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Proof of quasipatterns for the Swift-Hohenberg equation

Boele Braaksma* , Gérard Ioossfand Laurent Stolovitch *

February 28, 2017

Abstract

This paper establishes the existence of quasipatterns solutions of the Swift-Hohenberg
PDE. In a former approach [BIS], we avoided the use of Nash-Moser scheme, but our
proof contains a gap. The present proof of existence is based on the works by Berti et
al [BBP10], [BB10], [BCP] related to the Nash-Moser scheme. For solving the small
divisor problem, we need to introduce a new free parameter related to the freedom in
the choice of parameterization of the bifurcating solution. Thanks to a transversality
condition, the result gives only a bifurcating set, located in a small hornlike region cen-
tered on a curve, with the origin at the bifurcation point.
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1 Introduction

The object of the paper is the existence of a special kind of stationary solutions (i.e.
independent of t), bifurcating from 0 (i.e. tending towards zero when the parameter \
tends towards 0), called quasipatterns of the 2-dimensional Swift-Hohenberg PDE

%—(Z:AU—(1+A)2U—U3 (1)
82

where U is the unknown real-valued function on RT x RQ, A= <§—; + W) and A\ is a pa-
rameter. We are interested in two-dimensional patterns that have n(l) transQIation symmetry
and are quasiperiodic in any spatial direction.

Mathematical existence of quasipatterns is one of the outstanding problems in pattern
formation theory. To our knowledge, hereafter is the first proof of existence of such quasipat-
terns of a PDE. Quasipatterns were discovered in nonlinear pattern-forming systems in the
Faraday wave experiment [BCM92, EF94], in which a layer of fluid is subjected to vertical
oscillations. Since their discovery, they have also been found in nonlinear optical systems,
shaken convection and in liquid crystals (see references in [AG12]) . In spite of the lack
of translation symmetry (in contrast to periodic patterns), the solutions are 7/g-rotation
invariant for some integer ¢ (most often observed, 2¢ is 8, 10 or 12).

In many of these experiments, the domain is large compared with the size of the pattern,
and the boundaries appear to have little effect. Furthermore, the pattern is usually formed
in two directions (x; and x3), while the third direction (z) plays little role. Mathematical
models of the experiments are therefore often posed with two unbounded directions, and
the basic symmetry of the problem is E(2), the Euclidean group of rotations, translations
and reflections of the (x1,z2) plane.

The above model equation is the simplest pattern-forming PDE, and is extremely suc-
cessful for describing primary bifurcations (the first symmetry breaking) of hydrodynamical
instability problems such as the Rayleigh - Bénard convection. Its essential properties are
that

i) the system is invariant under the group E(2);

ii) the instability occurs for a certain critical value of the parameter (here A = 0) for
which critical modes are given by wave vectors sitting on a circle of non zero radius (here
the unit circle);

iii) the linear part is selfadjoint and contains the main derivatives.

The steady Swift-Hohenberg equation reads

(1+AP2U - \U+U?=0. (2)

The parameter A is supposed to be real and small in absolute value. The solutions we are
interested in should tend towards zero as the parameter goes to zero.
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Figure 1: Example 8-fold quasipattern after [IR10]. This is an approximate solution of the
steady Swift—Hohenberg equation (2) with A = 0.1, computed by using Newton iteration
to find an equilibrium solution truncated to wavenumbers satisfying |k| < v/5 and to the
quasilattice I'y7 obtained with N < 27.

We study equation (2) for A > 0. Namely, let 2¢ be an even integer and let k; =
exp ”(JT_D, j=1,...,2q be the 2¢ unit vectors of the plane, identified with roots of unity.
Let I be the lattice of linear combinations of vectors k; with nonnegative integer coefficients.

We look for the existence of a (nonzero) m/g-rotation invariant solution of the form

U(X) — Z u(k)eik.x (3)

kel

which belongs to a Sobolev space Hs, s > 0 :

U112 =" [P (1 + ND)* < +o0.
kel

The natural number Ny denotes a norm of k in the lattice I', which we define below. We
indicate on Figure 1 a computation made on this model equation for ¢ = 4, keeping only
Fourier modes such that Ny, < 27. We then would like to show that such a solution exists
indeed, for small positive parameters A. Our main result is:

Theorem 1. Let ¢ > 4 be an integer and let d be the dimension of the Q-vector space
spanned by the wave vectors k;, j = 1,...,2q. Moreover, assume that Condition 2 is verified.
Then, there exists so > d/2, eg > 0, such that, for any s > so, and for any € with 0 < € < €
there exist \c such that the steady Swift-Hohenberg equation, for X = Aa€> — €*Ae admits a
quasipattern solution U in Hg, invariant under rotations of angle w/q of the form

U = eug + €>v(e),



where ug is given by (16) and where Ay = 3(2¢ — 1) > 0, A tends towards —\4 as € tends
towards 0. The quasiperiodic function ug spans the kernel of (14+A)%, and coefficients g, A\
occurring in formulae above, are the ones defined in the truncated asymptotic expansion of
the solution, computed in section 2.2, see also [IR10]. The set A of all such e is close to
—MAy and has asymptotic full measure as € tends to 0.

Condition 2. Forn € N, let N,, :== NZ" for some constant No = M., as defined in (42).
Let N, be the dimension of the finite-dimensional subspace Ey, of elements (3) such that
Nx < N,, (see definition 9).

We assume that there is a constant ¢; > 0 such that, for any j € {1,2,..,N,}, the
following inequality holds for any 0 < € < eg, [v| < eg|N|,|N| < €o|Aal,

Ny, Nn,
(3™ (e X ). ¢ (e X ) — (20 = 1)] > e, (4)
Here, the C](.N")(e, N, v) s are the eigenvectors, with norm 1, of the linear operator
HNnHOE€7>\/7V,V(E,)\,,V)]'_‘[NnHO7 (5)

where L x ,v(e ) 18 defined in (36), V € Z/l](év”) (see (44)), and Iy is the orthogonal
projection on En and Iy the orthogonal projection on the complement of the kernel Rug of
(1+ A)2.

Remark 3. Condition 2 1is a transversality condition. It concerns only eigenvalues of
L v vien,y) which are very close to 0. In case when these eigenvalues are simple, then
Condition 2 is satisfied near € =0 for any q (see Remark 28).

Remark 4. The good set A, is of asymptotic full measure. This means the following:

1 _
o tmeas {Acn(=Xs—€, =M +¢€)} o 1.

Remark 5. For A < 0 the solution U = 0 is isolated in an open ball of radius \/|\| (see
[BIS][Remark 3]).

Remark 6. The expression that we obtain for the bifurcating set solution of (2), does not
say anything on its structure as a curve U function of /A, as it would be the case in usual
bifurcation problems. However we show that the bifurcating set (A\,U) lies in a hornlike
region centered on a curve, with the tip at the bifurcation point (see Remark 29).

One of the main difficulties is that the linearized operator at U = 0, has an unbounded
inverse. Indeed, it is easy to show that the eigenvalues of (1 + A)? in H, are (1 — |k|?)?
where k € I'. These numbers accumulate at any point of RT. It creates a small divisor
problem, such that if A > 0 nothing can be said a priori about the inverse of (14 A)? — AL

We use the first terms of the asymptotic expansion of the solution and change the
unknown as U = U, + W and A = €)Xy — €)X for some well chosen (Ue, A2), A being
positive and for (e, \") € (0,¢p) x [—1,1]. The parameter X is used here for providing some
elasticity to the parameterization of the bifurcating solution, which would be classically
parameterized by € only, in usual bifurcation problems. The choice of the factor € in front



of ) means that any X € [—1,1] does not modify much the relationship between A and e,
i.e. the principal part of the bifurcating solution is nearly independent of \'.

Let LS’A/’W be the linear part at W, close to 0, of the nonlinear equation so obtained.
For € = 0, the operator Ly = (1+A)? is a positive selfadjoint operator in Hg. It is bounded
from Hs14 into Hg, and it is not Fredholm, since its range is not closed. Its spectrum is an
essential spectrum filling the half line [0, 00). The set of eigenvalues is dense in the spectrum.
The linear operator LE’ MW is the sum of Ly and a bounded operator (multiplication by a
small function O(e?)) selfadjoint in H,.

Writing W as vug + 3ve?u; + €2V, where u; is a known function and V' are orthogonal
to the kernel Rug of Ly, the projection of (2) onto the range of Ly (i.e the orthognal to
its kernel) reads F(e, N, v, V) = 0. It is called the range equation. The most difficult part
of the problem consists in finding good parameters (e, \', v) for which there is a solution of
the range equation in some Sobolev space. It is solved using a version of the Nash-Moser
theorem due to Berti, Bolle and Procesi [BBP10]. To apply such a result, we investigate
for € > 0, |v/XN| small enough, and X' € [—1,1], not only the invertibility in some Hy but
also the bound of the inverses of the ”truncated-restricted” of the linear operator EE’ N
which is the differential with respect to V' of the projection F(e, A',v, V) of (2) on the
orthogonal complement of the kernel. The ”truncated-restricted” of a linear operator A is
the projection onto ”small frequencies” of the restriction of A to ”small frequencies” (here
”small” is in the sense of the norm Ny, k € T').

