Pierre Desport

Matthieu Basseur

Adrien Goëffon

Frédéric Lardeux

Frédéric Saubion

Empirical Analysis of Operators for Permutation Based Problems

This paper presents an analysis of different possible operators for local search algorithms in order to solve permutation-based problems. These operators can be defined by a distance metric that define the neighborhood of the current configuration, and a selector that chooses the next configuration to be explored within this neighborhood. The performance of local search algorithms strongly depends on their ability to efficiently explore and exploit the search space. We propose here a methodological approach in order to study the properties of distances and selectors in order to buildtheir performances operators that can be used either for intensification of the search or for diversification stages. Based on different observations, this approach allows us to define a simple generic hyperheuristic that adapt the choice of its operators to the problem at hand and that manages their use in order to ensure a good trade-off between intensification and diversification. Moreover this hyperheuristic can be used on different permutation-based problems.

Introduction

Many optimization problems can be modeled as permutation problems (e.g., flowshop, traveling salesman or quadratic assignment problems). Dedicated efficient solving methods have been proposed for these problems, but their performance often depend on the considered instances and use most of the time ad-hoc heuristics and/or techniques. Therefore, given a new permutation problem a non-expert user would hardly be able to design a solving algorithm using components that she/he could re-use from previous experiments. A recent trend in optimization consists in promoting more autonomous techniques for the design of search algorithms [START_REF] Hamadi | What is autonomous search?[END_REF], either by automating the tuning of their parameters [START_REF] Hoos | Autonomous Search[END_REF], by dynamically controlling their behaviour [START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF] or by automating their design [START_REF] Burke | Handbook of Meta-heuristics[END_REF]. Focusing on this latest aspect, hyperheuristics [START_REF] Burke | A Classification of Hyper-heuristic Approaches[END_REF] is a generic paradigm that can be used to manage a set of efficient heuristics in order to solve a sufficiently large set of problem instances, without a priori knowledge. The main principle of hyperheuristics is to adapt the solving process to the given instance at hand. Considering a set of possible heuristics that can be applied on a given problem, one may select the best heuristics with regards to the characteristics and properties of this problem and/or change heuristics during the solving process, according to the current state of the search. Of course, this high level management of the solving heuristics requires to define sufficiently general heuristics and to gather pertinent information on them. In this paper, our focus on permutation problems allows us to consider a sufficiently large family of problems which can be handled by a set of common search operators (from now on we use the generic term operator for our basic search heuristics). These operators, defined in a local search fashion [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF], aim at selecting the next configuration of the search space that will be examined by an incremental search process. Such an operator can easily be defined by (1) a notion of neighborhood of the current configuration, thanks to a distance measure, and (2) a selection function within this neighborhood. One aim of this work is thus to carefully study the behaviour of these search operators with regards to different instances of well known permutation problems. Note that different studies on distances for permutation problems have been conducted [START_REF] Deza | Metrics on permutations, a survey[END_REF][START_REF] Schiavinotto | A review of metrics on permutations for search landscape analysis[END_REF]. Here we focus on how operators, which use such distances, can be compared and efficiently chosen with regards to a given instance of a problem. Note that the dynamic control of operators in local search has been studied in [START_REF] Veerapen | An exploration-exploitation compromisebased adaptive operator selection for local search[END_REF]. Our approach can be more related to landscape analysis [START_REF] Marmion | A Fitness Landscape Analysis for the Permutation Flowshop Scheduling Problem[END_REF]. An analysis of the correlations between the two basic above-mentioned components of operators would help us to better understand their characteristics and to define a simple hyperheuristic to manage them.

This paper is organized as follow. Basic notions on permutations are recalled in Section 2. Main concepts concerning local search for combinatorial optimization problems are presented in Section 3. The next sections are devoted to the analysis of search landscapes induced by the static structures of the problems, as well as the operational behaviour of local search operators. A simple hyperheuristics is then defined in Section 6 in order to illustrate how previous observations can be used to improve solving algorithms.

