫ0 let N ≤ Mǫ :=
[

c2
ǫ1/2l0

]
where the brackets [·] mean

”the integer part of”, and (ǫ, λ′, ν, V ) ∈ (0, ǫ0]× [−1, 1]× [−ǫ0, ǫ0]×EN . Then the following
estimate holds true for s ∈ [s0, S] and ||V ||s ≤ 1

||(ΠNΠ0Lǫ,λ′,ν,V ΠNΠ0)
−1||s ≤ 2c0(1 + N2)2l0 . (41)

The same is valid for s = 0 with ||V ||s0
≤ 1.

Proof. From (27), it follows that the operator (1 + ∆)2 has an inverse in ΠNΠ0Hs for any
s ≥ 0, bounded as

||(ΠNΠ0(1 + ∆)2ΠNΠ0)
−1||s ≤ c0(1 + N2)2l0 .

We can write

ΠNΠ0Lǫ,λ′,ν,V ΠNΠ0 = ΠNΠ0(1 + ∆)2ΠNΠ0 + ǫ2ΠNΠ0T (ǫ, λ′, ν, V )ΠNΠ0,

with
||T (ǫ, λ′, ν, V )v||s ≤ c(s)(||v||s + ǫ||V ||s||v||s0

).

for s ≥ s0, and
||T (ǫ, λ′, ν, V )v||0 ≤ c(0)(1 + ǫ||V ||s0

)||v||0.
for s = 0. Moreover, for

c0c(s)(1 + ǫ)ǫ2(1 + N2)2l0 < 1/2

we can invert ΠNΠ0Lǫ,λ′,ν,V ΠNΠ0 via Neumann series and obtain the estimate (41). It is
clear that this estimate holds provided that c2 ≤ 2c0c(s) for all s ∈ [s0, S] and for s = 0
provided that ||V ||s0

≤ 1, so that

N ≤ Mǫ =
[ c2

ǫ1/2l0

]
≤ {[2c0c(s)(1 + ǫ)ǫ2]−1/2l0 − 1}1/2. (42)
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2.7 Estimate of (ΠNΠ0Lǫ,λ′,ν,V ΠNΠ0)
−1 in H0 for large N

In this section N is fixed. In the rest of the paper, we need to introduce the following
subset Λ of R2 :

Λ = {(λ′, ν) ∈ R2; |ν| ≤ ǫ0|λ′|, |λ′| ≤ 1}. (43)

This is useful for the control of eigenvalues of the linearized operator. Let us now define for
M > 0 and s0 > d/2

U (N)
M :=

{
u ∈ C1([0, ǫ1[×Λ, EN );u(0, λ′, ν) = 0, ||u||s0

≤ 1, ||∂ǫ,λ′,νu||s0
≤ M

}
. (44)

We may observe that (36) says that the selfadjoint linear operator Lǫ,λ′,ν,V takes the form

Lǫ,λ′,ν,V = Lǫ,λ′,ν + ǫ5M(ǫ, ν, V ), (45)

where Lǫ,λ′,ν is given by (34), is analytic in its arguments and λ′ only occurs as ǫ3λ′I.

Let us consider the full linear operator ΠNΠ0Lǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0 where V ∈ U (N)
M .

Since this symmetric operator is C1 in its arguments, then after a suitable numbering of

its eigenvalues µ
(N)
j (ǫ, λ′, ν) it results that these ones are C1 functions of ν for (ǫ, λ′) fixed

and (λ′, ν) in Λ ([Kato] theorem 6.8 p.122). In any ν0, the derivative ∂νµ
(N)
j (ǫ, λ′, ν0) of

an eigenvalue µ
(N)
j (ǫ, λ′, ν) is in fact an eigenvalue of the operator (see [Kato] theorem 6.8

p.122 and see formula (6.5) p.123)

Pν0
ΠNΠ0∂ν [Lǫ,λ′,ν + ǫ5M(ǫ, ν, V (ǫ, λ′, ν))]|ν=ν0

Pν0
= ǫ3Op1 + ǫ4Op2, (46)

with
Op1 =: Pν0

ΠNΠ0[6u
2
0·]ΠNΠ0Pν0

, Op2 = Pν0
ΠNΠ0O(1)ΠNΠ0Pν0

(47)

where Pν0
is the orthogonal total projector corresponding to the eigenvalue µ

(N)
j (ǫ, λ′, ν0)

assumed to be multiple (otherwise all is simpler), and where the operator Op2 is uniformly
bounded with respect to (λ′, ν) ∈ Λ and also with respect to N ∈ N. In the above formula
the orthogonal projector Pν0

depends on N and is continuous with respect to (ǫ, λ′, ν0),
following (for example) the Theorem 5.1 in [Kato] p.107. Notice that the operator Op1 +
ǫOp2 is selfadjoint and continuously dependent on (ǫ, λ′, ν0). Hence, dividing by ǫ3 the
eigenvalues of the operator (46), one can write

∂νµ
(N)
j (ǫ, λ′, ν0) = ǫ3α

(N)
j (ǫ, λ′, ν0) (48)

where α
(N)
j (ǫ, λ′, ν0) depends continuously on (ǫ, λ′, ν0) as this results from the general

result on eigenvalues of operators depending continuously on their arguments, and it may
be written as

α
(N)
j (ǫ, λ′, ν0) = 〈6u2

0ζ
(N)
j (ǫ, λ′, ν0), ζ

(N)
j (ǫ, λ′, ν0)〉0 + O(ǫ), (49)

as explained below. In (49) ζ
(N)
j (ǫ, λ′, ν0) denotes some eigenvector, of norm 1, of the self

adjoint operator ΠNΠ0Lǫ,λ′,ν0,V (ǫ,λ′,ν0)ΠNΠ0 in the range of Pν0
ΠNΠ0. Indeed, we can di-

agonalize the symmetric operator Op1 in the range of Pν0
ΠNΠ0 spanned by eigenvectors
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belonging to the eigenvalue µj(ǫ, λ
′, ν0) of ΠNΠ0Lǫ,λ′,ν0,V (ǫ,λ′,ν0)ΠNΠ0, so that any eigen-

value of Op1 reads as

〈6Pν0
ΠNΠ0u

2
0ζ

(N)
j (ǫ, λ′, ν0), ζ

(N)
j (ǫ, λ′, ν0)〉0 = 〈6u2

0ζ
(N)
j (ǫ, λ′, ν0), ζ

(N)
j (ǫ, λ′, ν0)〉0,

since ζ
(N)
j (ǫ, λ′, ν0) is a suitable combination of vectors in the range mentioned above. More-

over, using the Lidskii theorem (see [Kato] p.125-126) the rest O(ǫ) in (49) is uniformly
bounded with respect to (λ′, ν0) ∈ Λ and also with respect to N ∈ N, since Op2 in (46),
(47) is bounded independently of N (projectors have norm 1).

Remark 18. It might be tempting to replace Pν0
by P0 which is defined as the orthogonal

total projector corresponding to the limit projector as (λ′, ν0) → (0, 0) of the group of eigen-
values merging in µj(ǫ, λ

′, ν0). We might obtain an apparently simpler formula than (48),
(49). Then the problem will be the non uniform estimate with respect to N, and this is not
good for what we make in Section 5.