For this analysis we use intensively the Nash-Moser technique developed in [BB10],
[BBP10], [BCP], which is based here on separation properties of the set {(1— |k|?)%;k € T'},
the set of eigenvalues of Ly. Notice that our former approach to the problem [BIS], that
avoided the use of Nash-Moser scheme, contains a gap.

Using the main result of [BBP10], we obtain the existence of a C' function V of all
parameters and a 3-dimensional set G of parameters over which V is solution of the range
equation. The key point is that this set of good parameters G is such that for any € € [0, €]
we need to choose (v, \') € G., where the set G, is the complement of "bad strips” in the
(v, \') plane, and has asymptotically full measure as € tends towards 0 (see Remark above).
It remains to solve the bifurcation equation (i.e. the projection onto the kernel of (2)).
Plugging the solution V' obtained by the Nash-Moser theorem, we obtain a C! equation
linking €, v and . The knowledge of the main part of this equation allows us to solve \’ as
a C! function of € and v. For each ¢, the graph of v + X(e,v) intersects transversally G-,
leading to a solution that solves the range equation as well as the bifurcation equation, that
is the full nonlinear problem. This solution is W (e,v) := vug + 3ve?uy + €2V (e, N (¢, v), v).

2 Setting of the problem

2.1 Function spaces

In this section, we introduce the function spaces we use.
Let ¢ > 4 be an integer. Let us define the unit wave vectors (identifying C with R?)



We define the quasilattice I' C R? to be the set of points spanned by (nonnegative)
integer linear combinations of the k;’s :

2q
k., :ijkj, m = (ml,...,mgq) e N2, (6)
j=1

We know (see [Wash97]) that the Q— vector space spanned by {k;, j = 1,2,..,2¢} has
dimension d = ¢(2q) = 2(lp + 1) where ¢ is the Euler totient function, and [y 4 1 is the
order of the algebraic integer w := 2cosw/q (lp = 1 for ¢ = 4,5,6, lp = 2 for ¢ = 7...)
with 2(lp + 1) < ¢. Let us define the subset of the d vectors {k¥, j = 1,2,..,d} of {kj,
j=1,2,..,2q} which forms a basis. Then

d
kj = Zajsk:, O s € Q.
s=1

and any k € I' may be written in two different ways

2q d
k=> mik; =) rki, mjeNr,€Q
j=1 s=1
_ V"% v
where 74 = ijl mjajs.n.
Let us define a5 := 52 with irreducible fractions and
]S

0= l-C-mjzl,..Zq{djs}, then DOZ]'S = ﬁ]s € 7.
s=1,..d

Remark 7. Notice that we have 0 = 1 for example for ¢ = 4,5,6,7,8,9,10,11,12. We can
choose ki = ks, s =1,..,d as this results from
kj+q = _kj7] = 17 s,

for g =4 or 8 (d = q), and from the identities

ks = ky—ks+ky—ky forgq=5 (d:4)

k5 = k3—k1, k6:k4—k2f07“q:6, (d:4)

k; = k¢—ks+ks—ks+ko—ky forqg=7 (dZG)

k7 = ks—ki, ks =ks —ky, kg =ks —k3 forq=9, (d=06)

kg = k7—k5+k3—k1, k10:k8—k6+k4—k2f0rq:10, (d:8)

ki1 = k10—k9+k8—k7+k6—k5—|—k4—k3—|—k2—k1fO?"q:11(leO)

kg = ks—ki, kig=ke — ko, ki1 =k7 —ks, kio =kg —ky forq=12, (d =38).

Then m} :=orgy = Z?qzl m;fB3js € Z and
d
k=2"") mki :=k(m") (7)
s=1

6



where m* := (m],...,m}) and we define the following norm in the lattice T', identified with
a subset of Z¢ :

d
Nic =Y |m}]. (8)
s=1

Remark 8. If 0 = 1 we can identify I' with Z. If 0 > 1 , for an arbitrary m* € Z%\{0},
we don’t know a priori if there exists k € I' such that k(m*) = k.

In what follows we use Sobolev spaces defined as

Hs = {W =Y WEHXWZ = (14 N WP < OO} , (9)
kel kel
which are Hilbert spaces with the scalar product
W V) =3 (1 + Ny wrvh, (10)
kel

Definition 9. Let N > 1 be an integer. We define the projection Il acting in Hs: for

Ve H, ' '
V=YTvlek e, TV Y vkeks
kel kel , N <N

The two following Lemmas are similar to classical results on Sobolev spaces.

Lemma 10. [BIS/[lemma 5] Assume q > 4, then for s > d/2, for any U € Hs and any
V € Hp, we have
UV llo < esl[U1]s[IV]lo

for a certain constant cs > 0.

Lemma 11. [BIS][lemma 6] (Moser-Nirenberg inequality) Assume q > 4, and let s > s’ >
d/2 and let U,V € Hs. Then,

IUV]ls < C(s, YU sV Il + U s 1V [Ls) (11)

for some positive constant C(s, s") that depends only on s and s'. For £ >0 and s > +d/2,
H, is continuously embedded into C*.

Let us conclude this subsection in giving precisions on the small divisors occurring when
we need to invert the operator (1 + A)2. It appears that the quantities

(1-k*)?* kel
occur in the denominator of the inverted terms. So we need to bound the inverse of these
quantities when they are not 0. We can show

Lemma 12. Assume q > 4, then for any k € T' such that k| # 1, i.e. k #k;,j =1,...,2q
the following estimate holds true

Ikf* — 1] > (12)

C
(1+ NQ)’

for a certain ¢ > 0 only depending on q.



Proof. From (7) we obtain, as in [IR10]
?(|k|? — Zm:k:,Zm*k* Y=t =qo -+ quw + ... +qlowl°

where w = 2cos7/q and the integer coefficients ¢; are quadratic in m*. It is shown in
[IR10] (see Lemma 2.1) that if it is not 0, there exists C' > 0 such that the right hand side
is bounded from below by
C
(g0 =02+ lar] + . + laiy )"

Now, since we have |g;| < c’Nl%,j =1,.., 1y, it is easy to conclude to the existence of ¢ > 0
in estimate (12). O
2.2 Formal computation

Let us look for formal solutions of the steady Swift-Hohenberg equation
M — (1+ AU -U2 =0, (13)

We characterize the functions of interest by their Fourier coefficients on the quasilattice I’
generated by the 2¢ equally spaced unit vectors k; (see (6)):

U(x) = Z uekx x = (11,29) € R2.
kel

We seek a non trivial solution, bifurcating from 0, parameterized by €, and which is
invariant under rotations by 7 /q. As it is shown for example in [IR10], a formal computation
with identification of orders in € leads to (classically, it is easier to formulate the bifurcating
branch with the parameter € instead of expanding U in powers of \/X)

U(.%'l,.%'g) = 6U0(1‘1,1‘2)+€3U1(.%'1,.%'2)+... )\262)\2+64)\4+... (14)

and gives at order O(e)
0= (1+ A)%u. (15)

We take as our basic solution a quasipattern that is invariant under rotations by m/q:

2q
ug = Z etkix, (16)
j=1

At order O(e3) we have
AUy — ug = (1 + A)Qul. (17)

In order to solve this equation for u;, we must impose a solvability condition, namely that
the coefficients of e, j = 1,...,2¢ on the left hand side of this equation must be zero.
Because of the invariance under rotations by /¢, it is sufficient to cancel the coefficient of
e’ % For the computation of the coefficient, we need the following property



Property (see the proof in [BIS] and a related argument in Remark 28): If we have
ki +k +k, + ks =0 for j,l,7,s € {1,2¢}

then either k; +k; = 0, or k; + k., or kj + kg =0 (there are two pairs of opposite unit
vectors).
This yields
A2 =3(2¢—1) (18)

which is strictly positive. Moreover we fix the uniqueness of functions u,,n > 1 by imposing
the orthogonality of w,, with ug. This also fixes the relationship between ¢ and \. Hence

Uy = Z ™ . =0 for k #k; +k +k;, and (19)
kel |k|#£1
3
oy = 104 o = T e kA0
6
. = - X '
Ok +k;+kyr (1_ ‘kj+kl+kr’2)2, JFELFET #7],
kj+kl # 0, kj+kr7é0, k, +k; #0.
We notice that for any k, a < 0 in u;. At order O(e®) we have
Ao + Aoug — 3ugu1 = (1 + A)QUQ. (20)

k1 x gy 3u%u1, hence A4 < 0

The solvability condition gives A4 equal to the coefficient of e
(see [BIS][section 2.2]).

It is shown in [IR10] that the series (14) is of Gevrey type. Moreover it is shown that
a Borel resummation of this series, provides a quasi-periodic function which is solution of
equation (2) up to an exponentially small term with respect to the bifurcation parameter
€. We indeed wish a better result, i.e. the proof of the existence of a solution having the

above asymptotic expansion (14) at the origin.