Basic Notions for Permutations

Permutations

A permutation of n elements is an arrangement of these n objects sorted in a specific order where they appear only once. The group of permutations [START_REF] Praeger | Finite primitive permutation groups: A survey[END_REF] can be defined as the group of bijections from X to X where X is a non-empty finite set. Let [n] be a set of objects [n] = {1..n}. A permutation π is a bijective assignment on [n] such that π(i) is the element at position i in the permutation π and pos π (i) is the position of the element i in the permutation π. Π([n]) is the set of permutations on [n], whose cardinality is thus n!. Given [n] = {1, 2, 3, 4}, π = (1, 2, 3, 4) or π = (2, 1, 4, 3) are two possible permutations.

Identity. Let π ∈ Π([n]
), the identity permutation I is defined as the permutation that assigns each element of π to itself, i.e. ∀i ∈ {1..n},

I(i) = i. Product of permutations. Let π 1 , π 2 ∈ Π([n]), π 1 (i) * π 2 (i) = π 2 (π 1 (i))∀i ∈ [n]. Note that π 1 * π 2 = π 2 * π 1 . The neutral element of the product is I (i.e., ∀π, π * I = I * π = π).
Inverse. The inverse permutation can be defined using the identity permutation π -1 can be constructed from π using the property: π -1 (i) = pos π (i). For instance, if π = (2, 3, 4, 1), then π -1 = (4, 1, 2, 3).

Let us recall now some properties of permutations.

Adjacency Given a permutation π ∈ Π([n]), two elements i and j are adjacent in π if |pos π (i) -pos π (j)| = 1.

Longest Increasing Sequence (LIS). Given a permutation π, the longest increasing subsequence LIS(π) corresponds to the longest subsequence of elements of π that are sorted in ascending order. For instance, for π = (1, 3, 2, 4) the longest increasing subsequences are [START_REF] Hamadi | What is autonomous search?[END_REF][START_REF] Hoos | Autonomous Search[END_REF][START_REF] Burke | Handbook of Meta-heuristics[END_REF] and [START_REF] Hamadi | What is autonomous search?[END_REF][START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF][START_REF] Burke | Handbook of Meta-heuristics[END_REF].

Longest Common Subsequence (LCS) The longest common subsequence of two permutations π 1 , π 2 ∈ Π([n]) is LCS(π 1 , π 2) = {i ∈ {1..n}|p 1 (i) = p 2 (i)}.
For instance, with π 1 = (2, 4, 3, 1, 5, 6) and π 2 = (1, 2, 3, 5, 4, 6), LCS(π 1 , π 2) = {2, 3, 5, 6}.

Distance on Permutations

Table 1 presents different distance indicators which will be considered in the rest of the paper. The diameter of a distance measure represents the maximal distance between all permutations. Note that, as an example, the last column corresponds to the distance between the two following permutations (# is the cardinality function):

π 1 = [START_REF] Hamadi | What is autonomous search?[END_REF][START_REF] Hoos | Autonomous Search[END_REF][START_REF] Maturana | Adaptive Operator Selection and Management in Evolutionary Algorithms[END_REF][START_REF] Burke | Handbook of Meta-heuristics[END_REF][START_REF] Burke | A Classification of Hyper-heuristic Approaches[END_REF][START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF][START_REF] Deza | Metrics on permutations, a survey[END_REF][START_REF] Schiavinotto | A review of metrics on permutations for search landscape analysis[END_REF][START_REF] Veerapen | An exploration-exploitation compromisebased adaptive operator selection for local search[END_REF][START_REF] Marmion | A Fitness Landscape Analysis for the Permutation Flowshop Scheduling Problem[END_REF][START_REF] Praeger | Finite primitive permutation groups: A survey[END_REF][START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF][START_REF] Dudek | The lessons of flowshop scheduling research[END_REF][START_REF] Reinelt | Tsplib-a traveling salesman problem library[END_REF][START_REF] Burke | Cross-domain heuristic search challenge[END_REF] and, π 2 = (15, 3, 1, 11, 2, 7, 9, 10, 4, 14, 6, 12, 5, 13, 8).

Table 1. Distances for permutations.

Distances

Formula (π1 and π2 are permutations) Diameter Ex.