Now consider the dependence of µ
(N)
j (ǫ, λ′, ν) with respect to λ′. Since the ordering of

eigenvalues is now fixed, we cannot use again the argument above. However, the operator

L′(N)
ǫ,λ′,ν =: ΠNΠ0Lǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0 − ǫ3λ′I

is symmetric, it has eigenvalues µ
(N)
j (ǫ, λ′, ν) − ǫ3λ′ and, thanks to (45) and (36) we have

the estimate
||L′(N)

ǫ,λ′
2
,ν
− L′(N)

ǫ,λ′
1
,ν
||0 ≤ C ′ǫ5|λ′

2 − λ′
1|,

where the dependence in λ′ comes from V (ǫ, λ′, ν) in operator M. It results from the Lidskii

theorem ([Kato] p.125-126) that the difference between the eigenvalues of L′(N)
ǫ,λ′

2
,ν

and L′(N)
ǫ,λ′

1
,ν

satisfies
|µ(N)

j2
(ǫ, λ′

2, ν) − µ
(N)
j1

(ǫ, λ′
1, ν) − ǫ3(λ′

2 − λ′
1)| ≤ C ′ǫ5|λ′

2 − λ′
1|,

where the numbering of eigenvalues might depend on λ′. In fact if µ
(N)
j1

(ǫ, λ′
1, ν) is a simple

eigenvalue, we have j1 = j2 for λ′
2 close enough to λ′

1, whereas if this eigenvalue is multiple
we may have j1 6= j2. However, in this latter case, for λ′

2 tending towards λ′
1 we have a

finite group of eigenvalues merging to µ
(N)
j1

(ǫ, λ′
1, ν) for λ′

2 = λ′
1, so that the numbering is

such that
µ

(N)
j2

(ǫ, λ′
1, ν) = µ

(N)
j1

(ǫ, λ′
1, ν).

Finally, in all cases we have

|µ(N)
j (ǫ, λ′

2, ν) − µ
(N)
j (ǫ, λ′

1, ν) − ǫ3(λ′
2 − λ′

1)| ≤ C ′ǫ5|λ′
2 − λ′

1|,

which implies, for λ′
2 − λ′

1 ≥ 0,

(ǫ3 − C ′ǫ5)(λ′
2 − λ′

1) ≤ µ
(N)
j (ǫ, λ′

2, ν) − µ
(N)
j (ǫ, λ′

1, ν) ≤ (ǫ3 + C ′ǫ5)(λ′
2 − λ′

1). (50)

It is then clear that for ǫ ≤ ǫ1 small enough, the function λ′ 7→ µ
(N)
j (ǫ, λ′, ν) is strictly

increasing in λ′ for λ′ ∈ [−1, 1], with a slope larger than ǫ3/2.
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Now for certain τ and γ > 0 to be determined later, we define a ”bad” set of λ′ :

B(N)
ǫ,γ,ν(V ) = {λ′ ∈ [−1, 1]; (λ′, ν) ∈ Λ,∃j ∈ {1, 2, ...,N}, |µ(N)

j (ǫ, λ′, ν)| <
γ

N τ
}. (51)

Because of the above strict monotonicity in λ′ this ”bad” set is the union ∪N
j=1(λ

′−
j (ǫ, ν), λ′+

j (ǫ, ν))
of small intervals defined by

µ
(N)
j (ǫ, λ′±

j , ν) =
±γ

N τ
. (52)

Now the lower bound (ǫ3/2) of the slope shows that

ǫ3/2[λ′+
j (ǫ, ν) − λ′−

j (ǫ, ν)] ≤ 2γ

N τ
,

hence

|λ′+
j (ǫ, ν) − λ′−

j (ǫ, ν)| ≤ 4γ

ǫ3N τ
.

We define the ”bad strip” of degree N , BSN (V ), to be the set in the (ν, λ′) plane :

BSN(V ) := {(λ′, ν) ∈ Λ;λ′ ∈ (λ′−
j (ǫ, ν), λ′+

j (ǫ, ν))}, (53)

for j occurring in the definition of ”bad” sets B
(N)
ǫ,γ,ν(V ). We notice that the dimension N of

the space ΠNΠ0Hs is independent of s, and is bounded by c1N
d since d

−1k lies in a subset
of Zd, bounded by N. Hence it is clear that for any fixed ν ∈ [−ǫ0, ǫ0], the measure of the
bad set of λ′ such that (λ′, ν) ∈ Λ, is bounded by 4γN

ǫ3Nτ , so

meas
(
B(N)

ǫ,γ,ν(V )
)
≤ 4γc1

ǫ3N τ−d
(54)

and a first condition to have a set of small measure for N large, is to choose τ > d.
Now, we need to specify the behavior of λ′±

j (ǫ, ν) in function of ν, for having an idea of
the form of the strips. We have by construction for ν1, ν2 in (−ǫ0, ǫ0) :

µ
(N)
j (ǫ, λ′+

j (ǫ, ν2), ν2) − µ
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν1) = 0,

i.e.

µ
(N)
j (ǫ, λ′+

j (ǫ, ν2), ν2)−µ
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν2) = −[µ
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν2)−µ
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν1)].

Now, from (50) we have

µ
(N)
j (ǫ, λ′+

j (ǫ, ν2), ν2) − µ
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν2) = [ǫ3 + O(ǫ5)](λ′+
j (ǫ, ν2) − λ′+

j (ǫ, ν1)),

where the term O(ǫ5) is independent of N , and from (48), the continuity of the derivative
and the mean value theorem, we have

µj(ǫ, λ
′+
j (ǫ, ν1), ν2) − µj(ǫ, λ

′+
j (ǫ, ν1), ν1) = ǫ3α

(N)
j (ǫ, λ′+

j (ǫ, ν1), ν
′)(ν2 − ν1),

where ν ′ ∈ [ν1, ν2]. Hence

[1 + O(ǫ2)](λ′+
j (ǫ, ν2) − λ′+

j (ǫ, ν1)) = −α
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν
′)(ν2 − ν1),
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where the term bounded by O(ǫ2) depends on ν1 and ν2 but is bounded independently of
N . Hence for ǫ small enough

λ′+
j (ǫ, ν2) − λ′+

j (ǫ, ν1) = −α
(N)
j (ǫ, λ′+

j (ǫ, ν1), ν
′)[1 + O(ǫ2)](ν2 − ν1).

The same analysis holds for λ′−
j . Now, we shall see in section 5 that λ′ and ν may vary on a

very small set (at most of order ǫ) hence the coefficients α
(N)
j (ǫ, λ′±

j (ǫ, ν1), ν
′±) do not vary

much, and this means that, in the (ν, λ′) plane, the bad strips are nearly rectilinear.
Let us define

G(N)
ǫ,γ,ν(V ) := [−1, 1]\B(N)

ǫ,γ,ν(V ). (55)

The following remark is crucial in what follows.

Remark 19. If λ′ ∈ G
(N)
ǫ,γ,ν(V ), then all eigenvalues of Π0ΠNLǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0 are at a

distance ≥ γ
Nτ from 0.

From the property that Π0ΠNLǫ,λ′,ν,V ΠNΠ0 is selfadjoint in ΠNΠ0H0 = EN , it results
that we have

Lemma 20. For V fixed in U (N)
M and ǫ fixed ∈ [0, ǫ0], then if λ′ ∈ G

(N)
ǫ,γ,ν(V ) = [−1, 1]\B(N)

ǫ,γ,ν(V ),
the following estimate holds

||(Π0ΠNLǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0)
−1||0 ≤ N τ

γ
. (56)

Moreover, B
(N)
ǫ,γ,ν(V ) is the set of λ′ ∈ [−1, 1] such that (λ′, ν) ∈ Λ and

||(Π0ΠNLǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0)
−1||0 >

N τ

γ
.