2.3 Formulation of the problem

Let us define the new unknown function W in rewriting (14) as:
U = U.+éeW,

U = 6U0+63U1 (21)
A= Ex -
where ug, u1, A2 are as above. Given a particular value of (A, '), A > 0 small enough and
N € [=Xo, \o], we get € by the implicit function theorem, and since Ay > 0, we obtain a

unique positive e. All the corrections are in W. The aim is to show that the quasi-periodic
function W exists and is small as € tends towards 0. By construction we have

(1+ A)2U6 —E\U. + Uf =: € f,



with
fe = —Xouy + 3uduy + 33upud + *ul, (22)

where f, is quasi-periodic, of order O(1) with a finite Fourier expansion, and is function of

€2

Definition 13. Let us define the orthogonal projections Iy on {uo}* and Iy =1 — .

Applying Il just consists in cancelling the terms with |k| = 1 in the Fourier expansion
of W € H,. This projection is orthogonal in any H, s > 0.

After substituting (21) into the PDE (13), and dividing by €2, we obtain an equation of
the form

F(e, N, W) := Loy W + & fo + NeU, + 32U W? + 'W3 = 0, (23)

where
Leyu = [(14+A)? — X+ Nu + 3U2u, (24)
Lexywu = DwF(e, N,W)u = L yu+ 62U Wu + 3¢'W?u. (25)

We notice that

(1+A)%*V

Z(l _ |k|2)2v(k)6ik~x,
kel
k| < 271N < N,

hence
(1—k*)? <1+ N2, (26)

so, the linear operator (1 + A)2 is bounded from IIyH, to IIgH,_4 for r > 4.

It is clear (see Lemma 10) that for a fixed W € H,, s > d/2, the operator L.y w
is an operator acting from any H,, r > 4, to H,_4 being uniformly bounded in ¢, \', for
e <ep, N e[-1,1].

The operator Le y w has not a bounded inverse, due to the small divisor problem men-
tioned in section 1.1. Notice however that we have from (12) the estimate

1
—— < 1+ N2)2o 27
(|k|2 _ 1)2 —= CO( + k) ’ ( )

which gives an upper bound of [Evo]*l, where Lg := Lo y w and the superscript “means the
pseudoinverse acting from IIyH, = H, N {uo}L into o H,—_4y,.

In formal computations, we may choose N = —e\; + O(€3) so that W = uy +
O(e®){ug}*. The introduction of N # 0 modifies the definition of € as the parameter de-
scribing the bifurcating solution curve. For an arbitrary A in [—1,1], it results that W is
no longer in {ug}*, having now a component along 1y depending on \'.

Let us decompose W € H, as (see Remark 15 below):

W = vug + 3ve®u; + 2V, Ve {ug}t. (28)

10



Equation (23) decomposes into the bifurcation equation (projection onto the kernel of (1 +

A)?):

0 = (—)\2 + GAI)VUO + )\/UQ + elly fe + 3H1[672U€2(VUO + 3V€2U1 + GQV)] +
3L, Ue (vug + 3ve’uy + €2V)? + €210 (vug + 3veuy + €2V)3, (29)

and the range equation (projection onto {ug}+):

0 = [(14A)% =X+ EN|Bruy + V) + elly fo + Ne®uy + 3g[e 2U% (vug + 3vetu; + V)] +
+3Mo [Ue (vug + 3veuy + €2V)?] + Ilg[(vug + 3vetur + V)3, (30)

After using the identities
Hlug = Aguy, 3H1u(2)u1 = Mug, (1+ A)2u1 + Houg =0,
and from the expression (22) of f¢, (29) and (30) become
2020+ X+ Nuo+ f(e,v) + €T [f1(e, v)V]+ €T [ fae, v) V] + €T [ f(e, 1) V] = 0 (31)

Fle, N v, V) =0. (32)

Here, we have set
Fle, N, v, V) = Loy, V +gle, N v) + 36" o (UV?) + 9o [3v (ug + 3e2u1 ) V2 + €2V, (33)

where the linear operator L.y , is defined by

Loy, V= [(14+A)?2 =N+ ENV 4 3 (UAV) +
+60*Tlo (U (ug + 3€¢2u1)V) + 3e'v2To[(up + 3€%uy)?V], (34)
and
gle, N v) == EN(1 4 3ev)uy + elly fo + 3veTly[(2uouy + €2u?)ug] — 3veXoug +

—|—9VH0(U€2u1) + 31/2H0[U6(u0 + 362u1)2] + ezugﬂo[(uo + 362u1)3], (35)

fle,v) = (V?eha +ve* (44 3ve) \g)ug + 363 (14 3v€)*TT; (ugu?) + €7 (1 +ve) "1 (14 3ve) 3 (uf)

file,v) == (14 ve) [3U? + 6ve* U, (ug + 3€%uy) + 3v%€* (ug + 3¢%u1)?],
fale,v) == 3(1+ve) e tU. + ve(ug + 3€%ur)],
falev) = (1+ve) .

are analytic in their arguments (e, \,v) € [0, €] x [—1,1] X [—€g, €g] for €y small enough.
We notice that g(e, \',v) € Hs for any s > 0 and has a finite Fourier expansion.
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Remark 14. Even though the above computations are elementary, let us give more details
for obtaining f(e,v) which corresponds to the part independent of V' in equation (29), divided
by (1 + ve) :

(1 +ve)([2vXe + edy + Nuo + f(e,v))

= (=Ag + eN)vug + Nug + eIy fo + 30 [e 2U?(vug + 3ve’uy)] +
+3I, U (vug + 3ve?ur)? + €210, (vug + 3veuy )3

= (14 ve)Nug — vAgug + eAqug + elly (362u0u% + e4u:{’) + 3vdoug + Brely +
+21ue41'[1u0u% + 91/661_[111,:{) + 3u26)\2 + 7y263)\4 + 451/2651_[111,021% +
—{-271/267H1u:f + 1362\ + 33\ + 27661/3H1u0u% + 2768V3H1u%

= (14 ve)N 4 2u+v2e)hg + (e + 4ve® + 3023 MJug +
+(1 4 v€)36>(1 + 3ve) T ugu? + € (1 + 3ve) us.

Remark 15. We notice that the choice to add the term 3veu; in the decomposition of W
in (28), allows to define a function g(e,N',v) such that

g(0, XN, v) =0.
This is due to the fact that 3vTly [e~2U2uq] + (1 + A)?(3vuy) = 3ve*Ily|(2uour + €2u?)ug).

We expect to find, for any 0 < € < €y, a small eligible A, with a solution V' of (32),
function of (e, ', v) of order O(|v|+¢€). Then putting V (e, X', v) into the bifurcation equation
(31), we expect to find, N of order € for any a = v/)\ in the small interval [—eg, o], which
would lead to W solution of (23).

2.4 Strategy

The main task is to solve (32) with respect to V. The lower bound (12) shows that the
inverse of Ly y, is an unbounded operator in IlgH,, only bounded from IlgH, to IloH 4, -
In other words, 0 belongs to the continuous spectrum of Ly . We then intend to use a
Nash-Moser scheme.

Let us denote by L.y, the differential with respect to V' of F(e, N, v, V) defined in
(32), then the main difficulty to be solved below is to find a suitable bound for the inverse
E;;\’,V,V for small values of €. Notice that L.y, v is selfadjoint in IIgHg but not in IIyH,
for s > 0. This is due to the fact that the operator ”multiplication by a function” is not
self adjoint in Hg, s > 0. It is tempting to work on the small (real) eigenvalues to obtain a
bound of its inverse. However, we are in an infinite dimensional space, the set of eigenvalues
is dense on R, and the spectrum does not contain only eigenvalues, since it is a closed
subset of R. This does not allow to use standard perturbation theory.

A reduction method, currently used in PDE systems, such as in water waves problems
for example [IPTO05], [IP09], [IP11], [AB15], is to use a change of coordinates which trans-
forms the linear operator (here Ly, ) into a diagonal operator, plus a small regularizing
perturbation, such that the inversion is made via a Neumann series. It seems that this
method is unpracticable here due to the ellipticity of Loy .

The option we choose is to truncate the space to functions with finite Fourier expansions
(with k such that Ny < N). Then we solve the system (32) with respect to V for (e, \',v) €

12



(0,€1) x [—1,1] x [—€q, €9] where €1 < €y are small enough, and A suitably chosen for any
fixed e. Using good separation properties of the spectrum of (1 + A)?, we use the version
of the Nash-Moser implicit function theorem developped by Berti-Bolle in [BB10], Berti-
Bolle-Procesi in [BBP10], and Berti, Corsi and Procesi in [BCP]. This is the object of the
rest of section 2, and of sections 3 and 4.

Definition 16. Let s > 0 and let N > 1 be an integer, we define
En = HNH()HS,
which consists in keeping in the Fourier expansion of V € llgHs only those k € I' such that

Ny, < N.

2.5 Tame properties

In all what follows in the paper, we use the following classical notation for the Banach space
of bounded linear operators from the Banach space E into the Banach space F' :

L(E,F), L(E)if E=F.