Hamming #{i|i ∈ {1..n}, π1(i) = π2(i)} n 14 Adjacency n -1 -#{1 ≤ i|adjπ 2 (π1(i), π1(i + 1))} n -1 13 Position n i=1 |posπ 1 (i) -posπ 2 (i)| 2 n/2 n/2 62 Lee n i=1 min(|π1(i) -π2(i)|, n -|π1(i) -π2(i)|) n(n/2) 48 Swap #{(i, j)|1 ≤ i < j ≤ n, posπ 2 (π1(j)) < posπ 2 (π1(i))} n(n -1)/2 44 Interchange n -c(π -1 1 * π2) n -1 12 Ulam n -length(LIS(π -1 1 * π2)) n -1 9 Insertion n -length(LCS(π1, π2)) n -1 8
Note that the interchange distance requires a function, computing the number of permutation cycles which composes a permutation [START_REF] Schiavinotto | A review of metrics on permutations for search landscape analysis[END_REF].

Let us define the components of a local search algorithm in the context of solving optimization problems [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF].

General Definitions

Optimization Problem An optimization problem is a pair (S, f) where S is a search space whose elements represent solutions (or configurations) of the problem and f : S → R is an objective function. An optimal solution (for maximization problems) is an element s * ∈ S such that ∀s ∈ S, f (s *) f (s).

Local Search Given an optimization problem, a local search (LS) process consists in starting from an initial configuration and in applying repeatedly basic move operators in order to reach an optimal solution. The trace obtained by such a search process is usually called a search path. An operator is thus a function that returns the next configuration for building the search path. In its simplest form, a move performs the selection of the next configuration to be explored within the neighborhood of the current configuration. A generic and basic outline of an LS metaheuristic is the application of an operator in a simple loop as illustrated in Algorithm 1 where the SpecificAction() method represents a step specific to the type of metaheuristic used such as a perturbation (e.g., Iterated Local Search [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF]) or enforcing prohibitions (e.g., Tabu Search). s ← initial configuration; s * ← s; while end condition not met do s ← op(s); if eval(s) < eval(s *) then s * ← s; SpecificAction(); end return s * Algorithm 1: Algorithmic outline of an LS metaheuristic for minimization Neighborhood Let S be the search space of candidate solutions. A neighborhood relation is an irreflexive binary relation N ⊆ S 2 over the search space. In most cases, the relation is also symmetric.

Search Paths Given a neighborhood relation N , the set of search paths is defined as

P N = {s 1 • • • s n ∈ S * | ∀i > 1, (s i-1 , s i) ∈ N },
where S * represents the set of words constructed over S. Therefore any pair (s, s) of elements of S, such that 1 (s, s) ∈ N + , defines an equivalence class over the set P N which corresponds to all paths that link s to s . This subset is denoted by P N (s, s). In most cases, the neighborhood should be complete, i.e. ∀s, s ∈ S, P N (s, s) = ∅.

Distances induced by neighborhood

The neighborhood relation defines the structure of the search space. The distance between s and s can therefore be defined as d N (s, s) = min p∈P N (s,s) |p|, where |p| is the classic word length and d N (s, s) = 0. If d define a distance, then N is necessarily symmetric. Note that a neighborhood induces a distance on the search space but, conversely, a distance on the search space can easily be used to define a neighborhood.

Local Search Operators An operator is defined by two main components: neighborhood and selection process. A selector is a function that performs a selection over a neighborhood, eventually guided by the ordering <, and is defined as σ : S × 2 S 2 → S (here the selection returns only one neighbor), such that (s, σ(s, N)) ∈ N = (the reflexive closure of S in order to include identity). Note that the selectors may include randomization for computing their results (e.g., random choice of a neighbor). Let us consider three classic different selectors:

-First improve (select the first improving neighbor from a randomly ordered set of neighbors), -Best improve (select the best neighbor), -Random choice (randomly chosen neighbor).

An operator is fully defined by a pair (N , σ).

Search Landscape. The search landscape is usually defined by the search space and the objective function that should be maximized (without loss of generality). The ordering relation < over S corresponds to the order induced by the fitness function of the problem.

