
HAL Id: hal-01891504
https://hal.science/hal-01891504v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model and Combinatorial Optimization Methods for
Tactical Planning in Closed-Loop Supply Chains

Pierre Desport, Frédéric Lardeux, David Lesaint, Anne Liret, Carla Di
Cairano-Gilfedder, Gilbert Owusu

To cite this version:
Pierre Desport, Frédéric Lardeux, David Lesaint, Anne Liret, Carla Di Cairano-Gilfedder, et al.. Model
and Combinatorial Optimization Methods for Tactical Planning in Closed-Loop Supply Chains. 2016
IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2016, San Jose,
France. �10.1109/ICTAI.2016.0137�. �hal-01891504�

https://hal.science/hal-01891504v1
https://hal.archives-ouvertes.fr


Model and Combinatorial Optimization Methods for
Tactical Planning in Closed-Loop Supply Chains

Pierre Desport
LERIA, Université d’Angers, France
Email: pierre.desport@univ-angers.fr

Anne Liret
BT France, France

Email: anne.liret@bt.com

Frédéric Lardeux
LERIA, Université d’Angers, France

Email: frederic.lardeux@univ-angers.fr

Carla Di Cairano-Gilfedder
BT Group plc, UK

Email: carla.dicairano-gilfedder@bt.com

David Lesaint
LERIA, Université d’Angers, France
Email: david.lesaint@univ-angers.fr

Gilbert Owusu
BT Group plc, UK

Email: gilbert.owusu@bt.com

Abstract—This paper proposes a constraint optimization model
accepting different network topologies, site functions and dis-
tribution/transfer policies, applies it to a real case study or
closed-loop supply chains in telecommunications services, and
compares two approaches-a mixed-integer programming and a
metaheuristics –to solve this problem. Its cost function is a linear
combination of storage, transport, backorder and repair costs.
We report experiments on pseudo random instances designed to
evaluate plan quality and impact of cost weightings. Experiments
validate approaches and compare our 2 methods. Finally, we
discuss the possible extensions of the model to fit other specific
cases and create interest among supply chain experts.

I. INTRODUCTION

Reverse logistics and closed-loop supply chains (CLSC)
have gained attention in recent years following growing con-
cerns over the environmental and economic impact of products
reaching end-of-life [3, 11]. Generally speaking, the aim is to
recapture business value from used products through return,
repair and disposal operations. CLSC extend traditional supply
chains by coupling such operations with standard production
and distribution operations. Figure 1 illustrates a CLSC that
supports field service activities in the telecommunications
domain. This CLSC distributes and recycles the many different
parts (cables, network cards, IT equipment, etc.) used by
engineers to carry out maintenance and repair activities on
customer premises and telecommunications exchanges [2]. It
is organized around a distribution center that replenishes field
depots with healthy items (i.e., spare parts) which engineers
then pick-up and use. Once their activities completed, engi-
neers place faulty items in field depots which are then returned
to the distribution center for repair following opposite routes
in the supply chain.

Approaches to allocate inventory in CLSC differ depending
on whether demand is stochastic or deterministic (see [6] for a
comprehensive review). Field repair activities for instance are
often ill-specified and the volume and type of healthy items
required on each site cannot be forecast with certainty. Reac-
tive and decentralized approaches prevail in such environments
and inventory control models (economic order quantity, re-
order point, order-up-to-level, . . . ) coupled with analytical or
simulation methods are used to reduce service down-time and

minimize inventory holding, transfer and repair costs [7, 9].
Conversely, service maintenance and provision activities which
are scheduled in advance and involve replacing or installing
specific parts allow the generation of accurate demand fore-
casts. In such settings, combinatorial optimization methods
can be leveraged to design centralized planning systems that
propose transfer and repair actions based on forecasts. We
follow this approach and present a mixed integer programme
(MIP) to address tactical distribution planning in CLSC under
deterministic demand.

Given current inventory levels and a demand forecast over
a discretized time horizon, the tactical distribution planning
problem (TDPP) consists in generating a consistent and opti-
mal plan of supply (i.e., transfer of healthy items), return (i.e.,
transfer of faulty items) and repair actions to be implemented
on the different sites at the chosen times. Plans must primarily
comply with the network routes and transfer schedules of the
CLSC. These constraints define a space-time graph whose arcs
encode all possible actions in terms of source site, destination
site, start time and lead-time. A plan thus corresponds to the
labelling of a subgraph, i.e., a choice of actions (arcs) and, for
each action, the number of items at stake. Note that TDPP
allows to model CLSC featuring multi-functional sites (i.e.,
demand fulfillment, repair capability, healthy/faulty inventory).
It is thus applicable to a wide range of CLSC including multi-
level networks with single inventory and repair warehouse
centers [2], field depots equipped with remanufacturing ca-
pabilities [10] and warehouse centers meeting local demand
[1].