In the case where E = IIgH,, we use the notation || - ||, for the norm in £(IIyH,), as for
the norm in IIy’H,, if there is no possible confusion.
Let us consider (32)
Fle, v, V) =0,

then, due to (11) and to (26), F is analytic from [0, 9] X [—1, 1] X [—¢€0, €0] X Lo H, to ToH,—4,
for > d/2. Moreover for v € IIgH,, r > d/2 let us define

ACE?A/’M‘/’U = DV]:(E, )\,, v, V)’U

Hence

ﬁe,)\’,u,VU = ['5,)\’,1/7) + €5M(67 v, V)?}, (36)

where L.y, is defined in (34), and where
M(e,v, Vv := 6IIo(e LUV v) + 6velly|(ug + 3¢2uy) Vo] + 33 o (V20).
We have the following decomposition
Loy = Lov+ET(e, N,v, Vv (37)

with the ”diagonal” operator Ly defined by

Lo=Ty(1 + A)?, (38)
and
2 / ,_ 2 3y 2 2 2
ET(e,Nv,V)v:= (=€ Ao+ e’ XN)v + 3lg(UZv) + 6ve“Ilo[Ue(up + 3€“u1)v]
+3eM 2 o[ (uo + 3€%uy)*v] + € M(e, v, V)v. (39)

13



It follows from Lemma 10 that the operator T'(e,\,v, V) is analytic in its arguments
for (e, N,v,V) € [0,e0] x [-1,1] x [—e0,€0] x IIoHs, s > so > d/2, taking values in
L(ITyH,), for 0 <r <s.

Let s > sg > d/2 and (e, N, 1, V) € [0, €] x [—1,1] X [—€0, €0] x HoHs, ||V||s, < 1. Then
we have

F(0,)N,v,0) =0, (40)
as well as
maX(Haef(€7 )‘17’/7 V)HS7672H8>\’*¢(67 )‘Ivyv V)HS7€72H8V‘7:(67 )‘/7V7 V)HS) < C(S)(l + HVHS)
Using Lemma 11, we also obtain
1Lexwvolls < C()ll[vllsa + €[0llsolV]]s],
1DV F (e, X, v, V) (B, v)lls < C(s)e”(Rlls]ollso + [[Bllso olls + 1V [[s]12llso 01]s),

€ H10Lex wyolls + €2 On Lexpvolls + €210, Loy wyrlls < Cls)llolls + €l[vlls IV ]1]-

2.6 Estimate of (IIyTIyL. v, vIIxTly) ! in H, for small N

Lemma 17. Let S > so > lg + 1 and ¢g > 0 small enough. Then there exists co > 0 with
the following property. For 0 < e < ¢y let N < M, := Llf—glo} where the brackets [-] mean
“the integer part of”, and (e, N, v, V) € (0, €] x [—1,1] x [—€0,€0] X En. Then the following
estimate holds true for s € [so, S] and ||V]|s <1

(TN L nv v IINTT0) ™[ < 2¢0(1 + N?)0. (41)
The same is valid for s = 0 with ||V||s, < 1.

Proof. From (27), it follows that the operator (1 + A)? has an inverse in I yIIgH; for any
s > 0, bounded as
(TN TIo(1 + A)*TInTlo) M ls < co(1 4+ N?)*0.

We can write
TN Ly vIINTTg = TINTTo(1 + A)TINTI + 2 TINTIGT (e, X', v, V)TN TIp,
with
T (e, N, v, V)olls < e(s)([[olls + €l [V]]s][v]]so)-

for s > sg, and
1T(e, X'y v, V)ollo < e(0)(L + €] [V[[so)[v]]o-
for s = 0. Moreover, for
coc(s)(1+e)e2(1+ N?)2o < 1/2

we can invert IINIIoL, v, vIINTIg via Neumann series and obtain the estimate (41). It is
clear that this estimate holds provided that ¢y < 2c¢yc(s) for all s € [sg,S] and for s = 0
provided that ||[V||s, < 1, so that
C2

N <M=

] < {2eocls)(1 + 120 — 1)1, (12)

O
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2.7 Estimate of (IIyIIoL. v, vIInIly) ! in H, for large N

In this section N is fixed. In the rest of the paper, we need to introduce the following
subset A of R?:
A={(\N,v) e R%|v| < e|N|,|N| < 1}. (43)

This is useful for the control of eigenvalues of the linearized operator. Let us now define for
M >0 and sg > d/2

Uy == {u e 10,1 [xA, Ex);u(0,X,v) = 0,][ullyy < 1, [1expullyg < M}, (44)
We may observe that (36) says that the selfadjoint linear operator L, y , v takes the form
['e,)\/,l/,V = ﬁe,)\’,u + ESM(@ v, V)7 (45)

where L,y , is given by (34), is analytic in its arguments and A’ only occurs as SN

Let us consider the full linear operator IINIloLe v v (e n )Ty where V' € U](év).
Since this symmetric operator is C! in its arguments, then after a suitable numbering of
(N
J
and (X, v) in A ([Kato] theorem 6.8 p.122). In any vy, the derivative d,pu;
an eigenvalue M§N)(e, N, v) is in fact an eigenvalue of the operator (see [Kato] theorem 6.8
p.122 and see formula (6.5) p.123)

)(e, X, v) it results that these ones are C'! functions of v for (e, \') fixed
(N)(e, N, 1) of

its eigenvalues pu

Py INITo0, [Leyr p + 65/\/[(6, v, V(e, N v |vmwo Py = 0p1 + €*0po, (46)

with
Op1 = PVOHNH0[6U%-]HNH0PVO, Op2 = PI,OHNH()O(l)HNHQP,,O (47)

N
N (e, N, )

assumed to be multiple (otherwise all is simpler), and where the operator Ops is uniformly
bounded with respect to (N, v) € A and also with respect to N € N. In the above formula
the orthogonal projector P,, depends on N and is continuous with respect to (e, N, 1),
following (for example) the Theorem 5.1 in [Kato] p.107. Notice that the operator Op; +
€Ops is selfadjoint and continuously dependent on (e, \,1p). Hence, dividing by € the
eigenvalues of the operator (46), one can write

where P, is the orthogonal total projector corresponding to the eigenvalue p

8V:u'_§N) (67 )‘,7 VO) = €3a§N) (67 )‘/7 VO) (48)

(

where ajN)(e, N, 1) depends continuously on (e, N, 1) as this results from the general
result on eigenvalues of operators depending continuously on their arguments, and it may
be written as

(N)

Q-

N (e, X, 1) = (6u3¢™N (6, N s v0), € (6, N s vo))o + OFe), (49)

as explained below. In (49) ¢ ](N)(e, N, 1) denotes some eigenvector, of norm 1, of the self
adjoint operator IINTIoLc \r o v (e N 1o) IINIIo in the range of Py IInIlp. Indeed, we can di-

agonalize the symmetric operator Op; in the range of P, IINIIy spanned by eigenvectors
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belonging to the eigenvalue p;(e, N, 1) of HUNHoLe 3 v,V (e, M v0) HINIIo, sO that any eigen-
value of Op; reads as

(6P, InTIoudCs™ (e, X v), ¢ (e, N )0 = (6™ (e, N, m0), ¢V (e, X v o,

since ¢ j(»N)(e, N, 1) is a suitable combination of vectors in the range mentioned above. More-
over, using the Lidskii theorem (see [Kato] p.125-126) the rest O(e) in (49) is uniformly
bounded with respect to (X,19) € A and also with respect to N € N, since Opy in (46),
(47) is bounded independently of N (projectors have norm 1).

Remark 18. [t might be tempting to replace P,, by Py which is defined as the orthogonal
total projector corresponding to the limit projector as (N, 1) — (0,0) of the group of eigen-
values merging in p;(e, N',vp). We might obtain an apparently simpler formula than (48),
(49). Then the problem will be the non uniform estimate with respect to N, and this is not
good for what we make in Section 5.

Now consider the dependence of ,ug.N)(e, N, v) with respect to X. Since the ordering of
eigenvalues is now fixed, we cannot use again the argument above. However, the operator

E/(N) =: HNHOACE,X,V,V(@)\’,V)HNHO - 63)\/]1

e\ v

(V)

is symmetric, it has eigenvalues p; (e, N, v) — €3\ and, thanks to (45) and (36) we have

the estimate

18, = L5l < C7e1x, = X,

€\, 6N,V

where the dependence in X' comes from V' (e, ', v) in operator M. It results from the Lidskii
theorem ([Kato] p.125-126) that the difference between the eigenvalues of £ and £/

€N,V €N,V
satisfies
55 (e Xy ) = 1) (e M) = 0 = X)] < O X, = X,
where the numbering of eigenvalues might depend on ). In fact if uﬁv)(e, A}, v) is a simple
eigenvalue, we have j; = ja for X, close enough to \|, whereas if this eigenvalue is multiple
we may have j; # jo. However, in this latter case, for A, tending towards A} we have a

(

finite group of eigenvalues merging to ,ujjlv)(e, Aj,v) for Ay, = M|, so that the numbering is

such that v v
p) (e Xy w) = i (e, M ).