Operational Landscape. The operational structure of local search is defined by the possible moves in the search landscape according to a neighborhood relation. Again, we consider the paths induced by an operator o = (N , σ) :

P o = n>1 {s 1 • • • s n ∈ S * |∀i > 1, s i = σ(s i-1 , N)}
Here, we should note that we only have the inclusion P o ⊆ P N , since some neighborhood paths cannot be necessarily constructed by the operators as soon as it includes a selection process among the neighbors. Moreover, if there exists a path in P o linking s to s , there does not necessarily exist a path from s to s. Therefore, due to this non symmetric aspect of operators, it is not obvious to use a simple distance over the paths created by the operators. Now we may handle multiple move operators local search by composing neighborhood relations and selectors.

Permutations Based Problems

According to the previous definitions, a permutation based problem is a problem such that S = Π([n]). Many combinatorial optimization problems can be formulated as permutation-based problems, most of them being NP-hard. In this section we recall three well-known permutation problems that will be used in our experiments.

Quadratic Assignment Problem. Quadratic assignment problem (QAP) [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF] models a facilities location problem. The objective of QAP is to assign n facilities to n locations in order to minimize the assignment cost. It may be formalized as follows:

let f ij the flow between facilities i and j, let d ij the distance between locations i and j, minimize:

n i,j=1 f ij d π(i)π(j) .
Flowshop Problem. The flowshop problem [START_REF] Dudek | The lessons of flowshop scheduling research[END_REF] is a scheduling problem where the goal is to find the best planning to achieve n jobs on m different machines, minimizing the makespan (total completion time), considering the following constraints :

-All jobs must be processed by all machines, -A machine can deal with only one job at any time t, -A job can be processed only by one machine at any time t.

Here we consider that the processing order of the jobs on the machine is always the same. The goal is to find a permutation π representing a processing order of the jobs that minimizes the makespan function C max = max{s iM +p iM |i ∈ [1..n] and M ∈ [1..m]} where:

p ij is the time for the machine i to process the job i, s ij is the starting time of the job i on the machine j.

Traveling Salesman Problem. The traveling salesman problem (TSP) [START_REF] Reinelt | Tsplib-a traveling salesman problem library[END_REF] consists in finding the shortest path in order to visit n cities without visiting any city twice. This constraint is easily enforced by using permutations to represent configurations of the problem. For a permutation π, each element is a city. Given a matrix D such that d ij corresponds to the distance between city i and city j, the objective function to minimize is [START_REF] Hamadi | What is autonomous search?[END_REF] . Here, we restrict our study to symmetric TSP (i.e., d ij = d ji ∀i, j ∈ {1, 2, .., n}).

n-1 i=1 d π(i)π(i+1) + d π(n)π
In this section, we propose a first study of the search landscape corresponding to the previously selected permutation problems. Our purpose is to highlight how suitable but yet generic local search operators can be defined. We will first study the search landscape from a static point of view by using distance indicators on permutations that have been presented in Section 2.2. This will allow us to exhibit correlations between distances as well as correlations between problems and distances. Before starting our experiments, let us observe what are the typical topological characteristics of our problems, computing the maximal theoretical and the average distances between two permutations.

Search Space Diameters

The following results will help us to better interpret our further studies. Table 2 provides maximal theoretical (max) and average (avg) distances for three instances. Note that here the original problems have no influence since we consider only the search landscape, which only depends on the size of the permutation. We output here instances from size 20 to 100 in order to highlight the relative differences between distances. Results show similar properties when considering larger instances. Average results are obtained by computing the distance between 10 5 pairs of randomly generated permutations.

Search Space: Correlation Between Distances

The purpose of this first experiment is to compare the distance indicators. Table 3 shows correlations of distances obtained for 10 5 randomly generated pairs of permutations. Let us recall that the problem under consideration have no influence on the results. We considered two close sizes (20 and 26) and a larger one (100) in order to obtain different effects. Nevertheless, correlations do not depend on the size, as observed here. This study can be related to the work presented in [START_REF] Schiavinotto | A review of metrics on permutations for search landscape analysis[END_REF] but with additional metrics. Moreover, the experimental process is slightly different even if similar conclusions are reported.