For a fixed ν, such that |ν| ≤ ǫ0, let us define the ”good set of λ′” for all Mǫ ≤ K ≤ N,

G(N)
ǫ,γ,ν(V ) = ∩Mǫ<K≤NG(K)

ǫ,γ,ν(V ) (57)

where Mǫ is defined in (42), then we have the following

Lemma 21. Assume that γ ≤ γ̃ = 1/(22l0+1c0) and ν, such that |ν| ≤ ǫ0, and

τ − d − 3 − 10l0 > 0.

Let V ∈ U (N)
M . Then G

(K)
ǫ,γ,ν(V ) = [−1, 1] and B

(K)
ǫ,γ,ν(V ) = ∅ if K ≤ Mǫ. If λ′ ∈ G(N)

ǫ,γ,ν(V ) all
eigenvalues of Π0ΠKLǫ,λ′,ν,V (ǫ,λ′,ν)ΠKΠ0 have absolute value ≥ γK−τ for all 1 ≤ K ≤ N.

Moreover the measure of ∪Mǫ<K≤NB
(K)
ǫ,γ,ν(V ), i.e. the ”bad set of λ′”, is bounded by

c3(τ)γǫ2/M2
ǫ .

Proof. If N ≥ 1, then 2c0γ ≤ 1
22l0

≤ Nτ

(1+N2)2l0
, i.e.

1

2c0(1 + N2)2l0
≥ γ

N τ
.
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The first assertions now follow for N ≤ Mǫ from (41). For N > Mǫ the result follows
from(56). The bad set satisfies

meas{∪Mǫ<K≤NB(K)
ǫ,γ,ν(V )} ≤

∑

Mǫ<K≤N

4γc1

ǫ3Kτ−d
≤ 4γc1(τ − d − 1)

ǫ3M τ−d−1
ǫ

,

and from (42) we see that for τ − d − 3 − 10l0 > 0, the estimate of the bad set follows.

We need to obtain an estimate looking like (56), but in Hs for s > 0, with an exponent
on N not depending on s. For getting such a good estimate, we need to show ”separation
properties” of ”singular sites” which generate small divisors. This is the object of section
3, which uses extensively the results of [BB10], [BBP10].

3 Estimate of the inverse linearized operator in Hs

3.1 Separation properties (H1) and (H2)

The eigenvalues of the unperturbed operator DN = (1+∆)2|EN
restricted to EN = ΠNΠ0H0

are the numbers (1 − |k|2)2 where |k| 6= 1, and 0 ≤ Nk ≤ N . Let ρ > 0. We need to have
good separation properties of the singular set

S(N) =
{
k ∈ Γ; (1 − |k|2)2 < ρ, |k| 6= 1, 0 ≤ Nk ≤ N

}
, (58)

which contains the k’s corresponding to the small denominators, whereas the regular set is

R(N) :=
{
k ∈ Γ; (1 − |k|2)2 ≥ ρ, |k| 6= 1, 0 ≤ Nk ≤ N

}
. (59)

We have a bijection between S(N) and S(N) := {x ∈ Γ(N); (1 − |k(x)|2)2 < ρ} where k(x)
is defined in (7) and

Γ(N) := {x ∈ Zd; 0≤|x| ≤ N, k(x) ∈ Γ\{kj , j = 1, ..., 2q}}.

Let k = k(x), x = (m1, ..,md) ∈ Zd. Then d
2|k|2 =

∑d
s,t=1 msmt〈k∗

s,k
∗
t 〉. Let θ0 := π/q,

ω = 2cos θ0. Then 2〈kh,kj〉 = 2cos{(h − j)θ0} and this is a polynomial with integer
coefficients in ω. Therefore 2〈k∗

s ,k
∗
t 〉 and d

2|k|2 are polynomials in ω and the coefficients
in the latter polynomial are integer-valued quadratic forms in x. Here ω is root of the
minimal polynomial with integer coefficients of degree d/2 =: l0 + 1 and leading coefficient
1 (cf.[IR10, (3),(4)]). By division through this minimal polynomial we see that there are
integer-valued quadratic forms Pr(x) such that

d
2|k(x)|2 =

l0∑

r=0

Pr(x)ωr =: P (x). (60)

Hence P is bounded on S(N).
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There exist symmetric matrices Ar of Md(Z) such that Pr(x) = (x,Arx) where (., .)
denotes the usual scalar product of Zd and with A :=

∑l0
r=0 Arω

r we have (x,Ax) =
d
2|k(x)|2. We note that A is positive. So

P (x) =

l0∑

l=0

(x,Alx)ωl = (x,Ax), Al ∈ Md(Z), A =

l0∑

l=0

Alω
l > 0. (61)

Next we show that the singular set S(N) can be partitioned into disjoint clusters sat-
isfying Proposition 23 (see below). To this end we first adapt to our situation Bourgain’s
separation lemma [Bou95]. We follow its proof in W. Craig [Cra00, p. 110-113].

Lemma 22. Let P be defined by (60) and S be a subset of Zd such that P is bounded on
S. Then there exists r > 0 such that for all B ≥ 2 and for any sequence {xj}j=0,...,K of
distinct points of S such that |xj+1 − xj | < B, we have :

K < Br. (62)

Proof. It is sufficient to give the proof in the case that K ≥ K0 with K0 sufficiently large.
In the following C denotes a positive constant which may be different in different formulas.

As in [Cra00, p.110] choose integers Jt with J0 = K > J1 > . . . > Jd > 1 such that
Jt+1 < Jt/2 and some other restriction which will be introduced lateron. This choice is
possible if K0 is chosen sufficiently large.

For every integer j with 1 ≤ j ≤ K and every t ∈ {0, 1, . . . , d} let X(j, t) = span{(xl −
xj) : |l − j| ≤ Jt}. Let d(t) := minj dim X(j, t) be attained for j = j(t). Then there exists
t0 ∈ {0, . . . , d − 1} such that d(t0) = d(t0 + 1) and

X(j, t0 + 1) = X(j(t0), t0) if |j − j(t0)| < Jt0+1.