Finally, in all cases we have
15V (e, 25, 0) = 1 (e X, v) — 0 = X)| < TNy — X
which implies, for A, — A\ >0,
(€8 = C'e) Ny = ) < iV (e, X, 0) = ™ (e X v) < (E+ @)Xy = X). (50)

(N)

It is then clear that for ¢ < €; small enough, the function ' — 14 (e, N,v) is strictly

increasing in \' for \' € [—1,1], with a slope larger than €3/2.
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Now for certain 7 and v > 0 to be determined later, we define a "bad” set of \ :

67771/

BM,(V) = {N € [-1,1;(X,v) € A,3j € {1,2,., N, [ (e, X, 0)| < %}. (51)

Because of the above strict monotonicity in A’ this "bad” set is the union Ué\;()\? (e,v), )\;* (e,v))
of small intervals defined by N

i (e, XE ) = N—Z (52)
Now the lower bound (e3/2) of the slope shows that

_ 2y
3 s /
/2N () = X ()] < oL,
hence 4
I+ - i
(A (e v) = A (e V)] < aNT

We define the "bad strip” of degree N, BSy(V), to be the set in the (v, \") plane :

BSNn(V) == {(N,v) e ;X € (N[ (6,v), N} (e,v))}, (53)

for j occurring in the definition of ”bad” sets BE(]X)V(V) We notice that the dimension N of
the space IINyIIgH, is independent of s, and is bounded by ¢; N? since 97k lies in a subset
of Z%, bounded by N. Hence it is clear that for any fixed v € [—eg, o], the measure of the

bad set of A such that (N, v) € A, is bounded by ;“QNM, SO

meas (Bg(g?y(V)) < e

S 3N (54)

and a first condition to have a set of small measure for N large, is to choose T > d.
Now, we need to specify the behavior of )\;i(e, v) in function of v, for having an idea of
the form of the strips. We have by construction for vy, v, in (—¢g, €) :

:u_g'N)(Ea )‘;+(67 V2)7 VZ) - M_EN)(Ea )‘;+(67 Vl)a Vl) = 07

ie.

i (e N5 (e v2), va) =™ (e, N (€01, v2) = =[S (€, X5 (1), 1) =™ (6, X5F (e, 1), 1)

Now, from (50) we have

i (e N (), va) — b (e, N (1), v2) = [€8 4+ O(D)(NF (€, ) — N (e,11)),

where the term O(e®) is independent of N, and from (48), the continuity of the derivative
and the mean value theorem, we have

(e, N5t (e,v1), v2) — e, N5t (e, 1), 1) = e3a§.N)(e, N7 (e,11), V') (v — 1),
where v/ € [v1,15]. Hence

[1+ OV} (e,12) = N (e,01)) = —al™ (e, X (6,11, 1) (v2 — 1),
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where the term bounded by O(e?) depends on v and v, but is bounded independently of
N. Hence for € small enough

N (e, ) — N (e,m1) = =l (e, N (e,01), V)1 + O()] (v2 — 11).

The same analysis holds for )\;7. Now, we shall see in section 5 that A" and v may vary on a

very small set (at most of order €) hence the coefficients ag-N)(e, )\;-i(e, v1),V'*) do not vary

much, and this means that, in the (v, \') plane, the bad strips are nearly rectilinear.
Let us define
GO (V) == [-1,1I\BE), (V). (55)

67/-\/711 67771/

The following remark is crucial in what follows.

Remark 19. If N € GE%?V(V), then all eigenvalues of IolIn L, x v (e n ) IInIly are at a
distance > = from 0.

From the property that IglInLc y , vIINIIg is selfadjoint in IIxIIgHo = Ey, it results
that we have

Lemma 20. ForV fized in L{](\flv) and € fized € [0, €g], then if N € Gg%?y(V) = [-1, 1]\36(%,),,(\/),
the following estimate holds

_ NT
NITIINLe v v (e n i) N TIo) "Hlo < B (56)
Moreover, BSX?V(V) is the set of N € [—1,1] such that (N,v) € A and

_ NT
NITIINLe nr v (e x ) TN TT0) 7o > Eh

For a fixed v, such that |v| < e, let us define the "good set of \'” for all M, < K < N,
G, (V) = Narecx<nGE) (V) (57)
where M, is defined in (42), then we have the following
Lemma 21. Assume that v <7 = 1/(220%1¢y) and v, such that |v| < €y, and
T—d—3—10ly > 0.

Let V e U, Then G5, (V) = [-1,1] and BE, (V) =0 if K < M. If X € GD),(V) all
eigenvalues of Hollx Le v v (e x )kl have absolute value > vK ™7 for all1 < K < N.
Moreover the measure of UM€<K§NBE(§,)V(V), i.e. the "bad set of N7, is bounded by

cs(T)ver /M?.

Proof. If N > 1, then 2¢yy < 22%0 < w, ie.

I S
2co(1 + N2)%o = N7
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The first assertions now follow for N < M, from (41). For N > M. the result follows
from(56). The bad set satisfies

dvyeq dyer (1 —d—1)
<
SKT—d — EgMgr—d—l ’

meaS{UM€<K§NBe(,I§,)u(V)} < Z
M.<K<N

and from (42) we see that for 7 —d — 3 — 10y > 0, the estimate of the bad set follows. O

We need to obtain an estimate looking like (56), but in Hs for s > 0, with an exponent
on N not depending on s. For getting such a good estimate, we need to show ”separation
properties” of ”singular sites” which generate small divisors. This is the object of section
3, which uses extensively the results of [BB10], [BBP10].

3 Estimate of the inverse linearized operator in H,

3.1 Separation properties (H1) and (H2)

The eigenvalues of the unperturbed operator Dy = (1+A)2‘ B, Testricted to Ey = IInIIgHo
are the numbers (1 — |k|?)? where |k| # 1, and 0 < Ny < N. Let p > 0. We need to have
good separation properties of the singular set

Sovy = {keTi (1= k)2 < p, [K| £1, 0< N < N}, (58)
which contains the k’s corresponding to the small denominators, whereas the regular set is

We have a bijection between S(y) and S(N) := {z € T(N); (1 — |k(z)|*)* < p} where k(z)
is defined in (7) and

T(N) := {z € 2% 0<|z| < N, k(z) € T\{k;,5 = 1,...,2¢}}.

Let k = k(z), 2 = (mq, .., mq) € Z%. Then 9%|k|? = thzl msmy(k:, ki), Let 6y := 7/q,
w = 2cosfy. Then 2(kp,k;) = 2cos{(h — j)bp} and this is a polynomial with integer
coefficients in w. Therefore 2(k*,k;) and 9?|k|? are polynomials in w and the coefficients
in the latter polynomial are integer-valued quadratic forms in z. Here w is root of the
minimal polynomial with integer coefficients of degree d/2 =: [y + 1 and leading coefficient
1 (cf.[IR10, (3),(4)]). By division through this minimal polynomial we see that there are
integer-valued quadratic forms P, (x) such that

lo
?k(z)]* =) Po(z)w” = P(x). (60)
r=0

Hence P is bounded on S(N).
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There exist symmetric matrices A, of My(Z) such that P.(z) = (x, A,x) where (.,.)
denotes the usual scalar product of Z? and with A := ZTOZO A" we have (z, Az) =
92|k(x)|2. We note that A is positive. So

lo lO
P(z) =) (, Aiz)o' = (z,Az), A€ My(Z), A= Aw' > 0. (61)
=0 =0

Next we show that the singular set S(/N) can be partitioned into disjoint clusters sat-
isfying Proposition 23 (see below). To this end we first adapt to our situation Bourgain’s
separation lemma [Bou95]. We follow its proof in W. Craig [Cra00, p. 110-113].

Lemma 22. Let P be defined by (60) and S be a subset of Z¢ such that P is bounded on
S. Then there exists v > 0 such that for all B > 2 and for any sequence {x;}j—o. .k of
distinct points of S such that |11 — x| < B, we have :

K< B". (62)

Proof. 1t is sufficient to give the proof in the case that K > Ky with K{ sufficiently large.
In the following C denotes a positive constant which may be different in different formulas.

As in [Cra00, p.110] choose integers J; with Jy = K > J; > ... > Jg > 1 such that
Jiy1 < J¢/2 and some other restriction which will be introduced lateron. This choice is
possible if Ky is chosen sufficiently large.

For every integer j with 1 < j < K and every t € {0,1,...,d} let X(j,t) = span{(x; —
xj) : |l = j| < Ji}. Let d(t) := min; dim X (j,t) be attained for j = j(¢). Then there exists
to € {0,...,d — 1} such that d(tg) = d(to + 1) and

X(jsto +1) = X(j(to), to) if |7 — j(to)| < Jro41-

For the proof see [Cra00, p. 110].

Let jo = j(to), Xo := X(Jjo,t0),do = dim Xy. Since X is spanned by x; — z;, with
Il — jo| < Jyy+1 there is a basis {el}ldil for Xy with |e;| < Jy,41B.

