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Empirical Analysis of Operators for Permutation
Based Problems

Pierre Desport, Matthieu Basseur, Adrien Goëffon, Frédéric Lardeux, and
Frédéric Saubion

LERIA, University of Angers (France)

Abstract. This paper presents an analysis of different possible oper-
ators for local search algorithms in order to solve permutation-based
problems. These operators can be defined by a distance metric that de-
fine the neighborhood of the current configuration, and a selector that
chooses the next configuration to be explored within this neighborhood.
The performance of local search algorithms strongly depends on their
ability to efficiently explore and exploit the search space. We propose
here a methodological approach in order to study the properties of dis-
tances and selectors in order to buildtheir performances operators that
can be used either for intensification of the search or for diversification
stages. Based on different observations, this approach allows us to define
a simple generic hyperheuristic that adapt the choice of its operators to
the problem at hand and that manages their use in order to ensure a
good trade-off between intensification and diversification. Moreover this
hyperheuristic can be used on different permutation-based problems.

1 Introduction

Many optimization problems can be modeled as permutation problems (e.g.,
flowshop, traveling salesman or quadratic assignment problems). Dedicated ef-
ficient solving methods have been proposed for these problems, but their per-
formance often depend on the considered instances and use most of the time
ad-hoc heuristics and/or techniques. Therefore, given a new permutation prob-
lem a non-expert user would hardly be able to design a solving algorithm using
components that she/he could re-use from previous experiments. A recent trend
in optimization consists in promoting more autonomous techniques for the de-
sign of search algorithms [1], either by automating the tuning of their parameters
[2], by dynamically controlling their behaviour [3] or by automating their design
[4]. Focusing on this latest aspect, hyperheuristics [5] is a generic paradigm that
can be used to manage a set of efficient heuristics in order to solve a sufficiently
large set of problem instances, without a priori knowledge. The main principle
of hyperheuristics is to adapt the solving process to the given instance at hand.
Considering a set of possible heuristics that can be applied on a given prob-
lem, one may select the best heuristics with regards to the characteristics and
properties of this problem and/or change heuristics during the solving process,



according to the current state of the search. Of course, this high level manage-
ment of the solving heuristics requires to define sufficiently general heuristics
and to gather pertinent information on them. In this paper, our focus on per-
mutation problems allows us to consider a sufficiently large family of problems
which can be handled by a set of common search operators (from now on we
use the generic term operator for our basic search heuristics). These operators,
defined in a local search fashion [6], aim at selecting the next configuration of
the search space that will be examined by an incremental search process. Such
an operator can easily be defined by (1) a notion of neighborhood of the cur-
rent configuration, thanks to a distance measure, and (2) a selection function
within this neighborhood. One aim of this work is thus to carefully study the
behaviour of these search operators with regards to different instances of well
known permutation problems. Note that different studies on distances for per-
mutation problems have been conducted [7, 8]. Here we focus on how operators,
which use such distances, can be compared and efficiently chosen with regards
to a given instance of a problem. Note that the dynamic control of operators
in local search has been studied in [9]. Our approach can be more related to
landscape analysis [10]. An analysis of the correlations between the two basic
above-mentioned components of operators would help us to better understand
their characteristics and to define a simple hyperheuristic to manage them.

This paper is organized as follow. Basic notions on permutations are recalled
in Section 2. Main concepts concerning local search for combinatorial optimiza-
tion problems are presented in Section 3. The next sections are devoted to the
analysis of search landscapes induced by the static structures of the problems, as
well as the operational behaviour of local search operators. A simple hyperheuris-
tics is then defined in Section 6 in order to illustrate how previous observations
can be used to improve solving algorithms.

2 Basic Notions for Permutations

2.1 Permutations

A permutation of n elements is an arrangement of these n objects sorted in a
specific order where they appear only once. The group of permutations [11] can
be defined as the group of bijections from X to X where X is a non-empty
finite set. Let [n] be a set of objects [n] = {1..n}. A permutation π is a bijective
assignment on [n] such that π(i) is the element at position i in the permutation
π and posπ(i) is the position of the element i in the permutation π. Π([n]) is the
set of permutations on [n], whose cardinality is thus n!. Given [n] = {1, 2, 3, 4},
π = (1, 2, 3, 4) or π = (2, 1, 4, 3) are two possible permutations.