For the proof see [Cra00, p. 110].
Let j0 = j(t0),X0 := X(j0, t0), d0 = dim X0. Since X0 is spanned by xl − xj0 with

|l − j0| < Jt0+1 there is a basis {el}d0

l=1 for X0 with |el| ≤ Jt0+1B.
Choose j such that |j − j0| ≤ Jt0 and w = xj − xj0 has maximal length. Then there are

Jt0 distinct vectors xh − xj0 ∈ X0 ∩ Zd with length ≤ |w|. From this it follows that

Jt0 ≤ C|w|d0 (63)

with some constant C depending only on d (cf.[Cra00, (8.30)]). Next we derive an upper
bound for |w| in terms of Jt0+1. We have w =

∑d0

l=1 alel for certain coefficients al. Then

〈w,Aem〉 =
∑d0

l=1 al〈el, Aem〉 and from this we may solve for al using Cramer’s rule. Let M
be the matrix with elements 〈el, Aem〉. Then M is invertible since A is positive. Let Ml be
the matrix obtained from M by replacing the l-th column by the column of the 〈w,Aem〉.
Then al = detMl/det M . From 〈el, Aem〉 =

∑l0
r=0 ωr〈el, Arem〉 it follows that detM is

a polynomial in ω of degree at most d0l0 with integer coefficients. These coefficients are
bounded by C0(Jt0+1B)2d0 since |〈el, Arem〉| ≤ C|el||em| ≤ C(Jt0+1B)2. Using the minimal
polynomial of ω we may show that det M may be written as a polynomial in ω of degree
l0 at most with similar estimates of the coefficients as above. Next we apply lemma 2.1 in
[IR10] using the diophantine property of ω and obtain

|det M | ≥ C(Jt0+1B)−2d0l0 .
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For an estimate of Ml we use |〈el, Aem〉| ≤ C(Jt0+1B)2 as above. We will prove lateron

|〈w,Aem〉| ≤ C(Jt0+1B)2(d0+1). (64)

From these estimates we deduce that |det Ml| ≤ C(Jt0+1B)4d0 and therefore |al| ≤ C ′(Jt0+1B)β1

where β1 = 2d0(l0 + 2) and |w| ≤ C ′(Jt0+1B)β1+1, since w =
∑d0

l=1 alel. Combining this
with (63) we obtain

Jt0 ≤ C(Jt0+1B)β (65)

where β = d0(β1 + 1). Next we use the freedom in the choice of the numbers Jt and choose

these in such a way that for some r1 > 0 one has Kr1 < CJtJ
−β
t+1 as in [Cra00, p. 113].

This is possible for K ≥ K0 with K0 sufficiently large. From this and (65) we obtain the
estimate of the lemma.

For the proof of (64) we use the projection ΠX0
of Zd onto X0 and estimate first

ΠX0
(Aw). Since ΠX0

(Axj0) =
∑d0

l=1 blel for certain bl we have 〈Axj0 , em〉 =
∑d0

l=1 bl〈el, em〉.
Here the lefthand side equals 〈Axj0 , xh−xj0〉 for some h = h(m) with |h−j0| ≤ Jt0+1. Next
we use 2〈Axl, xh − xl〉 = P (xh) − P (xl) − P (xh − xl) where |P (xh − xl)| ≤ C|xh − xl|2 ≤
C(|h − l|B)2 and P (x) is bounded on S. Since |h − l| ≥ 1 when h 6= l, we have indeed
|〈Axl, xh − xl〉| ≤ C(|h − l|B)2, and in particular |〈Axj0 , em〉| ≤ C(Jt0+1B)2. Furthermore,
det(〈el, em〉) 6= 0 and the 〈el, em〉 are integers, so the determinant has absolute value ≥ 1.
Again using Cramer’s rule with the estimates above we see that |bl| ≤ C(Jt0+1B)2d0 and
therefore |ΠX0

(Axj0)| ≤ C(Jt0+1B)2d0+1. Similarly one may show the same estimate with
j0 replaced by j using a different basis for X0. Hence |ΠX0

(Aw)| ≤ C(Jt0+1B)2d0+1 and so
〈Aw, em〉 = 〈w,Aem〉 satisfies (64).

From this lemma we may derive as in [BB10]

Proposition 23. There exists ρ0 > 0 independent of N such that if ρ ∈]0, ρ0] then there
exists a decomposition of S(N) =

⋃
α∈A Ωα into a union of disjoint clusters Ωα satisfying :

• (H1), for all α ∈ A, Mα ≤ 2mα where Mα = maxx∈Ωα |x| and mα = minx∈Ωα |x|;

• (H2), there exists δ = δ(d) ∈]0, 1[ independent of N such that if α, β ∈ A, α 6= β then

dist(Ωα,Ωβ) := min
x∈Ωα,y∈Ωβ

|x − y| ≥ (Mα + Mβ)δ

2

Proof. The proof is an adaptation of that of lemma 4.4 of [BB10] as follows: Since P
is bounded on S(N) we may apply lemma 22 with S = S(N). Let δ = {2(r + 1)}−1

where r is the number given by that lemma. Then two elements x and y in S(N) are
said to be equivalent if there exist xl ∈ S(N), l = 0, 1, . . . , n with x0 = x, xn = y and
|xl+1−xl| ≤ (|xl|+ |xl+1|)δ,∀l. Thus we get a decomposition of S(N) in disjoint equivalence
classes Ωα. Consider zα ∈ Ωα such that |zα| = maxz∈Ωα |z| =: Mα. Each x ∈ Ωα is connected
to zα by a B-chain with B := (2Mα)δ as in lemma 22. This lemma implies that if K is the
number of elements in this chain then K < Br and therefore

|x| ≥ |zα| − KB > Mα − Br+1 = Mα − (2Mα)δ(r+1) = Mα(1 − (2/Mα)1/2),
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since δ(r + 1) = 1/2. Hence if Mα ≥ 8 then |x| ≥ Mα/2 and in particular mα ≥ Mα/2. We
next choose ρ such that for all x ∈ S(N) we have |x| ≥ 8 and then the proof is complete.

From (12) and the definition of Nk we have for x ∈ S(N)

ρ > (1 − |k(x)|2)2 ≥ c2

(1 + |x|2)2l0
,

hence for ( c2

ρ )1/2l0 ≥ 65, which holds for ρ < ρ0 small enough, we have |x| > 8, and therefore
Mα ≥ 8.

The proof of (H2) is immediate: for any x ∈ Ωα, y ∈ Ωβ, we have

|x − y| > (|x| + |y|)δ ≥ (mα + mβ)δ > (1/2)(Mα + Mβ)δ.

3.2 Estimate in ΠNΠ0Hs of (Π0ΠNLǫ,λ′,ν,V ΠNΠ0)
−1

We can prove the following

Proposition 24. Let d = 2(l0 + 1) be the dimension of the Q− vector space spanned by
the wave vectors kj , j = 1, ..., 2q, and let τ > d + 3 + 10l0 = 12l0 + 5 as in Lemma 21.
Let s0 ≥ d

2 + d+τ
δ + 1, where δ is the number introduced in separation property (H2), and

define µ := 2τ + 3d/2. Assume moreover that 0 < γ ≤ γ̃ = 1/(22l0+1c0), and (ǫ, λ′, ν, V ) ∈
[0, ǫ1]×Λ×U (N)

M , with λ′ ∈ G(N)
ǫ,γ,ν(V ) as defined by (57), ǫ1 small enough. Let s > s0. Then

for all s ∈ [s0, s] there exists K(s) > 0 such that for any h ∈ ΠNΠ0Hs, we have

||(Π0ΠNLǫ,λ′,ν,V (ǫ,λ′,ν)ΠNΠ0)
−1h||s ≤ K(s)

Nµ

γ
(||h||s + ||V (ǫ, λ′, ν)||s||h||s0

). (66)

Proof. Lemma 21 applies here and guarantees that for any 1 ≤ K ≤ N all eigenvalues of
Π0ΠKLǫ,λ′,ν,V ΠKΠ0 are ≥ γK−τ .

Then we notice that the scale of Sobolev spaces Π0Hs satisfies

• ∀s ≤ s′, Π0Hs′ ⊆ Π0Hs,

• ∀V ∈ Π0Hs′ , ||V ||s ≤ ||V ||s′ ,
• EN = ΠNΠ0H0, N ≥ 0 is a closed subspace of Π0Hs, ∪N≥0EN dense in Π0Hs for s ≥

0.