Choose j such that |j — jo| < Ji, and w = z; — xj, has maximal length. Then there are
Jy, distinet vectors x;, — x5, € Xo N Z4 with length < |w|. From this it follows that

Jiy < Clw|® (63)

with some constant C' depending only on d (cf.[Cra00, (8.30)]). Next we derive an upper
bound for |w| in terms of Jy,11. We have w = > /%, a;e; for certain coefficients a;. Then
(w, Aey,) = Zldil ai{e;, Aep,) and from this we may solve for a; using Cramer’s rule. Let M
be the matrix with elements (e, Ae,,). Then M is invertible since A is positive. Let M; be
the matrix obtained from M by replacing the [-th column by the column of the (w, Ae,,).
Then a; = det M;/det M. From (e, Aey,) = Zi“zo w'(er, Arep,) it follows that det M is
a polynomial in w of degree at most dyly with integer coefficients. These coefficients are
bounded by Co(Jy,11B8)%% since |{e;, Arem)| < Clellem| < C(Jy,11B)?. Using the minimal
polynomial of w we may show that det M may be written as a polynomial in w of degree
lp at most with similar estimates of the coefficients as above. Next we apply lemma 2.1 in
[IR10] using the diophantine property of w and obtain

|det M| > C(Jy, 1 B)~ 2ol
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For an estimate of M; we use |(e;, Aey,)| < C(Jy,11B)? as above. We will prove lateron
[(w, Aem)| < C(Jyg1B)* 0. (64)

From these estimates we deduce that | det M;| < C(Jy,41B)*% and therefore |q;| < C'(Jyy11B)*
where 81 = 2dg(lyp + 2) and |w| < C'(Jyy41B)%*!, since w = 2?21 aje;. Combining this
with (63) we obtain

Jio < C(Jiy1B)” (65)

where 3 = do(01 +1). Next we use the freedom in the choice of the numbers J; and choose
these in such a way that for some 71 > 0 one has K™ < CJtthfl as in [Cra00, p. 113].
This is possible for K > K\ with K sufficiently large. From this and (65) we obtain the
estimate of the lemma.

For the proof of (64) we use the projection Ix, of Z? onto Xy and estimate first
IIx, (Aw). Since I x,(Az;,) = 2?21 bie; for certain b; we have (Azj,, en) = 2?21 bier, em).
Here the lefthand side equals (Axj,, xp —x;,) for some h = h(m) with |h— jo| < Jyy41. Next
we use 2(Ax;, x, — x;) = P(xp,) — P(x;) — P(z, — 21) where |P(zy, — 21)| < Clap — 2* <
C(Jh — 1|B)? and P(z) is bounded on S. Since |h —1I| > 1 when h # I, we have indeed
|(Azy, zp, — ;)| < C(|h —1|B)?, and in particular |(Az;,, em)| < C(Jt,+1B)?. Furthermore,
det({e;, em)) # 0 and the (e, ;) are integers, so the determinant has absolute value > 1.
Again using Cramer’s rule with the estimates above we see that |by| < C(Jy,41B)?% and
therefore |ILx,(Azj,)| < C(Jiy+1B)*™+L. Similarly one may show the same estimate with
jo replaced by j using a different basis for X¢. Hence |Ilx,(Aw)| < C(Jy,11B8)%%*+! and so
(Aw, em) = (w, Aeyy,) satisfies (64). O

From this lemma we may derive as in [BB10]

Proposition 23. There exists pg > 0 independent of N such that if p €]0, pg] then there
exists a decomposition of S(N) = |Jyeq Qo into a union of disjoint clusters Q0 satisfying :

o (H1), for all € A, M, < 2mq where M, = maxzeq, |z| and mq = mingeq,, |z|;

e (H2), there exists § = §(d) €]0,1[ independent of N such that if o, 3 € A, # 3 then

: : Moy + Mg)?
dist(Qq, Qp) = $Eﬂm1§1€Qg |z —y| > %

Proof. The proof is an adaptation of that of lemma 4.4 of [BB10] as follows: Since P
is bounded on S(N) we may apply lemma 22 with S = S(N). Let 6 = {2(r + 1)}!
where 7 is the number given by that lemma. Then two elements z and y in S(N) are
said to be equivalent if there exist ; € S(N),l = 0,1,...,n with zy = z,z, = y and
lz111 — 21| < (|2 +|2151])°, V1. Thus we get a decomposition of S(NN) in disjoint equivalence
classes Q. Consider z, € Q, such that |z,| = max,cq, |z| =: M,. Each z € Q,, is connected
to 2, by a B-chain with B := (2M,)° as in lemma 22. This lemma implies that if K is the
number of elements in this chain then K < B" and therefore

2] > |za| = KB > My — B™ = M, — (2M,)°0) = My (1 — (2/My)"/?),
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since §(r + 1) = 1/2. Hence if M, > 8 then |z| > M, /2 and in particular my, > M, /2. We
next choose p such that for all z € S(IV) we have |z| > 8 and then the proof is complete.
From (12) and the definition of Ny we have for z € S(N)
2

1- k(@)P)?2 > —
p> (1= K@) >
hence for (%)1/210 > 65, which holds for p < pg small enough, we have |z| > 8, and therefore

M, > 8.
The proof of (H2) is immediate: for any x € Qq4,y € 3, we have

o =yl > (2] + [y])° = (ma +mg)’ > (1/2)(Ma + Mp)*.

3.2 Estimate in HyTlyH, of (I\IIx Ly, vIInITH) ™!
We can prove the following

Proposition 24. Let d = 2(ly + 1) be the dimension of the Q— wvector space spanned by
the wave vectors k;, j = 1,...,2q, and let 7 > d + 3 + 10l = 12l + 5 as in Lemma 21.
Let sg > %l + dfTT + 1, where 0 is the number introduced in separation property (H2), and
define p := 27 + 3d/2. Assume moreover that 0 < v <75 = 1/(220%1¢y), and (e, N,v,V) €
[0,€1] x A x Z/[](év), with X' € Qg(g,)y(V) as defined by (57), €1 small enough. Lets > so. Then
for all s € [so, 3| there exists K(s) > 0 such that for any h € IINIIgHs, we have

_ N#
(T TIN Le v v (e 3 ) HINTL0) ™[5 < K(S)T(llhlls + IV (e, X, v)llsllBlls,)- (66)

Proof. Lemma 21 applies here and guarantees that for any 1 < K < N all eigenvalues of
HOHK»Ce,)\’,y,VHKHO are > yK™7.
Then we notice that the scale of Sobolev spaces 1IgH satisfies

o Vs < s IIgHy C IIgH,,
o VW ellgHy, [[VI[s <IVlls,

o En =IInIIgHp, N > 0 is a closed subspace of IIgHs, Un>oEn dense in IIgH for s >
0.

There exists a constant C(s,d) > 0, such that the projection operator IIy plays the role
of a smoothing operator:

YV e TogHs, |[IxV]|sra < C(s, d)NY V]I,
YV € MgHepa, [|[(I—TN)V][s < C(s,d)N~Y|V|[ssa-

Moreover we satisfy separation properties (H1) and (H2) for the singular sites (see previous
subsection), and the non diagonal part of operator IoIIn L.y, vIINTIy is O(e?) since it
is included into the operator €2T(e, \',v, V). Moreover the operators satisfy good ”tame
properties” (see subsection 2.5), so that we may apply directly Proposition 3.1 p.625 of
[BB10] just replacing the dimension d + 1 in this paper, by d = 2(lp + 1) and using extra
parameters.

]
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4 Resolution of the range equation

In this section we use [BBP10] for finding a solution V' (e, X', ) bounded by O(e), of class
C! in its arguments, defined for (e, \',v) in a suitably large subset of (0,€;) x A.

Indeed, we have (see subsections 2.5 and 3.2) the good functional setting and the good
"tame” properties of the map (e, N, v, V) — F(e, N, 1, V) from (0,€61) x A x IIgHs44 into
IIyH; for s > sp. Moreover, for any (\,v) € A we have

F(0,X,v,0) = 0.
Then we prove the following

Proposition 25. Choose No > N; > M, , and Vi € u](\j[\h)’ Vy € L{](\?[Q) and for (e,v) €
(0, €1)x [—€0, €0 consider the set of N which are "good” for Vi but "bad” for Vs : (QE(]XQB(VQ))CQ
gﬁfX}B(Vl) Assume that ||[Va — Vi||sy < Ny 7, with o > d+3, and 7 > d+ 3 + 101y, then for
€1 small enough and in particular €; < 72[0 :

2
meas((GEX2)(V3))° 1 G ) N [-1,1)) < ¢ 3,

) €7,V 1

where the apex ¢ denotes the complementary in [-1,1].