The correlation coefficient cf corresponds to the intensity of the connection between two sets of values and has a value ranging in [-1 , 1]. Two sets are said to be strongly correlated if |cf | > 0.5.

cf (x, y) = n i=1 (x i -x) * (y i -ȳ) n i=1 (x i -x) 2 * n i=1 (y i -ȳ) 2
where x and ȳ are the mean values of x and y. Note that the correlation between distances is measured only on the distances obtained between permutations. The objective function of the problem is not involved in the process (only the size of the studied instances influences the results rather than the type of problem). We can observe in Table 3 that distances can be grouped by sets of correlated distances: {Hamming, Interchange}, {Adjacency}, {Lee}, {Swap, P ositionBased, Insertion}, {U lam}. This first observation may help us to select distances for either building search operator or better controlling the search process with a specific heuristic. For instance, if a search algorithm using Hamming distance requires diversification, it seems intuitively appropriated to use another distance that is weakly correlated (for instance Lee distance).

Search Landscape: Correlation between Problems and Distances

The correlation between the objective function of a problem and the neighborhood relation used to define operators is obviously an important feature to ensure good performance for a LS algorithm. Ideally, if distances between configurations are proportional to their objective values difference, then it is easier to reach good solutions, since moves can be clearly guided by improvement strategies.

In table 4 we examine the correlation between the distance indicators and the problems introduced previously, considering the search landscapes induced by their objectives functions. Instances whose known optimal solution are used to study this correlation. The distance between the optimal permutation and a randomly generated permutation is computed as well as the difference between their objective function values. This process is repeated 10 5 times in order to obtain a correlation value between distances and problems. Results are presented in Table 4.

In Table 4 no strong correlation can be observed. Considering QAP, due to its quadratic objective function, it is very difficult to define a metric that can be correlated to the fitness. For the flowshop problem, distances which induce less perturbations in the objective function values of the configurations, show better results as observed for Swap or Insertion indicators. Similar observation can be done for TSP using Adjacency. Nevertheless, the correlation depends on the size of the considered problems since random points can be far from the optimal solution for problems with large diameters.

Analysis of the Operational Landscape

We now turn to the operational point of view by considering search operators that can be used in a local search algorithm. Using the previous results and in order to avoid too combinatorial experiments, we consider only the following classic distances: Swap, Interchange and Insertion. The corresponding neighborhood are indeed often used to build operators for permutation problems. We also consider the three selectors: First, Best and Random. According to the definition of an operator provided in Section 3.1 we have thus nine possible operators. The purpose of the following experiment is to assess the ability of an operator to reach an optimal solution using the shortest possible path (i.e., using the fewest number of permutations). Here, we aim at studying the short term convergence properties of operators for different problems, in order to identify good candidates for intensification. For different instances of each problem, a permutation is randomly generated at distance n, starting from the optimal known permutation, with the different neighborhoods associated to the operators. We observe then if the operator is able to come back to the optimal solution. Tests have been carried out at various distances from the optimal solution. Here, we are mainly interested by results obtained at a distance 5 from the optimal solution. For smaller distances it seems clear that all operators including the "best" selection mechanism are likely to return to the optimal solution. Oppositely, choosing too long distance for small instances leads to search the optimal solution from a totally random permutation. Table 5 shows results for a distance of 5. Values represent the probabilities of a path built by the operator to reach the optimal permutation.

The results show the efficiency of the operators with regards to intensification for the three problems. An operator that frequently reaches the optimal solution from a distance of 5 is indeed a pertinent operator for the intensification of the search. This experiment assesses that it is sufficient to reach a distance 5 from the optimal solution in order to easily reach it with this operator. Nevertheless, let us notice that maximal distances (i.e., diameters) related to operators are not of the same order of magnitude. For instance, the insertion and interchange have a smaller diameter than swap. We can remark that associations between operators and problems do not correspond the empirical intuitions. The low distance is certainly an explanation of this behavior.

Design of a Simple Hyperheuristic

In this section, the previous analysis are used in order to define a simple hyperheuristic approach for solving the three families of problems. The concept of hyperheuristic [START_REF] Burke | A Classification of Hyper-heuristic Approaches[END_REF] has been initially introduced as "a heuristics to choose heuristics". Hyperheuristics manage indeed a set of heuristics and select or combine them in order to efficiently solve problems. Instead of manually designing a solving algorithm, an hyperheuristic is used in order to automate the process of selection, combination or generation of heuristics, aiming at solving different problems with a single generic solver. There is currently a very active community on hyperheursitics and a competition [START_REF] Burke | Cross-domain heuristic search challenge[END_REF] has been launched to compare different approaches.