There exists a constant C(s, d) > 0, such that the projection operator ΠN plays the role
of a smoothing operator:

∀V ∈ Π0Hs, ||ΠNV ||s+d ≤ C(s, d)Nd||V ||s,
∀V ∈ Π0Hs+d, ||(I − ΠN )V ||s ≤ C(s, d)N−d||V ||s+d.

Moreover we satisfy separation properties (H1) and (H2) for the singular sites (see previous
subsection), and the non diagonal part of operator Π0ΠNLǫ,λ′,ν,V ΠNΠ0 is O(ǫ2) since it
is included into the operator ǫ2T (ǫ, λ′, ν, V ). Moreover the operators satisfy good ”tame
properties” (see subsection 2.5), so that we may apply directly Proposition 3.1 p.625 of
[BB10] just replacing the dimension d + 1 in this paper, by d = 2(l0 + 1) and using extra
parameters.
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4 Resolution of the range equation

In this section we use [BBP10] for finding a solution V (ǫ, λ′, ν) bounded by O(ǫ), of class
C1 in its arguments, defined for (ǫ, λ′, ν) in a suitably large subset of (0, ǫ1) × Λ.

Indeed, we have (see subsections 2.5 and 3.2) the good functional setting and the good
”tame” properties of the map (ǫ, λ′, ν, V ) 7→ F(ǫ, λ′, ν, V ) from (0, ǫ1) × Λ × Π0Hs+4 into
Π0Hs for s ≥ s0. Moreover, for any (λ′, ν) ∈ Λ we have

F(0, λ′, ν, 0) = 0.

Then we prove the following

Proposition 25. Choose N2 ≥ N1 ≥ Mǫ , and V1 ∈ U (N1)
M , V2 ∈ U (N2)

M and for (ǫ, ν) ∈
(0, ǫ1)×[−ǫ0, ǫ0] consider the set of λ′ which are ”good” for V1 but ”bad” for V2 : (G(N2)

ǫ,γ,ν (V2))
c∩

G(N1)
ǫ,γ,ν (V1). Assume that ||V2 − V1||s0

≤ N−σ
1 , with σ > d + 3, and τ > d + 3 + 10l0, then for

ǫ1 small enough and in particular ǫ1 ≤ γ2l0 :

meas((G(N2)
ǫ,γ,ν (V2))

c ∩ G(N1)
ǫ,γ,ν (V1)) ∩ [−1, 1]) ≤ C1

γǫ2

N1
,

where the apex c denotes the complementary in [-1,1].

Proof. We have by construction

(G(N2)
ǫ,γ,ν (V2))

c ∩ G(N1)
ǫ,γ,ν (V1) =

(
∪Mǫ≤K≤N2

B(K)
ǫ,γ,ν(V2)

)
∩

(
∩Mǫ≤K≤N1

G(K)
ǫ,γ,ν(V1)

)

⊂
(
∪Mǫ≤K≤N1

(B(K)
ǫ,γ,ν(V2) ∩ G(K)

ǫ,γ,ν)(V1)
)
∪

(
∪N1<K≤N2

B(K)
ǫ,γ,ν(V2)

)
.

Moreover, according to (36) there exists a constant c > 0, such that for ǫ0 small enough
and K ≤ N1 :

||ΠKΠ0Lǫ,λ′,ν,V2(ǫ,λ′,ν)ΠKΠ0 − ΠKΠ0Lǫ,λ′,ν,V1(ǫ,λ′,ν)ΠKΠ0||0 ≤ cǫ5||V2 − V1||s0

≤ cǫ5

Nσ
1

.

Let us assume that λ′ ∈ B
(K)
ǫ,γ,ν(V2) ∩ G

(K)
ǫ,γ,ν(V1), then there is at least one eigenvalue of

ΠKΠ0Lǫ,λ′,ν,V2(ǫ,λ′,ν)ΠKΠ0 of modulus < γ
Kτ . According to the perturbation theory, [Kato]

p.61 theorem 6.44, ΠKΠ0Lǫ,λ′,ν,V1(ǫ,λ′,ν)ΠKΠ0 has an eigenvalue of modulus less than γ
Kτ +

cǫ5

Nσ
1

. Since λ′ ∈ G
(K)
ǫ,γ,ν(V1) then this eigenvalue is in fact of modulus lying in the interval

[
γ

Kτ
,

γ

Kτ
+

cǫ5

Nσ
1

).

We need now to give a bound for the measure of the (’bad”) set of λ′ corresponding to such
an interval for eigenvalues of ΠKΠ0Lǫ,λ′,ν,V1(ǫ,λ′,ν)ΠKΠ0. Indeed, according to (45)

∂λ′ΠKΠ0Lǫ,λ′,ν,V1(ǫ,λ′,ν)ΠKΠ0 − ǫ3I = O(ǫ5)
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Hence, the Lipschitz constant of any eigenvalue of ΠKΠ0Lǫ,λ′,ν,V1(ǫ,λ′,ν)ΠKΠ0 with respect
to λ′ is bounded from below by ǫ3/2. This means that this ”bad” set of λ′ has a measure

bounded by 2cǫ2

Nσ
1

. In summing for all eigenvalues, and for Mǫ ≤ K ≤ N1 it results that

meas ∪Mǫ≤K≤N1
(B(K)

ǫ,γ,ν(V2) ∩ G(K)
ǫ,γ,ν)(V1) ≤

2cǫ2

Nσ
1

∑

Mǫ≤K≤N1

c1K
d ≤ 2cc1ǫ

2

Nσ−d−1
1

.

Since ǫ ≤ γ2l0 , we have for c2 > 0

1/N1 ≤ 1/Mǫ ≤ c2γ,

hence, since σ ≥ d + 3, we have Nσ−d−1
1 ≥ N1/(c2γ). Now, we also have (see (54))

meas ∪N1<K≤N2
B(K)

ǫ,γ,ν(V2) ≤
∑

N1<K≤N2

4γc1

ǫ3Kτ−d
≤ 4γc1(τ − d − 1)

ǫ3N τ−d−1
1

,

hence, since τ > d + 3 + 10l0, we have for N1 ≥ Mǫ

ǫ3N τ−d−1
1 ≥ ǫ3M10l0

ǫ N τ−d−1−10l0
1 ≥ c̃2N

2
1 /ǫ2

and there exists a constant C1 such that we have

2cc1ǫ
2

Nσ−d−1
1

+
4γc1(τ − d − 1)

ǫ3N τ−d−1
1

≤ C1γǫ2/N1,

Proposition 25 is proved.

We may apply theorem 3 of Berti-Bolle-Procesi ([BBP10]) to equation F(ǫ, λ′, ν, V ) = 0.
Let γ, τ, µ, s0 be as in Proposition 24. Moreover, let s := s0 + 4(µ + 5) + 2σ, σ > 4(µ + 4).

From proposition 24, it follows that if (ǫ, λ′, ν, V ) ∈ [0, ǫ1]×Λ×U (N)
M and λ′ ∈ G(N)

ǫ,γ,ν(V )
then (ǫ, λ′, ν, V (ǫ, λ′, ν)) ∈ JN,γ,µ,K (as defined in (4) of [BBP10], that is (66) holds for
s ∈ [s0, s].