Proof. We have by construction
(G (WR) NG (Vi) = <UM€§K§NQBE(§,)V(V2)> N <mMe§K§N1G£,I’§,)V(V1))
¢ (Unnsren (BEL (1K) NG, ) (V) U (Unycren B, (V2) )

Moreover, according to (36) there exists a constant ¢ > 0, such that for ¢y small enough
and K < Ny :

MK T0Le v vaen i HxTlo — T Le v vi e IxTollo < ce’|[Va — Vills,
065
< =
Ny

Let us assume that \' € Be(f;),,(Vg) N Ggg,),,(Vl), then there is at least one eigenvalue of
O ToLe x 0, vs (e v ) i Il of modulus < Z=. According to the perturbation theory, [Kato]
p.61 theorem 6.44, Ik 1oL ' 1 v; (e, 1) [Tk TIp has an eigenvalue of modulus less than =2+
%. Since X' € Gﬁﬁ?y(vl) then this eigenvalue is in fact of modulus lying in the interval
5
Yoo, ce
[K KT + NY )

We need now to give a bound for the measure of the ("bad”) set of X’ corresponding to such
an interval for eigenvalues of IIxIToLe v, v; (e,x,) 1 o. Indeed, according to (45)

8)\’HKH0£6,)\’,1/,V1(e,X,y)HKHO — 63H = 0(65)
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Hence, the Lipschitz constant of any eigenvalue of IIxIloLe y 1 vy (e,n,0) [Tk Ilo With respect
to A’ is bounded from below by €3/2. This means that this "bad” set of )\ has a measure
bounded by 2]\6,6; In summing for all eigenvalues, and for M, < K < Nj it results that

€

2ce? 2ccre
meas Upr <k <N (B(,I,i)y(VQ) N Gg,g’)l,)(vl) < Z cle < L

Since € < ’y%, we have for ¢ > 0
1/N1 < 1/Me < ¢,

hence, since o > d + 3, we have N7~%"! > Ny /(cyy). Now, we also have (see (54))

dyeq dyei (T —d—1)
meas U, <K <N» Bs(fv(,)v(V?) < Z BKT—d < sNT-d-1
Ni<K<Ns €V

hence, since 7 > d + 3 4+ 10ly, we have for N7 > M,
ESfodfl > €3M51010 N{'*d*l*l(]lo > ’52N12/62
and there exists a constant C such that we have

2ccy €2 dyey (1 —d —

1) 2
Ny SNT—d1 < Cive’ /Ny,

Proposition 25 is proved. U

We may apply theorem 3 of Berti-Bolle-Procesi ([BBP10]) to equation F(e, X', v, V) = 0.
Let 7y, 7, i, so be as in Proposition 24. Moreover, let 5:= sg +4(u +5) + 20,0 > 4(u + 4).

From proposition 24, it follows that if (e, \',v, V) € [0,€1] X A X L{](év) and \ € Qe(f\yf?y(V)
then (e, N, v,V (e, N,v)) € Jnyuk (as defined in (4) of [BBP10], that is (66) holds for
s € [s0,3].

In [BBP][theorem 3] one considers N > Ny = Ny(vy) with Ny(v) sufficiently large and
0 < € < ez(7) with ea(y) sufficiently small. We may choose No = No(7) = Mc,(,) with a
suitable €3(y) < e and we consider in the following 0 < € < €3(7).

Theorem 26. Let sqg and 7 be as in Proposition 24. Then for all 0 < v < 7 there exist
e3(y) € [0,60] and a Ct—map V : (0,e3(7)) x A — Hgyra such that V(0,N,v) = 0 and if
c€ (0,e3(7)), N,v) e A, XN € ([-1,1]\ Cen), the function V (e, N, v) is solution of (32).
Here Cc 5, is a subset of [—1,1] which is a Lipschitz function of v, and has Lebesgue-measure
less than Cye? for some constant C' > 0 independent of e,v and 7.

Proof. In [BBP10][theorem 3] the authors construct a sequence {V;,},>0 of C* functions
that converges uniformly in C! ([0,e3(7)) x A) to a C' function V. When restricted to a
set Ao of parameters, V (e, N, v) satisfies F(e, N, v,V (e, N,v)) = 0.

We now use some more details of the cited theorem 3 of Berti, Bolle and Procesi. They
define N, = N§" and E(,) = E,. Then Vy(e, X,v) € E(,) and ||V, — Vooilsy < N, 771
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for n > 1 where 0 > d + 3 as in Proposition 25 . Let GSN")(Vn_l) = {(e,\V,v);0 <
e < e3(y),\N € ggﬁ)(an), lv| < €} where V_1 = 0. Then Proposition 24 implies that
GgNn)(Vn,l) satisfies the properties of J«(/Z?IC as defined in (10) on p.382 of [BBP10]. In
that paper the authors define A, := ﬂz‘;OG,(YNk)(Vk_l).

By Lemma 21 we have gﬁfﬁ?}(o) = [-1,1] and therefore GgNO)(O) = (0,e3) x A. From
Proposition 25 we have

meas ((gggy;ﬂ(vn))c N g<Nn>(Vn,1)) < O\ NTLye, (67)

67’Y7V

We use an analogue of section 2.5 of [BBP10], to derive properties of A,,. Let us set
Grenw = GO(Vi_1). Let Cenp = (M%0Gricrn)®. Then Ay = {(6, N,1);0 < € <
es(7), N, v) e A, XN € ([-1,1] \ Ce,»)} and we estimate the measure of C. 5 ,. For this we
use

Cerw CUn21(Grney)® C Un21((Grerv)\ (Grat,e9.0)%)-
Hence by (67) this set has measure at most
Cye Z L < Ce?
N, — '
n>0

which completes the proof of the theorem. O

5 Resolution of the bifurcation equation and proof of theo-
rem 1

Let V be the function obtained in theorem 26. It is C! in all the parameters (e, \',v).
Replacing V' (e, \',v) in the bifurcation equation (31), we can solve with respect to N and
find a function h(e, v) which is C! in (e, v), such that

N(e,v) = =20y — edg + €2h(e,v), (68)

for (e,v) € (0,€e3(7y)) X [—€o, €0] provided that eg is small enough, and (N, v) € A.

For a fixed €, when v describes the part of the interval [—eg, €9] such that (N, v) € A,
N (e,v) describes a curve looking like a line, in the sector A of the plane (v, \). Such a
curve connects the two end points on v = +ep\ (recall that Ay < 0)

_6)\4 /92 _6)\4 — /92
( 60<1—260)\2 +0 (6 )>71_260)\2 O (6 )

—€M +( 2 —€M\ +(2
(o (55 +07@) Ty + O (69)

The values of A vary over an interval of length of order O(eep). According to theorem
26, the measure of the bad set of A is bounded for any fixed v as meas Ce ., < Ce’.
Moreover, we know that, in the plane (v, \') the bad set is located into ”bad strips” BS :=
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Un>1BSN, (Vn—1) as defined in (53), for which we control the slopes (close to —a§N)). We
are lead to use Condition 2. Indeed, as we shall see in Remark 28, Condition 2 implies that

0§ (e, X', v) = 22| = 6l (70)
where ¢} is e close to ¢;.

This assumption guarantees the transversality between the ”line” (68) and the nearly
straight bad strips BS. Indeed denoting by 6 the angle of intersection of a bad strip with
the curve (68) in the plane (v, '), we have tan 6 > ¢y > 0 (independently of N). This comes

from 6 = 0, — 62 , tan(6;) ~ —2Xy # 0 and tan(fa) ~ —ozg.N)(e, N, v), and

tan(f1) — tan(62)

tanf =
o 1+ tan(6;) tan(62)

where the only possible problem occurs when 61 ~ 65.

Each intersection of a bad strip BSy;, (V,,—1) of width ¢ < 6341377 with the line (68) gives
only one segment of length bounded by ¢d, where c is a constant in?iependent of N (a bound
is obtained in dividing the thickness of the strip by the sine of #). Summing over all bad
strips (for all j and N,,), as this was done at Proposition 25 and Theorem 26, we obtain a
union of bad segments on the line (68) and the measure of this set can be estimated, which
gives a total measure of the bad segments, for v fixed, bounded by C~e2. Projecting this
set on the \ axis gives the bad set for X', centered at —e)\4. The measure of this bad set is
smaller than C~e?. The complement of this bad set is the good set for X',

Then we get a set of good X with large measure, and corresponding good v (following
(68)) (see Figure 2).

Now we observe that we can write N = e\, with A centered in —\s and v = €7 with
|7| < €o. This defines the good set A, of all good A, , for any fixed ¢, and correspondingly the
good 7(e). Moreover, as X varies now on an interval of length of order O(¢p), the measure
of the bad set of X is now bounded by C’ye. We recall that ¢ < e3(7y) which tends towards
0 as 7 tends towards 0, and we notice that C've/eg < C'vy as soon as € < ey. It results that
we have

1 —c
2—meas {AE N(=Ag— €0, — g + eo)} < (O,
€0

and, since 7 is independent of €,

1 _
o tmeas {Acn (=M —€e, =X +6)} o 1.

Then the existence of a solution (e, N'(e,v(¢)),v(€)) of (68), persists as € tends towards 0,
even though we don’t know anything about its continuity in €.
Finally, due to (21) and (28), we obtain a solution of (2) under the form

U = eup+ Suy + 0(e)[ug + 3¢%u1] + €'V (e, eX(e, T(€)), €0(¢))
A= e — (e, T(e)).