Identity. Let π ∈ Π([n]), the identity permutation I is defined as the permuta-
tion that assigns each element of π to itself, i.e. ∀i ∈ {1..n}, I(i) = i.

Product of permutations. Let π1, π2 ∈ Π([n]), π1(i) ∗ π2(i) = π2(π1(i))∀i ∈ [n].
Note that π1 ∗ π2 6= π2 ∗ π1. The neutral element of the product is I (i.e.,
∀π, π ∗ I = I ∗ π = π).



Inverse. The inverse permutation can be defined using the identity permutation
π−1 can be constructed from π using the property: π−1(i) = posπ(i). For in-
stance, if π = (2, 3, 4, 1), then π−1 = (4, 1, 2, 3).

Let us recall now some properties of permutations.

Adjacency Given a permutation π ∈ Π([n]), two elements i and j are adjacent
in π if |posπ(i)− posπ(j)| = 1.

Longest Increasing Sequence (LIS). Given a permutation π, the longest increas-
ing subsequence LIS(π) corresponds to the longest subsequence of elements of π
that are sorted in ascending order. For instance, for π = (1, 3, 2, 4) the longest
increasing subsequences are (1, 2, 4) and (1, 3, 4).

Longest Common Subsequence (LCS) The longest common subsequence of two
permutations π1, π2 ∈ Π([n]) is LCS(π1, π2) = {i ∈ {1..n}|p1(i) = p2(i)}.
For instance, with π1 = (2, 4, 3, 1, 5, 6) and π2 = (1, 2, 3, 5, 4, 6), LCS(π1, π2) =
{2, 3, 5, 6}.

2.2 Distance on Permutations

Table 1 presents different distance indicators which will be considered in the
rest of the paper. The diameter of a distance measure represents the maximal
distance between all permutations. Note that, as an example, the last column
corresponds to the distance between the two following permutations (# is the
cardinality function):

– π1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) and,
– π2 = (15, 3, 1, 11, 2, 7, 9, 10, 4, 14, 6, 12, 5, 13, 8).

Table 1. Distances for permutations.

Distances Formula (π1 and π2 are permutations) Diameter Ex.

Hamming #{i|i ∈ {1..n}, π1(i) 6= π2(i)} n 14

Adjacency n− 1−#{1 ≤ i|adjπ2(π1(i), π1(i+ 1))} n− 1 13

Position
n∑
i=1

|posπ1(i)− posπ2(i)| 2dn/2ebn/2c 62

Lee
n∑
i=1

min(|π1(i)− π2(i)|, n− |π1(i)− π2(i)|) n(n/2) 48

Swap #{(i, j)|1 ≤ i < j ≤ n, posπ2(π1(j)) < posπ2(π1(i))} n(n− 1)/2 44

Interchange n− c(π−1
1 ∗ π2) n− 1 12

Ulam n− length(LIS(π−1
1 ∗ π2)) n− 1 9

Insertion n− length(LCS(π1, π2)) n− 1 8

Note that the interchange distance requires a function, computing the number
of permutation cycles which composes a permutation [8].



3 Optimization Problems and Local Search

Let us define the components of a local search algorithm in the context of solving
optimization problems [6].

3.1 General Definitions

Optimization Problem An optimization problem is a pair (S, f) where S
is a search space whose elements represent solutions (or configurations) of the
problem and f : S → R is an objective function. An optimal solution (for
maximization problems) is an element s∗ ∈ S such that ∀s ∈ S, f(s∗) > f(s).

Local Search Given an optimization problem, a local search (LS) process con-
sists in starting from an initial configuration and in applying repeatedly basic
move operators in order to reach an optimal solution. The trace obtained by such
a search process is usually called a search path. An operator is thus a function
that returns the next configuration for building the search path. In its simplest
form, a move performs the selection of the next configuration to be explored
within the neighborhood of the current configuration. A generic and basic out-
line of an LS metaheuristic is the application of an operator in a simple loop
as illustrated in Algorithm 1 where the SpecificAction() method represents
a step specific to the type of metaheuristic used such as a perturbation (e.g.,
Iterated Local Search [6]) or enforcing prohibitions (e.g., Tabu Search).

s← initial configuration;
s∗ ← s;
while end condition not met do

s← op(s);
if eval(s) < eval(s∗) then s∗ ← s;
SpecificAction();

end
return s∗

Algorithm 1: Algorithmic outline of an LS metaheuristic for minimization

Neighborhood Let S be the search space of candidate solutions. A neighbor-
hood relation is an irreflexive binary relation N ⊆ S2 over the search space. In
most cases, the relation is also symmetric.