In [BBP][theorem 3] one considers N ≥ N0 = N0(γ) with N0(γ) sufficiently large and
0 < ǫ ≤ ǫ2(γ) with ǫ2(γ) sufficiently small. We may choose N0 = N0(γ) = Mǫ3(γ) with a
suitable ǫ3(γ) ≤ ǫ2 and we consider in the following 0 < ǫ ≤ ǫ3(γ).

Theorem 26. Let s0 and γ̃ be as in Proposition 24. Then for all 0 < γ < γ̃ there exist
ǫ3(γ) ∈ [0, ǫ0] and a C1−map V : (0, ǫ3(γ)) × Λ → Hs0+4 such that V (0, λ′, ν) = 0 and if
ǫ ∈ (0, ǫ3(γ)), (λ′, ν) ∈ Λ, λ′ ∈ ([−1, 1] \ Cǫ,γ,ν), the function V (ǫ, λ′, ν) is solution of (32).
Here Cǫ,γ,ν is a subset of [−1, 1] which is a Lipschitz function of ν, and has Lebesgue-measure
less than Cγǫ2 for some constant C > 0 independent of ǫ, ν and γ.

Proof. In [BBP10][theorem 3] the authors construct a sequence {Vn}n≥0 of C1 functions
that converges uniformly in C1 ([0, ǫ3(γ)) × Λ) to a C1 function V . When restricted to a
set A∞ of parameters, V (ǫ, λ′, ν) satisfies F(ǫ, λ′, ν, V (ǫ, λ′, ν)) = 0.
We now use some more details of the cited theorem 3 of Berti, Bolle and Procesi. They
define Nn = N2n

0 and E(n) = ENn . Then Vn(ǫ, λ′, ν) ∈ E(n) and ||Vn − Vn−1||s0
≤ N−σ−1

n
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for n ≥ 1 where σ > d + 3 as in Proposition 25 . Let G
(Nn)
γ (Vn−1) = {(ǫ, λ′, ν); 0 <

ǫ < ǫ3(γ), λ′ ∈ G(Nn)
ǫ,γ,ν (Vn−1), |ν| ≤ ǫ0} where V−1 = 0. Then Proposition 24 implies that

G
(Nn)
γ (Vn−1) satisfies the properties of J

(N)
γ,µ,K as defined in (10) on p.382 of [BBP10]. In

that paper the authors define A∞ := ∩∞
k=0G

(Nk)
γ (Vk−1).

By Lemma 21 we have G(N0)
ǫ,γ,ν (0) = [−1, 1] and therefore G

(N0)
γ (0) = (0, ǫ3) × Λ. From

Proposition 25 we have

meas
(
(G(Nn+1)

ǫ,γ,ν (Vn))c ∩ G(Nn)
ǫ,γ,ν (Vn−1)

)
≤ C1N

−1
n γǫ2. (67)

We use an analogue of section 2.5 of [BBP10], to derive properties of A∞. Let us set

Gn,ǫ,γ,ν := G(Nn)
ǫ,γ,ν (Vn−1). Let Cǫ,γ,ν = (∩∞

n=0Gn,ǫ,γ,ν)
c. Then A∞ = {(ǫ, λ′, ν); 0 < ǫ <

ǫ3(γ), (λ′, ν) ∈ Λ, λ′ ∈ ([−1, 1] \ Cǫ,γ,ν)} and we estimate the measure of Cǫ,γ,ν. For this we
use

Cǫ,γ,ν ⊂ ∪n≥1(Gn,ǫ,γ,ν)
c ⊂ ∪n≥1((Gn,ǫ,γ,ν)

c \ (Gn−1,ǫ,γ,ν)
c).

Hence by (67) this set has measure at most

C1γǫ2
∑

n≥0

1

Nn
≤ Cγǫ2.

which completes the proof of the theorem.

5 Resolution of the bifurcation equation and proof of theo-

rem 1

Let V be the function obtained in theorem 26. It is C1 in all the parameters (ǫ, λ′, ν).
Replacing V (ǫ, λ′, ν) in the bifurcation equation (31), we can solve with respect to λ′ and
find a function h(ǫ, ν) which is C1 in (ǫ, ν), such that

λ′(ǫ, ν) = −2νλ2 − ǫλ4 + ǫ2h(ǫ, ν), (68)

for (ǫ, ν) ∈ (0, ǫ3(γ)) × [−ǫ0, ǫ0] provided that ǫ3 is small enough, and (λ′, ν) ∈ Λ.
For a fixed ǫ, when ν describes the part of the interval [−ǫ0, ǫ0] such that (λ′, ν) ∈ Λ,

λ′(ǫ, ν) describes a curve looking like a line, in the sector Λ of the plane (ν, λ′). Such a
curve connects the two end points on ν = ±ǫ0λ

′ (recall that λ4 < 0)

(
−ǫ0

( −ǫλ4

1 − 2ǫ0λ2
+ O−(ǫ2)

)
,

−ǫλ4

1 − 2ǫ0λ2
+ O−(ǫ2)

)

(
ǫ0

( −ǫλ4

1 + 2ǫ0λ2
+ O+(ǫ2)

)
,

−ǫλ4

1 + 2ǫ0λ2
+ O+(ǫ2)

)
. (69)

The values of λ′ vary over an interval of length of order O(ǫǫ0). According to theorem
26, the measure of the bad set of λ′ is bounded for any fixed ν as meas Cǫ,γ,ν ≤ Cγǫ2.
Moreover, we know that, in the plane (ν, λ′) the bad set is located into ”bad strips” BS :=
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∪n≥1BSNn(Vn−1) as defined in (53), for which we control the slopes (close to −α
(N)
j ). We

are lead to use Condition 2. Indeed, as we shall see in Remark 28, Condition 2 implies that

|α(N)
j (ǫ, λ′, ν) − 2λ2| ≥ 6c′1, (70)

where c′1 is ǫ- close to c1.
This assumption guarantees the transversality between the ”line” (68) and the nearly

straight bad strips BS. Indeed denoting by θ the angle of intersection of a bad strip with
the curve (68) in the plane (ν, λ′), we have tan θ > c2 > 0 (independently of N). This comes

from θ = θ1 − θ2 , tan(θ1) ∼ −2λ2 6= 0 and tan(θ2) ∼ −α
(N)
j (ǫ, λ′, ν), and

tan θ =
tan(θ1) − tan(θ2)

1 + tan(θ1) tan(θ2)

where the only possible problem occurs when θ1 ∼ θ2.
Each intersection of a bad strip BSNn(Vn−1) of width δ ≤ 4γ

ǫ3Nτ
n

with the line (68) gives

only one segment of length bounded by cδ, where c is a constant independent of N (a bound
is obtained in dividing the thickness of the strip by the sine of θ). Summing over all bad
strips (for all j and Nn), as this was done at Proposition 25 and Theorem 26, we obtain a
union of bad segments on the line (68) and the measure of this set can be estimated, which
gives a total measure of the bad segments, for ν fixed, bounded by Cγǫ2. Projecting this
set on the λ′ axis gives the bad set for λ′, centered at −ǫλ4. The measure of this bad set is
smaller than Cγǫ2. The complement of this bad set is the good set for λ′.

Then we get a set of good λ′ with large measure, and corresponding good ν (following
(68)) (see Figure 2).