In the following, we show that the analysis of the search and operational landscape of the problems provided previously may help to design simple generic hyperheuristic for permutation-based problems. Our solving approach is rather simple and alternates two stages: an intensification phase and a diversification phase, which allows the search process to escape of local optima [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF]. Using previous experiments, it is possible to characterize operators that promote intensification or diversification.

Algorithm

Our hyperheuristic algorithm takes as input a set of operators and an instance of a problem. Since the swap neighborhood has a larger diameter than the insertion or interchange neighborhoods, it is not considered in the experiments. Indeed, it is more difficult to use operators with different diameters if one wants to ensure fair comparisons. We consider here only two uncorrelated distances interchange and insertion. This is a restricted choice and other possible distances could have been considered. The set of possible operators is thus: interchange / first improve, interchange / best improve, interchange / random, insertion / first improve, insertion / best improve, insertion / random.

Using previous experiments, we consider the following methodology:

1. Select an operator for the the intensification stage: the algorithm starts with a study of paths on the instance in order to determine which operator should be considered for intensification. The algorithm selects thus the operator with the highest success rate as the intensification operator. The distances study of Section 4.2 is then used to select the diversification operator. 2. Select an operator for intensification: since the distances interchange and insertion are weakly correlated, we assume that if an operator using the insertion neighborhood is selected for intensification, then it may be interesting to select an operator that uses interchange neighborhood for diversification (and vice versa). The random selection mechanism will be considered as selector in order to ensure an efficient diversification.

The hyperheuristic is detailed in Algorithm 2.

Results

Algorithm 2 has been evaluated on different instances of each problem. We can remark that whatever the instance, the hyperheuristic obtains significantly better results than those obtained by the algorithm with uniform selection, both in terms of best result and average. This difference shows the importance of carefully choosing operators for intensification and diversification. One can also note that as well as being generic, hyperheuristic obtained reasonable results with regards best-known ones -even for large instances, especially considering QAP and flowshop problems. Note that this algorithm is generic in comparison to problem-dedicated algorithms for these well-known problems. Our study can be extended to more operators and problems. Our purpose here was rather to highlight that studying the search space as well as the search landscape may be useful to devise generic hyperheuristics.

Conclusion

In this paper, an analysis of operators for permutation-based problems is proposed. Properties of distance measures, neighborhood and selection mechanisms were observed for different permutation-based problems, and provide a better understanding of the relative efficiency of operators. Known relationships between operators and problems have been confirmed. Moreover, collected informations can be used to automate the choice of operators for different permutation-based problems. We have proposed a simple hyperheuristic using these operators properties. Further studies will include more combinatorial experiments with more operators and problem instances.

Table 2 .

 2 Diameter and average distances

	Instance	Ham. Adj. Position Lee Swap Inter-Insertion Ulam
				Based		change	
	Inst. 1 max 20	19	200	200 190	19	19	19
	(size 20) avg 19	17	133	100 95	16	13	14
	Inst. 2 max 26	25	338	338 325	25	25	25
	(size 26) avg 25	23	225	169 162	22	18	19
	Inst 3. max 100 99 5000 5000 4950 99	99	99
	(size 100) avg 99	97 3331 2500 2475 95	92	93

Table 3 .