Search Paths Given a neighborhood relation N , the set of search paths is
defined as PN = {s1 · · · sn ∈ S∗ | ∀i > 1, (si−1, si) ∈ N}, where S∗ represents
the set of words constructed over S. Therefore any pair (s, s′) of elements of
S, such that1 (s, s′) ∈ N+, defines an equivalence class over the set PN which

1 N+ is the transitive closure of N .



corresponds to all paths that link s to s′. This subset is denoted by PN (s, s′). In
most cases, the neighborhood should be complete, i.e. ∀s, s′ ∈ S,PN (s, s′) 6= ∅.

Distances induced by neighborhood The neighborhood relation defines the
structure of the search space. The distance between s and s′ can therefore be
defined as dN (s, s′) = minp∈PN (s,s′)|p|, where |p| is the classic word length and
dN (s, s) = 0. If d define a distance, then N is necessarily symmetric. Note that a
neighborhood induces a distance on the search space but, conversely, a distance
on the search space can easily be used to define a neighborhood.

Local Search Operators An operator is defined by two main components:
neighborhood and selection process. A selector is a function that performs a se-
lection over a neighborhood, eventually guided by the ordering <, and is defined
as σ : S × 2S

2 → S (here the selection returns only one neighbor), such that
(s, σ(s,N )) ∈ N= (the reflexive closure of S in order to include identity). Note
that the selectors may include randomization for computing their results (e.g.,
random choice of a neighbor). Let us consider three classic different selectors:

– First improve (select the first improving neighbor from a randomly ordered
set of neighbors),

– Best improve (select the best neighbor),

– Random choice (randomly chosen neighbor).

An operator is fully defined by a pair (N , σ).

Search Landscape. The search landscape is usually defined by the search space
and the objective function that should be maximized (without loss of generality).
The ordering relation < over S corresponds to the order induced by the fitness
function of the problem.

Operational Landscape. The operational structure of local search is defined
by the possible moves in the search landscape according to a neighborhood re-
lation. Again, we consider the paths induced by an operator o = (N , σ) :

Po =
⋃
n>1

{s1 · · · sn ∈ S∗|∀i > 1, si = σ(si−1,N )}

Here, we should note that we only have the inclusion Po ⊆ PN , since some
neighborhood paths cannot be necessarily constructed by the operators as soon
as it includes a selection process among the neighbors. Moreover, if there exists
a path in Po linking s to s′, there does not necessarily exist a path from s′ to s.
Therefore, due to this non symmetric aspect of operators, it is not obvious to use
a simple distance over the paths created by the operators. Now we may handle
multiple move operators local search by composing neighborhood relations and
selectors.



3.2 Permutations Based Problems

According to the previous definitions, a permutation based problem is a problem
such that S = Π([n]). Many combinatorial optimization problems can be for-
mulated as permutation-based problems, most of them being NP-hard. In this
section we recall three well-known permutation problems that will be used in
our experiments.

Quadratic Assignment Problem. Quadratic assignment problem (QAP) [12] mod-
els a facilities location problem. The objective of QAP is to assign n facilities to
n locations in order to minimize the assignment cost. It may be formalized as
follows:

– let fij the flow between facilities i and j,

– let dij the distance between locations i and j,

– minimize:
n∑

i,j=1

fijdπ(i)π(j).

Flowshop Problem. The flowshop problem [13] is a scheduling problem where
the goal is to find the best planning to achieve n jobs on m different machines,
minimizing the makespan (total completion time), considering the following con-
straints :

– All jobs must be processed by all machines,

– A machine can deal with only one job at any time t,

– A job can be processed only by one machine at any time t.

Here we consider that the processing order of the jobs on the machine is always
the same. The goal is to find a permutation π representing a processing order of
the jobs that minimizes the makespan function Cmax = max{siM+piM |i ∈ [1..n]
and M ∈ [1..m]} where:

– pij is the time for the machine i to process the job i,

– sij is the starting time of the job i on the machine j.