This ends the proof of the following
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Figure 2: Sketch of the "bad set” in the plane (v, \') for € fixed. (H) is the "line” given by
(68).

Theorem 27. Let g > 4 be an integer and let d = 2(lg+1) be the dimension of the Q-vector
space spanned by the wave vectors k;, j = 1,...,2q. Moreover, assume that Condition 2 is
verified. Then, there exists sg > d/2, g > 0, and 0 < e3 < €y such that, for any s > sq,
€ < €3, there exists a 1-dimensional set Ao of asymptotic full measure as € tends to 0 with
the following property : for any e < e3, there exist U(e) € [—eq, €o], and A := \e,U(€)) € Ac
such that the steady Swift-Hohenberg equation, for X = Age? — €*X. admits a quasipattern
solution U in Hs, invariant under rotations of angle w/q of the form

U = eup + € (ug + 7(e)ug) + O(e°),

where Ay = 3(2¢ — 1) > 0, Ac = —Ag — 2X27(€) + O(€). The quasiperiodic function ug spans
the kernel of (1 4+ A)2, and coefficients Aa, \a,u1 occurring in formulae above, are the ones

defined in the truncated asymptotic expansion of the solution, computed in section 2.2, see
also [IR10)].

This is a more detailed formulation of Theorem 1 given in the Introduction.

Remark 28. We know from (17) that

{ug, uo)o 3 ik
Ay = M0 U0/0 _ 3 pikixy (94 — 1),
2 (UO,U0>0 < 0 >0 ( )

Now, looking at formula (49) for Oég»N)(E,)\,,V) we might look at the generic case of simple
(v) (v)
J J
are C' function of their arguments (for N fived). Ase — 0, the eigenvector tends toward
an expression of the form (this form results from the invariance under rotations Ry /q):

eigenvalues ;' (e, N, v). In such a case ;' (e, N, v) as well as eigenvectors CJ(N)(E, N, v)

)

S

iR ko-x
e!lsm/q ,

(0) = —
V2 s=1,2,..2¢
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which is an eigenvector of the operator IInTlg(1 + A)? for the eigenvalue (1 — |ko|?)? very
close to 0.
Then we have

1 . .
w0V O = ooy Yo xR eifkox),

2_
q s=1,2,..2q s=1,2,..2q

— <U3 E eZst/ko'x7 elko-x>0.

s=1,2,.2q

Now, we notice that
ug = E ei(erFkl)'X’
T‘7l:1727"'72q

so that the only terms giving a contribution in the last scalar product are such that

s7r/qk0 (71)

for some r,l;s € {1,..,2q}. Trivial solutions are s = 2q,l = r + q (corresponds to the
constant terms in u%) which gives 2q terms equal to 1. In fact, there are no other solutions:
each side of (71) is the sum of two vectors with the same length, so they have the same
bisectriz. Since the length of ko and of —Rgy ko is close to 1, and the length of k, and
k; is 1, the angle between k, and k; and the angle between ko and of —Ry ko are nearly
the same. But, this angle should be a multiple of w/q, so the two pairs of vectors make the
same angle between them. Now we see that there is mo solution, because of the difference
between the lengths of the two pairs (except if the sum is 0). Finally, this shows that

(B¢ (0), ¢S (0)) = 24,

This tmplies that Condition 2 is realized at € = 0 for any q.

k.+ki=ky— R

Remark 29. We might be tempted to adapt the parameter € by defining a new parameter
€ as
/

¢ = e+ v(e). (72)

Then it is easy to check (using (68): e\ + 2v)y = —eXy + O(€2)) that the solution (U, \)
may be expressed as

U = éug+ Puy+O(H),
A= P+ 0.

This is the form of the power series of the solution which is formally obtained (see subsection
2.2), here after a scaling on € (which does not change the curve). However we observe that
(72) is not invertible, i.e. € cannot be expressed in term of € since the choice of v is not
completely determined in function of €. The mapping € — € is not an homeomorphism.
The result is that € does not take a continuum of values, leading to “holes” in the curve
expressed by the series above truncated after the two first terms. These holes are of smaller
and smaller size, as € — 0. The higher order terms that we do not precisely express, mean
that the bifurcating set is centered about the curve above mentioned, and lies in a hornlike
region, with the vertex (or the tip) at the bifurcation point (€ =0).
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Remark 30. The above result in Theorem 1 may be extended in using the formal asymptotic
expansion of U truncated at an arbitrary order:

U. = eup+up+ ...+ 2"y,
A = EX+ Ny + .+ 2" \oy,
and introduce (V,\') as
U = U.+vePuy+ 3ve?2uy + 12V

A o= A — et

Then we can proceed in the same way as before, and find (exercise left to the courageous
reader) V (e, N ,v) and there are solutions N in the good set with

N+ 2UN9 = —€Xopi2 + 0(62).
Moreover, if we set
¢ = e+ (), (a priori not invertible)
then we find again the same asymptotic expansion for the bifurcating set:

U = éug+ Puy+ ... + 2y, + O@£23)
A = 2+ N+ €PN, + 6'2"+2)\2n+2 + O(el2n+3).

A Berti-Bolle-Procesi’s version of Nash-Moser theorem

In this section, we recall notations and the main result of Berti-Bolle-Procesi’s paper
[BBP10].

Let us consider a scale of Banach spaces (X, ||.||s) such that, for all s < s’, we have
Xy C X, ||lulls < ||ulls whenever v € Xy . Let us define X := Ng>0Xs. Let (En)nen be an
increasing family of closed subspaces of X such that UFEy is dense in X, for every s > 0.
Let us consider projectors Il : Xg — En such that, for all s >0 and d >0 :

o (S1) ||TInullsia < C(s,d)NY|ul|s if u € X,
e (S2) ||(I — Tn)ulls < C(s,d)N~|ul|s1q if u € Xy1q

Let us consider a C2-map F : [0, eg[x A x X1, — X, Where sg >0, ¢g > 0, v > 0 and
A be a bounded domain of RY. We assume, there exists S > sy such that for all sg < s < S,
for all u € Xqy, with ||ul|s, <2 and for all (e, \) € [0, eo[XA :

o (F1) F(0,),0) =0, for all A € A

o (F2)  max(|[0cF (e, A, u)lls, |OF (e, A, u)ls) < C(s)(1+|ulls+v) and [[ Dy F (€, A, 0)h[[s <
C(s)1lls+v

o (F3) |DiF(e, A u)(h,0)|ls < C ([ullstwllhllsolvllso + 10llstollRllso + ollso1olls+0)
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o (F4) max ([|0xDuF (e, A, u)hlls, [0 DuF (e, A, u)hlls) < C(s) ([[ullsvllhllsy + [1A]lstv)

Let us define Ly(e,A\,u) := InyDyF (e, \,u)|g,. Let us consider two nonnegative pa-
rameters u, o such that

o>4(p+v), s=so+4(p+rv+1)+20<8 (73)
For all v > 0, we define
INyp S H{(e,\u) €[0,60[xA x Ey | Vs € [s0,5],Vh € En,
VR (e Al < == (Il + il o)}

where, in the above definition, Ly(e, A\, u) is implicitly supposed to be invertible. Given
K > 0, we define

Un.ic = {u € CH([0,e0[xA, Ex) [ u(0,X) =0, [[ulls, < 1, max([|dxulls,, [0culls,) < K}

Remark 31. In Berti-Bolle’s paper, the condition u(0,\) = 0 is not written explicitly in
the definition of Un k but it is used.

For all v € Uy i, we set
GNyu(u) = {(e,A) € [0,e0[XA[| (¢, A, u(€, A)) € Inqu}-

We assume that there exists p > 0, and o > 0 satisfying (73), there exists ¥ > 0, M € N*
and C' > 0 such that

1.
(L1) V(e,7) €]0,€0]x]0,7], measga+1 (Gny,u(0)°N([0,e[xA)) < Ce.

2. (L2) For all v €]0,4] and for all K > 0, there exists a positive é(y, K) < €g such
that, if 0 < € < €, if the integers N1, Ny satisfies M < N1 < No, and if u; € L{Nh[(,
i = 1,2 satisfy |lu; — uz|ls, < Ny 7 then

measgat1 (G u(2))°\ (G (1)) N ([0, €[ x A)) < CX/—?

Let us recall the main theorem of Berti-Bolle-Procesi’s paper :

Theorem 32. [BBP10][theorem 1] Assume that condition (F'1),(F2),(F3),(F4),(L1),(L2)
and (73) are satisfied. Then there exists C > 0 and for all 0 < v < 7, there exists
0 < e3(7y) < e and a Ct-map

w:[0,e3[xA — Xgoqw
such that for all (e,\) € [0,e3[xA\ C,, u(0,\) = 0 and F(e,\,u(e,\)) = 0 where the
Lebesgue measure of the set Cy satisfies measga+1 ([0,e[xANC,) < Cye if € < e3.
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