Now we observe that we can write λ′ = ǫλ, with λ centered in −λ4 and ν = ǫν with
|ν| ≤ ǫ0. This defines the good set Λǫ of all good λǫ , for any fixed ǫ, and correspondingly the
good ν(ǫ). Moreover, as λ varies now on an interval of length of order O(ǫ0), the measure
of the bad set of λ is now bounded by C ′γǫ. We recall that ǫ < ǫ3(γ) which tends towards
0 as γ tends towards 0, and we notice that C ′γǫ/ǫ0 < C ′γ as soon as ǫ ≤ ǫ0. It results that
we have

1

2ǫ0
meas

{
Λ

c
ǫ ∩ (−λ4 − ǫ0,−λ4 + ǫ0)

}
≤ C ′γ,

and, since γ is independent of ǫ0,

1

2ǫ
meas

{
Λǫ ∩ (−λ4 − ǫ,−λ4 + ǫ)

}
→
ǫ→0

1.

Then the existence of a solution (ǫ, λ′(ǫ, ν(ǫ)), ν(ǫ)) of (68), persists as ǫ tends towards 0,
even though we don’t know anything about its continuity in ǫ.

Finally, due to (21) and (28), we obtain a solution of (2) under the form

U = ǫu0 + ǫ3u1 + ǫ3ν(ǫ)[u0 + 3ǫ2u1] + ǫ4V (ǫ, ǫλ(ǫ, ν(ǫ)), ǫν(ǫ))

λ = λ2ǫ
2 − ǫ4λ(ǫ, ν(ǫ)).

This ends the proof of the following
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(H)

λ'

ε
0

ε
0

- ν

1

Figure 2: Sketch of the ”bad set” in the plane (ν, λ′) for ǫ fixed. (H) is the ”line” given by
(68).

Theorem 27. Let q ≥ 4 be an integer and let d = 2(l0 +1) be the dimension of the Q-vector
space spanned by the wave vectors kj , j = 1, ..., 2q. Moreover, assume that Condition 2 is
verified. Then, there exists s0 > d/2, ǫ0 > 0, and 0 < ǫ3 < ǫ0 such that, for any s ≥ s0,
ǫ < ǫ3, there exists a 1-dimensional set Λǫ of asymptotic full measure as ǫ tends to 0 with
the following property : for any ǫ < ǫ3, there exist ν(ǫ) ∈ [−ǫ0, ǫ0], and λǫ := λ(ǫ, ν(ǫ)) ∈ Λǫ

such that the steady Swift-Hohenberg equation, for λ = λ2ǫ
2 − ǫ4λǫ admits a quasipattern

solution U in Hs, invariant under rotations of angle π/q of the form

U = ǫu0 + ǫ3(u1 + ν(ǫ)u0) + O(ǫ5),

where λ2 = 3(2q − 1) > 0, λǫ = −λ4 − 2λ2ν(ǫ) + O(ǫ).The quasiperiodic function u0 spans
the kernel of (1 + ∆)2, and coefficients λ2, λ4, u1 occurring in formulae above, are the ones
defined in the truncated asymptotic expansion of the solution, computed in section 2.2, see
also [IR10].

This is a more detailed formulation of Theorem 1 given in the Introduction.

Remark 28. We know from (17) that

λ2 =
〈u3

0, u0〉0
〈u0, u0〉0

= 〈u3
0, e

ik1·x〉0 = 3(2q − 1).

Now, looking at formula (49) for α
(N)
j (ǫ, λ′, ν) we might look at the generic case of simple

eigenvalues µ
(N)
j (ǫ, λ′, ν). In such a case µ

(N)
j (ǫ, λ′, ν) as well as eigenvectors ζ

(N)
j (ǫ, λ′, ν)

are C1 function of their arguments (for N fixed). As ǫ → 0, the eigenvector tends toward
an expression of the form (this form results from the invariance under rotations Rsπ/q):

ζ
(N)
j (0) =

1√
2q

∑

s=1,2,..2q

eiRsπ/qk0·x,
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which is an eigenvector of the operator ΠNΠ0(1 + ∆)2 for the eigenvalue (1 − |k0|2)2 very
close to 0.

Then we have

〈u2
0ζ

(N)
j (0), ζ

(N)
j (0)〉0 =

1

2q
〈u2

0

∑

s=1,2,..2q

eiRsπ/qk0·x,
∑

s=1,2,..2q

eiRsπ/qk0·x〉0

= 〈u2
0

∑

s=1,2,..2q

eiRsπ/qk0·x, eik0·x〉0.

Now, we notice that

u2
0 =

∑

r,l=1,2,...,2q

ei(kr+kl)·x,

so that the only terms giving a contribution in the last scalar product are such that

kr + kl = k0 − Rsπ/qk0 (71)

for some r, l, s ∈ {1, .., 2q}. Trivial solutions are s = 2q, l = r + q (corresponds to the
constant terms in u2

0) which gives 2q terms equal to 1. In fact, there are no other solutions:
each side of (71) is the sum of two vectors with the same length, so they have the same
bisectrix. Since the length of k0 and of −Rsπ/qk0 is close to 1, and the length of kr and
kl is 1, the angle between kr and kl and the angle between k0 and of −Rsπ/qk0 are nearly
the same. But, this angle should be a multiple of π/q, so the two pairs of vectors make the
same angle between them. Now we see that there is no solution, because of the difference
between the lengths of the two pairs (except if the sum is 0). Finally, this shows that

〈u2
0ζ

(Nn)
j (0), ζ

(Nn)
j (0)〉0 = 2q,

This implies that Condition 2 is realized at ǫ = 0 for any q.

Remark 29. We might be tempted to adapt the parameter ǫ by defining a new parameter
ǫ′ as

ǫ′ := ǫ + ǫ2ν(ǫ). (72)

Then it is easy to check (using (68): ǫλ + 2νλ2 = −ǫλ4 + O(ǫ2)) that the solution (U, λ)
may be expressed as

U = ǫ′u0 + ǫ′3u1 + O(ǫ′5),

λ = ǫ′2λ2 + ǫ′4λ4 + O(ǫ′5).

This is the form of the power series of the solution which is formally obtained (see subsection
2.2), here after a scaling on ǫ (which does not change the curve). However we observe that
(72) is not invertible, i.e. ǫ cannot be expressed in term of ǫ′ since the choice of ν is not
completely determined in function of ǫ. The mapping ǫ 7→ ǫ′ is not an homeomorphism.
The result is that ǫ′ does not take a continuum of values, leading to ”holes” in the curve
expressed by the series above truncated after the two first terms. These holes are of smaller
and smaller size, as ǫ → 0. The higher order terms that we do not precisely express, mean
that the bifurcating set is centered about the curve above mentioned, and lies in a hornlike
region, with the vertex (or the tip) at the bifurcation point (ǫ′ = 0).
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Remark 30. The above result in Theorem 1 may be extended in using the formal asymptotic
expansion of U truncated at an arbitrary order:

Uǫ = ǫu0 + ǫ3u1 + ... + ǫ2n+1un,

λǫ = ǫ2λ2 + ǫ4λ4 + ... + ǫ2nλ2n

and introduce (V, λ′) as

U = Uǫ + νǫ2nu0 + 3νǫ2n+2u1 + ǫ2n+2V,

λ = λǫ − ǫ2n+1λ′.