Traveling Salesman Problem. The traveling salesman problem (TSP) [14] con-
sists in finding the shortest path in order to visit n cities without visiting any
city twice. This constraint is easily enforced by using permutations to represent
configurations of the problem. For a permutation π, each element is a city. Given
a matrix D such that dij corresponds to the distance between city i and city j,

the objective function to minimize is
n−1∑
i=1

dπ(i)π(i+1) +dπ(n)π(1). Here, we restrict

our study to symmetric TSP (i.e., dij = dji ∀i, j ∈ {1, 2, .., n}).



4 Search Landscape Analysis

In this section, we propose a first study of the search landscape corresponding
to the previously selected permutation problems. Our purpose is to highlight
how suitable but yet generic local search operators can be defined. We will
first study the search landscape from a static point of view by using distance
indicators on permutations that have been presented in Section 2.2. This will
allow us to exhibit correlations between distances as well as correlations between
problems and distances. Before starting our experiments, let us observe what are
the typical topological characteristics of our problems, computing the maximal
theoretical and the average distances between two permutations.

4.1 Search Space Diameters

The following results will help us to better interpret our further studies. Table
2 provides maximal theoretical (max) and average (avg) distances for three in-
stances. Note that here the original problems have no influence since we consider
only the search landscape, which only depends on the size of the permutation.
We output here instances from size 20 to 100 in order to highlight the relative
differences between distances. Results show similar properties when consider-
ing larger instances. Average results are obtained by computing the distance
between 105 pairs of randomly generated permutations.

Table 2. Diameter and average distances

Instance Ham. Adj. Position Lee Swap Inter- Insertion Ulam
Based change

Inst. 1 max 20 19 200 200 190 19 19 19
(size 20) avg 19 17 133 100 95 16 13 14

Inst. 2 max 26 25 338 338 325 25 25 25
(size 26) avg 25 23 225 169 162 22 18 19

Inst 3. max 100 99 5000 5000 4950 99 99 99
(size 100) avg 99 97 3331 2500 2475 95 92 93

4.2 Search Space: Correlation Between Distances

The purpose of this first experiment is to compare the distance indicators. Table
3 shows correlations of distances obtained for 105 randomly generated pairs
of permutations. Let us recall that the problem under consideration have no
influence on the results. We considered two close sizes (20 and 26) and a larger
one (100) in order to obtain different effects. Nevertheless, correlations do not
depend on the size, as observed here. This study can be related to the work



presented in [8] but with additional metrics. Moreover, the experimental process
is slightly different even if similar conclusions are reported.

The correlation coefficient cf corresponds to the intensity of the connection
between two sets of values and has a value ranging in [−1, 1]. Two sets are said
to be strongly correlated if |cf | > 0.5.

cf(x, y) =

n∑
i=1

(xi − x̄) ∗ (yi − ȳ)√
n∑
i=1

(xi − x̄)2 ∗
√

n∑
i=1

(yi − ȳ)2

where x̄ and ȳ are the mean values of x and y.

Table 3. Correlation distances - distances

Instance Distance Ham. Adj. Position Lee Swap Inter- Insertion Ulam
Based Change

Size 20 Hamming 1.000 0.004 0.360 0.393 0.226 0.672 0.214 0.168
Adjacency 0.004 1.000 -0.003 0.001 -0.005 0.026 0.087 -0.005

PositionBased 0.360 -0.003 1.000 0.142 0.939 0.243 0.605 0.061
Lee 0.393 0.001 0.142 1.000 0.090 0.261 0.088 0.308

Swap 0.226 -0.005 0.939 0.090 1.000 0.148 0.621 0.040
Interchange 0.672 0.026 0.243 0.261 0.148 1.000 0.124 0.098

Insertion 0.214 0.087 0.605 0.088 0.621 0.124 1.000 0.038
Ulam 0.168 -0.005 0.061 0.308 0.040 0.098 0.038 1.000

Size 26 Hamming 1.000 0.026 0.302 0.344 0.188 0.640 0.189 0.132
Adjacency 0.026 1.000 0.005 0.005 0.000 0.021 0.089 0.008

PositionBased 0.302 0.005 1.000 0.093 0.941 0.200 0.589 0.050
Lee 0.344 0.005 0.093 1.000 0.050 0.213 0.061 0.286