 3 Correlation distances -distances

	Instance	Distance	Ham. Adj. Position Lee Swap Inter-Insertion Ulam
			Based	Change
	Size 20	Hamming 1.000 0.004 0.360 0.393 0.226 0.672	0.214	0.168
		Adjacency 0.004 1.000 -0.003 0.001 -0.005 0.026	0.087 -0.005
		PositionBased 0.360 -0.003 1.000 0.142 0.939 0.243	0.605 0.061
		Lee	0.393 0.001 0.142 1.000 0.090 0.261	0.088	0.308
		Swap	0.226 -0.005 0.939 0.090 1.000 0.148	0.621 0.040
		Interchange 0.672 0.026 0.243 0.261 0.148 1.000	0.124	0.098
		Insertion	0.214 0.087 0.605 0.088 0.621 0.124	1.000 0.038
		Ulam	0.168 -0.005 0.061 0.308 0.040 0.098	0.038 1.000
	Size 26	Hamming 1.000 0.026 0.302 0.344 0.188 0.640	0.189	0.132
		Adjacency 0.026 1.000 0.005 0.005 0.000 0.021	0.089	0.008
		PositionBased 0.302 0.005 1.000 0.093 0.941 0.200	0.589 0.050
		Lee	0.344 0.005 0.093 1.000 0.050 0.213	0.061	0.286
		Swap	0.188 0.000 0.941 0.050 1.000 0.121	0.594 0.027
		Interchange 0.640 0.021 0.200 0.213 0.121 1.000	0.111	0.077
		Insertion	0.189 0.089 0.589 0.061 0.594 0.111	1.000 0.040
		Ulam	0.132 0.008 0.050 0.286 0.027 0.077	0.040	1.000
	Size 100 Hamming 1.000 0.003 0.220 0.242 0.137 0.575	0.137	0.081
		Adjacency 0.003 1.000 0.001 0.003 0.000 0.009	0.059	0.001
		PositionBased 0.220 0.001 1.000 0.056 0.944 0.127	0.557 0.018
		Lee	0.242 0.003 0.056 1.000 0.037 0.137	0.035	0.228
		Swap	0.137 0.000 0.944 0.037 1.000 0.077	0.532 0.011
		Interchange 0.575 0.009 0.127 0.137 0.077 1.000	0.071	0.044
		Insertion	0.137 0.059 0.557 0.035 0.532 0.071	1.000 0.015
		Ulam	0.081 0.001 0.018 0.228 0.011 0.044	0.015 1.000

Table 4 .

 4 Correlation problems -distances

	Problem Instance Size Ham. Adj. Position Lee Swap Inter-Insertion Ulam
			Based	Change
	QAP	nug20 20 0.105 0.091 0.031 0.006 -0.005 0.086	0.031 0.001
		lipa30 a 30 0.020 0.000 0.006 0.011 0.001 0.018	-0.007 0.006
		sko81 81 0.032 0.033 0.034 0.009 0.002 0.015	0.044 0.001
		bur26a 26 0.092 0.000 0.104 -0.009 0.012 0.059	0.089 0.032
		esc16a 16 -0.001 0.084 -0.001 0.004 -0.006 0.010	0.015 0.002
	TSP	a280 280 0.001 0.166 0.007 0.002 0.001 0.001	0.021 0.006
		berlin52 52 0.000 0.392 0.006 -0.005 0.003 0.003	0.061 -0.002
		eil51	51 0.002 0.392 -0.010 0.002 0.000 -0.001	0.069 -0.005
		kroD100 100 0.003 0.268 0.003 0.001 0.001 0.000	0.039 0.002
		tsp225 225 0.002 0.192 -0.005 -0.001 0.000 -0.002	0.023 -0.001
	FlowShop 20 5 01 20 0.089 0.049 0.440 0.020 0.474 0.062	0.278 0.017
		20 10 01 20 0.134 0.029 0.465 0.027 0.469 0.086	0.352 0.007
		20 20 01 20 0.110 0.018 0.331 0.076 0.315 0.075	0.253 0.031
		50 5 01 50 0.040 0.016 0.257 0.001 0.275 0.027	0.163 -0.004
		50 10 01 50 0.055 0.037 0.334 0.013 0.342 0.034	0.203 0.010

Table 5 .