Then we can proceed in the same way as before, and find (exercise left to the courageous
reader) V (ǫ, λ′, ν) and there are solutions λ′ in the good set with

λ′ + 2νλ2 = −ǫλ2n+2 + O(ǫ2).

Moreover, if we set
ǫ′ =: ǫ + ǫ2nν(ε), (a priori not invertible)

then we find again the same asymptotic expansion for the bifurcating set:

U = ǫ′u0 + ǫ′3u1 + ... + ǫ′2n+1un + O(ǫ′2n+3)

λ = ǫ′2λ2 + ǫ′4λ4 + ... + ǫ′2nλ2n + ǫ′2n+2λ2n+2 + O(ǫ′2n+3).

A Berti-Bolle-Procesi’s version of Nash-Moser theorem

In this section, we recall notations and the main result of Berti-Bolle-Procesi’s paper
[BBP10].

Let us consider a scale of Banach spaces (Xs, ||.||s) such that, for all s ≤ s′, we have
Xs′ ⊆ Xs, ‖u‖s ≤ ‖u‖s′ whenever u ∈ Xs′ . Let us define X := ∩s≥0Xs. Let (EN )N∈N be an
increasing family of closed subspaces of X such that ∪EN is dense in Xs for every s ≥ 0.
Let us consider projectors ΠN : X0 → EN such that, for all s ≥ 0 and d ≥ 0 :

• (S1) ‖ΠNu‖s+d ≤ C(s, d)Nd‖u‖s if u ∈ Xs,

• (S2) ‖(I − ΠN )u‖s ≤ C(s, d)N−d‖u‖s+d if u ∈ Xs+d

Let us consider a C2-map F : [0, ǫ0[×Λ×Xs0+ν → Xs0
where s0 ≥ 0, ǫ0 > 0, ν > 0 and

Λ be a bounded domain of Rq. We assume, there exists S ≥ s0 such that for all s0 ≤ s < S,
for all u ∈ Xs+ν with ||u||s0

≤ 2 and for all (ǫ, λ) ∈ [0, ǫ0[×Λ :

• (F1) F (0, λ, 0) = 0, for all λ ∈ Λ

• (F2) max(‖∂ǫF (ǫ, λ, u)‖s, ‖∂λF (ǫ, λ, u)‖s) ≤ C(s)(1+‖u‖s+ν) and ‖DuF (ǫ, λ, 0)h‖s ≤
C(s)‖h‖s+ν

• (F3) ‖D2
uF (ǫ, λ, u)(h, v)‖s ≤ C (‖u‖s+ν‖h‖s0

‖v‖s0
+ ‖v‖s+ν‖h‖s0

+ ‖v‖s0
‖h‖s+ν)
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• (F4) max (‖∂λDuF (ǫ, λ, u)h‖s, ‖∂ǫDuF (ǫ, λ, u)h‖s) ≤ C(s) (‖u‖s+ν‖h‖s0
+ ‖h‖s+ν)

Let us define LN (ǫ, λ, u) := ΠNDuF (ǫ, λ, u)|En
. Let us consider two nonnegative pa-

rameters µ, σ such that

σ > 4(µ + ν), s̄ := s0 + 4(µ + ν + 1) + 2σ < S (73)

For all γ > 0, we define

JN,γ,µ ⊆ {(ǫ, λ, u) ∈ [0, ǫ0[×Λ × EN | ∀s ∈ [s0, s̄],∀h ∈ EN ,

||L−1
N (ǫ, λ, u)h||s ≤ Nµ

γ
(‖h‖s + ‖u‖s‖h‖s0

)},

where, in the above definition, LN (ǫ, λ, u) is implicitly supposed to be invertible. Given
K > 0, we define

UN,K := {u ∈ C1([0, ǫ0[×Λ, EN ) | u(0, λ) = 0, ‖u‖s0
≤ 1,max(‖∂λu‖s0

, ‖∂ǫu‖s0
) ≤ K}.

Remark 31. In Berti-Bolle’s paper, the condition u(0, λ) = 0 is not written explicitly in
the definition of UN,K but it is used.

For all u ∈ UN,K , we set

GN,γ,µ(u) := {(ǫ, λ) ∈ [0, ǫ0[×Λ[ | (ǫ, λ, u(ǫ, λ)) ∈ JN,γ,µ} .

We assume that there exists µ ≥ 0, and σ ≥ 0 satisfying (73), there exists γ̄ > 0, M ∈ N∗

and C > 0 such that

1.
(L1) ∀(ǫ, γ) ∈]0, ǫ0]×]0, γ̄], measRq+1 (GN,γ,µ(0)c ∩ ([0, ǫ[×Λ)) ≤ Cγǫ.

2. (L2) For all γ ∈]0, γ̄] and for all K̄ > 0, there exists a positive ǫ̃(γ, K̄) < ǫ0 such
that, if 0 < ǫ < ǫ̃, if the integers N1, N2 satisfies M ≤ N1 ≤ N2, and if ui ∈ UNi,K̄

,

i = 1, 2 satisfy ‖u1 − u2‖s0
≤ N−σ

1 then

measRq+1 ((GN2,γ,µ(u2))
c \ (GN1,γ,µ(u1))

c ∩ ([0, ǫ[×Λ)) ≤ C
γǫ

N1
.

Let us recall the main theorem of Berti-Bolle-Procesi’s paper :

Theorem 32. [BBP10][theorem 1] Assume that condition (F1), (F2), (F3), (F4),(L1),(L2)
and (73) are satisfied. Then there exists C > 0 and for all 0 < γ < γ̄, there exists
0 < ǫ3(γ) < ǫ0 and a C1-map

u : [0, ǫ3[×Λ → Xs0+ν

such that for all (ǫ, λ) ∈ [0, ǫ3[×Λ \ Cγ, u(0, λ) = 0 and F (ǫ, λ, u(ǫ, λ)) = 0 where the
Lebesgue measure of the set Cγ satisfies measRq+1 ([0, ǫ[×Λ ∩ Cγ) ≤ Cγǫ if ǫ ≤ ǫ3.
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Mathématique de France, Paris, 2000.

[BCM92] P. Alstrom B. Christiansen and M.T.Levinsen. Ordered capillary-wave states:
Quasi-cristals, hexagons,and radial waves. Phys. rev. Lett., 68:2157–2160, 1992.

[EF94] W. S. Edwards and S. Fauve. Patterns and quasi-patterns in the Faraday exper-
iment. J. Fluid Mech., 278:123–148, 1994.

[IPT05] G.Iooss, P.Plotnikov, J.F.Toland. Standing waves on an infinitely deep perfect
fluid under gravity. Arch. Rat. Mech. Anal. 177, 367-478 (2005).

[IP09] G.Iooss, P.Plotnikov. Small divisor problem in the theory of three-dimensional
water gravity waves. Mem. Am. Math. Soc. 200, 940 (2009).

[IP11] G.Iooss, P.Plotnikov. Asymmetrical three-dimensional travelling gravity waves.
Arch. Rat. Mech. Anal. 200 (2011) 789-880.

[IR10] G. Iooss and A. M. Rucklidge. On the existence of quasipattern solutions of the
Swift-Hohenberg equation. J. Nonlinear Sci., 20(3):361–394, 2010.

[Kato] Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics.
Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

31



[Wash97] L.C.Washington. Introduction to cyclotomic fields. Vol 83, Graduate Texts in
Mathematics. Springer-Verlag. New york, 2nd ed. 1997.

32