Swap 0.188 0.000 0.941 0.050 1.000 0.121 0.594 0.027
Interchange 0.640 0.021 0.200 0.213 0.121 1.000 0.111 0.077

Insertion 0.189 0.089 0.589 0.061 0.594 0.111 1.000 0.040
Ulam 0.132 0.008 0.050 0.286 0.027 0.077 0.040 1.000

Size 100 Hamming 1.000 0.003 0.220 0.242 0.137 0.575 0.137 0.081
Adjacency 0.003 1.000 0.001 0.003 0.000 0.009 0.059 0.001

PositionBased 0.220 0.001 1.000 0.056 0.944 0.127 0.557 0.018
Lee 0.242 0.003 0.056 1.000 0.037 0.137 0.035 0.228

Swap 0.137 0.000 0.944 0.037 1.000 0.077 0.532 0.011
Interchange 0.575 0.009 0.127 0.137 0.077 1.000 0.071 0.044

Insertion 0.137 0.059 0.557 0.035 0.532 0.071 1.000 0.015
Ulam 0.081 0.001 0.018 0.228 0.011 0.044 0.015 1.000

Note that the correlation between distances is measured only on the dis-
tances obtained between permutations. The objective function of the problem



is not involved in the process (only the size of the studied instances influences
the results rather than the type of problem). We can observe in Table 3 that
distances can be grouped by sets of correlated distances:

{Hamming, Interchange}, {Adjacency}, {Lee},
{Swap, PositionBased, Insertion}, {Ulam}.

This first observation may help us to select distances for either building search
operator or better controlling the search process with a specific heuristic. For
instance, if a search algorithm using Hamming distance requires diversification, it
seems intuitively appropriated to use another distance that is weakly correlated
(for instance Lee distance).

4.3 Search Landscape: Correlation between Problems and Distances

The correlation between the objective function of a problem and the neighbor-
hood relation used to define operators is obviously an important feature to ensure
good performance for a LS algorithm. Ideally, if distances between configurations
are proportional to their objective values difference, then it is easier to reach good
solutions, since moves can be clearly guided by improvement strategies.

In table 4 we examine the correlation between the distance indicators and
the problems introduced previously, considering the search landscapes induced
by their objectives functions. Instances whose known optimal solution are used
to study this correlation. The distance between the optimal permutation and a
randomly generated permutation is computed as well as the difference between
their objective function values. This process is repeated 105 times in order to
obtain a correlation value between distances and problems. Results are presented
in Table 4.

In Table 4 no strong correlation can be observed. Considering QAP, due to
its quadratic objective function, it is very difficult to define a metric that can be
correlated to the fitness. For the flowshop problem, distances which induce less
perturbations in the objective function values of the configurations, show better
results as observed for Swap or Insertion indicators. Similar observation can be
done for TSP using Adjacency. Nevertheless, the correlation depends on the size
of the considered problems since random points can be far from the optimal
solution for problems with large diameters.

5 Analysis of the Operational Landscape

We now turn to the operational point of view by considering search operators
that can be used in a local search algorithm. Using the previous results and in
order to avoid too combinatorial experiments, we consider only the following
classic distances: Swap, Interchange and Insertion. The corresponding neighbor-
hood are indeed often used to build operators for permutation problems. We also



Table 4. Correlation problems - distances

Problem Instance Size Ham. Adj. Position Lee Swap Inter- Insertion Ulam
Based Change

QAP nug20 20 0.105 0.091 0.031 0.006 -0.005 0.086 0.031 0.001
lipa30 a 30 0.020 0.000 0.006 0.011 0.001 0.018 -0.007 0.006
sko81 81 0.032 0.033 0.034 0.009 0.002 0.015 0.044 0.001

bur26a 26 0.092 0.000 0.104 -0.009 0.012 0.059 0.089 0.032
esc16a 16 -0.001 0.084 -0.001 0.004 -0.006 0.010 0.015 0.002

TSP a280 280 0.001 0.166 0.007 0.002 0.001 0.001 0.021 0.006
berlin52 52 0.000 0.392 0.006 -0.005 0.003 0.003 0.061 -0.002

eil51 51 0.002 0.392 -0.010 0.002 0.000 -0.001 0.069 -0.005
kroD100 100 0.003 0.268 0.003 0.001 0.001 0.000 0.039 0.002
tsp225 225 0.002 0.192 -0.005 -0.001 0.000 -0.002 0.023 -0.001