 5 Ability to find the optimal solution starting at a distance of 5

				Swap	Interchange	Insertion
	Problem Instances Size	First	Best	First	Best	First	Best
				Improve Improve Improve Improve Improve Improve
		20 5 01	20	0.7	0.84	0.05	0.13	0.14	0.3
		20 5 02	20	0.54	0.81	0.06	0.15	0.17	0.36
	FlowShop 20 10 01 20	0.22	0.48	0	0.2	0.03	0.27
		20 10 02 20	0.15	0.5	0.01	0.18	0.02	0.28
		50 5 01	50	0.81	0.99	0.44	0.63	0.75	0.87
		nug12	12	0.25	0.45	0.13	0.27	0.03	0.09
		bur26a	26	0.57	0.77	0.11	0.78	0.01	0.03
		els19	19	0.41	0.71	0.1	0.7	0	0.07
		lipa40	40	0.58	0.8	0.84	1	0	0.01
	QAP	sko100a 100	0.86	0.99	0.01	1	0	0.07
		chr12a	12	0.12	0.31	0.02	0.25	0	0.02
		scr12	12	0.25	0.35	0.17	0.33	0	0.02
		lipa40a	40	0.56	0.77	0.9	0.99	0	0.02
		wil100	100	0.83	1	0.01	0.99	0	0.05
		tai80b	80	0.35	0.83	0	0.98	0	0.05
		100	rd100 0.58	0.95	0.00	0.97	0.54	0.99
		berlin52 52	0.7	0.96	0.04	0.97	0.47	0.97
		eil51	51	0.49	0.92	0.03	0.95	0.29	0.97
	TSP	kroD100 100	0.62	0.96	0.00	0.97	0.40	0.98
		lin105	105	0.7	1	0	0.97	0.49	0.99
		tsp225	225	0.8	1	0	1	0.59	1
		st70	70	0.65	0.96	0.01	0.95	0.32	0.97

 The results have been compared to the best known values and to an algorithm that selects uniformly an operator at each iteration among the possible ones. A basic Hill Climbing using a unique operator (combinations of swap, interchange or insertion and first, best or random selection) has been used, but obtains poor results in being stuck in local optima. Same experimental conditions are used to test the different algorithms: a maximum number of iterations is set for each instance, 20 runs are executed for each instance and the same initial permutations are used for the hyperheuristic and the random algorithms. Results are presented in Table6, in which best values are indicated bold. Instance I, Set of operators output: Value (according to an objective function f) of the best permutation found

	Require:
	(OpIntensif ication, OpDiversif ication) ← Select -operators(I) {Intensification
	operator and diversification obtained by experimentation}
	p ← Random() {Randomly generated permutation}
	best ← f (p) {Best fitness}
	while not stop condition do
	p ← HillClimbing(OpIntensif ication, p) {HillClimbing process}
	if f (p) < best then
	best ← f (p)
	end if
	p ← diversif ication(p) {Diversification process}
	end while
	return best
	Algorithm 2: Hyperheuristic algorithm

input:

Table 6 .

 6 Results

	Instance Size	Hyperheuristic best avg.	s.d.	Best known	best	Uniform avg.	s.d.
						TSP			
	Berlin52 52	7542	7912	175.6	7542	8282	8486.4 131.5
	eil51	51	432	438.6		5.7	426	445	457.8	7.8
	st70	70	690	711.4		13.9	675	772	821.8	25.5
	kroD100 100 23627 25380.9 1332.73 21294	26333 32151.5 2292.3
	lin105 105 15761	17785 1196.3 14379	17910 22387.5 1927.1
	rd100 100	8748	9111.1 275.7	7910	10509 11483.3 635.6
	tsp225 225	4824	5157.6 269.03	3919	8113 10038.68 2061.6
					FlowShop		
	20 5 01 20	1278	1278		0	1278	1278	1283.8	7.0
	20 5 02 20	1359	1359.2		0.4	1359	1360	1360.4	1.2
	20 10 01 20	1583	1584.9		2.9	1582	1600	1606.1	6.6
	20 10 02 20	1660	1666.4		3.1	1659	1675	1689.9	9.2
	50 5 01 50	2724	2724		0	2724	2724	2724	0
						QAP			
	Bur26a 26 5426670 5427870 1784 5426670 54322537 5435020 1460.8
	tai50a 50 5067098 5074390 6361.6 4938796 5241678 5280400 27268.1
	lipa40a 40	31645 31857.3 72.6	31538	32034 32052.7 11.3
	sko100a 100 152560 153183 408.4 152002 155372 156912 1021.3
	wil100a 100 274034 274553 365.7 273038 275750 278877 1335.3

N + is the transitive closure of N .