FlowShop 20 5 01 20 0.089 0.049 0.440 0.020 0.474 0.062 0.278 0.017
20 10 01 20 0.134 0.029 0.465 0.027 0.469 0.086 0.352 0.007
20 20 01 20 0.110 0.018 0.331 0.076 0.315 0.075 0.253 0.031
50 5 01 50 0.040 0.016 0.257 0.001 0.275 0.027 0.163 -0.004
50 10 01 50 0.055 0.037 0.334 0.013 0.342 0.034 0.203 0.010

consider the three selectors: First, Best and Random. According to the definition
of an operator provided in Section 3.1 we have thus nine possible operators.

The purpose of the following experiment is to assess the ability of an opera-
tor to reach an optimal solution using the shortest possible path (i.e., using the
fewest number of permutations). Here, we aim at studying the short term con-
vergence properties of operators for different problems, in order to identify good
candidates for intensification. For different instances of each problem, a permu-
tation is randomly generated at distance n, starting from the optimal known
permutation, with the different neighborhoods associated to the operators. We
observe then if the operator is able to come back to the optimal solution. Tests
have been carried out at various distances from the optimal solution. Here, we
are mainly interested by results obtained at a distance 5 from the optimal solu-
tion. For smaller distances it seems clear that all operators including the ”best”
selection mechanism are likely to return to the optimal solution. Oppositely,
choosing too long distance for small instances leads to search the optimal solu-
tion from a totally random permutation. Table 5 shows results for a distance of
5. Values represent the probabilities of a path built by the operator to reach the
optimal permutation.

The results show the efficiency of the operators with regards to intensification
for the three problems. An operator that frequently reaches the optimal solution
from a distance of 5 is indeed a pertinent operator for the intensification of the
search. This experiment assesses that it is sufficient to reach a distance 5 from
the optimal solution in order to easily reach it with this operator. Nevertheless,
let us notice that maximal distances (i.e., diameters) related to operators are not



Table 5. Ability to find the optimal solution starting at a distance of 5

Swap Interchange Insertion
Problem Instances Size First Best First Best First Best

Improve Improve Improve Improve Improve Improve

20 5 01 20 0.7 0.84 0.05 0.13 0.14 0.3
20 5 02 20 0.54 0.81 0.06 0.15 0.17 0.36

FlowShop 20 10 01 20 0.22 0.48 0 0.2 0.03 0.27
20 10 02 20 0.15 0.5 0.01 0.18 0.02 0.28
50 5 01 50 0.81 0.99 0.44 0.63 0.75 0.87

nug12 12 0.25 0.45 0.13 0.27 0.03 0.09
bur26a 26 0.57 0.77 0.11 0.78 0.01 0.03
els19 19 0.41 0.71 0.1 0.7 0 0.07
lipa40 40 0.58 0.8 0.84 1 0 0.01

QAP sko100a 100 0.86 0.99 0.01 1 0 0.07
chr12a 12 0.12 0.31 0.02 0.25 0 0.02
scr12 12 0.25 0.35 0.17 0.33 0 0.02

lipa40a 40 0.56 0.77 0.9 0.99 0 0.02
wil100 100 0.83 1 0.01 0.99 0 0.05
tai80b 80 0.35 0.83 0 0.98 0 0.05

100 rd100 0.58 0.95 0.00 0.97 0.54 0.99
berlin52 52 0.7 0.96 0.04 0.97 0.47 0.97

eil51 51 0.49 0.92 0.03 0.95 0.29 0.97
TSP kroD100 100 0.62 0.96 0.00 0.97 0.40 0.98

lin105 105 0.7 1 0 0.97 0.49 0.99
tsp225 225 0.8 1 0 1 0.59 1
st70 70 0.65 0.96 0.01 0.95 0.32 0.97

of the same order of magnitude. For instance, the insertion and interchange
have a smaller diameter than swap. We can remark that associations between
operators and problems do not correspond the empirical intuitions. The low
distance is certainly an explanation of this behavior.

6 Design of a Simple Hyperheuristic

In this section, the previous analysis are used in order to define a simple hy-
perheuristic approach for solving the three families of problems. The concept of
hyperheuristic [5] has been initially introduced as ”a heuristics to choose heuris-
tics”. Hyperheuristics manage indeed a set of heuristics and select or combine
them in order to efficiently solve problems. Instead of manually designing a solv-
ing algorithm, an hyperheuristic is used in order to automate the process of
selection, combination or generation of heuristics, aiming at solving different
problems with a single generic solver. There is currently a very active commu-
nity on hyperheursitics and a competition [15] has been launched to compare
different approaches.



In the following, we show that the analysis of the search and operational
landscape of the problems provided previously may help to design simple generic
hyperheuristic for permutation-based problems. Our solving approach is rather
simple and alternates two stages: an intensification phase and a diversification
phase, which allows the search process to escape of local optima [6]. Using pre-
vious experiments, it is possible to characterize operators that promote intensi-
fication or diversification.

6.1 Algorithm

Our hyperheuristic algorithm takes as input a set of operators and an instance of
a problem. Since the swap neighborhood has a larger diameter than the insertion
or interchange neighborhoods, it is not considered in the experiments. Indeed, it
is more difficult to use operators with different diameters if one wants to ensure
fair comparisons. We consider here only two uncorrelated distances interchange
and insertion. This is a restricted choice and other possible distances could
have been considered. The set of possible operators is thus: interchange / first
improve, interchange / best improve, interchange / random, insertion / first
improve, insertion / best improve, insertion / random.

Using previous experiments, we consider the following methodology:

1. Select an operator for the the intensification stage: the algorithm starts with
a study of paths on the instance in order to determine which operator should
be considered for intensification. The algorithm selects thus the operator
with the highest success rate as the intensification operator. The distances
study of Section 4.2 is then used to select the diversification operator.

2. Select an operator for intensification: since the distances interchange and
insertion are weakly correlated, we assume that if an operator using the
insertion neighborhood is selected for intensification, then it may be inter-
esting to select an operator that uses interchange neighborhood for diversifi-
cation (and vice versa). The random selection mechanism will be considered
as selector in order to ensure an efficient diversification.

The hyperheuristic is detailed in Algorithm 2.

6.2 Results

Algorithm 2 has been evaluated on different instances of each problem. The re-
sults have been compared to the best known values and to an algorithm that
selects uniformly an operator at each iteration among the possible ones. A basic
Hill Climbing using a unique operator (combinations of swap, interchange or
insertion and first, best or random selection) has been used, but obtains poor
results in being stuck in local optima. Same experimental conditions are used
to test the different algorithms: a maximum number of iterations is set for each
instance, 20 runs are executed for each instance and the same initial permuta-
tions are used for the hyperheuristic and the random algorithms. Results are
presented in Table 6, in which best values are indicated bold.



input: Instance I, Set of operators
output: Value (according to an objective function f) of the best permutation

found

Require:
(OpIntensification,OpDiversification)← Select− operators(I) {Intensification
operator and diversification obtained by experimentation}
p← Random() {Randomly generated permutation}
best← f(p) {Best fitness}
while not stop condition do
p← HillClimbing(OpIntensification, p) {HillClimbing process}
if f(p) < best then
best← f(p)

end if
p← diversification(p) {Diversification process}

end while
return best

Algorithm 2: Hyperheuristic algorithm

We can remark that whatever the instance, the hyperheuristic obtains signifi-
cantly better results than those obtained by the algorithm with uniform selection,
both in terms of best result and average. This difference shows the importance of
carefully choosing operators for intensification and diversification. One can also
note that as well as being generic, hyperheuristic obtained reasonable results
with regards best-known ones – even for large instances, especially considering
QAP and flowshop problems. Note that this algorithm is generic in comparison
to problem-dedicated algorithms for these well-known problems. Our study can
be extended to more operators and problems. Our purpose here was rather to
highlight that studying the search space as well as the search landscape may be
useful to devise generic hyperheuristics.

7 Conclusion

In this paper, an analysis of operators for permutation-based problems is pro-
posed. Properties of distance measures, neighborhood and selection mechanisms
were observed for different permutation-based problems, and provide a better un-
derstanding of the relative efficiency of operators. Known relationships between
operators and problems have been confirmed. Moreover, collected informations
can be used to automate the choice of operators for different permutation-based
problems. We have proposed a simple hyperheuristic using these operators prop-
erties. Further studies will include more combinatorial experiments with more
operators and problem instances.
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