Beyond topological and temporal constraints, plans are
subject to flow constraints and a conventional inventory man-
agement policy. Flow constraints simply propagate planned
actions on inventory levels by matching demand, backorders,
and outgoing inventory with on-hand inventory and incoming
inventory on each site. The inventory management policy is
enforced on all sites and gives priority to the fulfilment of
local demand. Specifically, the policy forbids backordering
when inventory is available and forbids transferring or carrying
inventory when orders are outstanding. Lastly, the objective
function is a weighted sum of linear cost functions for storage,



transport, backordering and repair.
TDPP is closely related to the minimum convex network

flow problem which is polynomial [8]. We show however that
TDPP is NP-hard due to the dichotomic nature of the inven-
tory management policy. The result is established by reducing
the Subset Sum problem [4]. Alternatively to the MIP model,
we propose a metaheuristics for TDPP and compare both
approaches on a range of pseudo-random instances generated
from a real case in the telecommunications domain. Results
attest the superiority of the metaheuristics in terms of solution
fitness (as measured by the objective function), run time and
scalability.

The remainder of the paper is organised as follows. Sec-
tion II presents the telecommunications case study and intro-
duces the MIP model and computational complexity results
for TDPP. Section III introduces the metaheuristics and its
key components. Section IV reports experiments comparing
the MIP and metaheuristics approaches. Section V discusses
possible extensions to this work and Section VI concludes.

II. PROBLEM DESCRIPTION

In this section, we first provide background on CLSC by
discussing a real case study in the telecommunications domain.
We then introduce the Tactical Distribution Planning problem
(TDPP) that applies to a wide variety of CLSC network
topologies. We present a MIP model for TDPP and show it
is NP-hard by reducing the Subset Sum problem.

A. A case study in telecommunications

TDPP is based on a case study in the telecommunications
sector where large quantities and varieties of items are required
to support field service activities. Planned maintenance and
repair activities involve replacing faulty/used items on sites
with healthy items. Faulty/used items can be repaired in order
to be reused later on and the role of the CLSC in this context
is to globally manage return, repair and supply operations.
The CLSC relies on a classical design with a tree topology
organized around a distribution center (see Figure 1).

Fig. 1. A simple example of real case supply chain

Operationally, the distribution center (DC) is a inventory
warehouse that replenishes stores (i.e., field depots) with
healthy items through intermediate hubs (i.e., exchange points)

and channels faulty items back to a repair center. Pick-up and
delivery schedules are periodic with constant transportation
lead times that are specific to each site. The same applies to
the “repair loop” linking the distribution and repair centers. A
demand is created for a healthy item whenever a faulty item
is placed in a store. The demand is immediately satisfied if
the store has items on-hand and prior on-site demands have
been met. Otherwise, it is backordered and results in service
down-time until healthy items are delivered. The faulty item
is itself collected at the next pick-up date and returned to be
stored at the DC. Once in the DC, it can be sent to the repair
center to be fixed. The item is then available to be reinjected
in the supply chain to meet another demand.

The management of the CLSC must fulfill conflicting ob-
jectives, namely, minimizing service down-time (i.e., costs
of backordered or unsatisfied demands), inventory costs and
costs relating to repairs and transfers (supplies of healty items
and returns of faulty items). The current approach relies on
inventory control policies to replenish stocks on each site.
This decentralized reactive approach does not take advantage
of demand forecasts when they are available. In the case of
planned maintenance activities, such forecasts are precisely
known (i.e., the items to replace are known for each scheduled
activity) and a centralized proactive planning approach is then
relevant. Equally, demand forecasts can be generated in the
case of field repair activities based on historical data, seasonal
trends, etc. Such forecasts are subject to uncertainties but a
robust planning approach may still be considered as discussed
subsequently.

We propose a periodic planning approach to determine
return, repair and supply actions ahead of time based on
a demand forecast. Figure 2 depicts the architecture of the
proposed planning system. The principle is to generate a

Fig. 2. The complete planning system

plan at regular time intervals. Each plan is based on current
inventory levels and a demand forecast for the given time
horizon. A static planning module is used to generate each
plan by solving a combinatorial optimization problem. This
module takes as input static data (CLSC topology, schedules,
unit costs), dynamic data (current forecast, inventory levels,



...) and user-defined parameters (weights, time horizon). The
optimization model is based on a weighted objective function
allowing users to control the balance between the different
costs (backorders, inventory, repair, transfer). The planning
frequency is the other user-defined parameter. Altogether,
these parameters provide the flexibility to implement robust
distribution plans.

In the remainder, we restrict our attention to the static
planning module and the corresponding tactical distribution
planning problem (TDPP). We introduce a generic combina-
torial optimization model for TDPP which is applicable to a
wide variety of CLSC beyond this case study.

B. The Tactical Distribution Planning Problem

TDPP is based on a finite ordered set of time buckets T (the
time horizon) and a finite set of sites L. The possible pairings
of sites and time points (#L×#T ) define the nodes of a space-
time graph G∗ whose arcs represent the routes interconnecting
sites through the time horizon. Specifically, G∗ can be divided
into 3 subgraphs Gh, Gfand Gr, where Gh models the supply
routes for healthy items, Gf the return routes for faulty
items, and Gr the repair routes. These subgraphs compile the
topology and the transfer/repair schedules of the CLSC. Note
that this model is generic and can accommodate any topology
and schedule. Figure 3 is an example of space-time graph.

Fig. 3. An example of space-time graph

It defines the structure of the problem which the sets of
constants, variables, constraints and cost terms are based upon.
Constants and variables are typically #L-#T integer matrices
domains that denote numbers of items or cost values. We
introduce the following notation xyz where x is the name of the
constant (or variable), y the state (i.e., healthy, faulty, healthy
stock,-...), z the space-time parameters (i.e., locations, time
buckets). Table I presents the constants and the variables of
the problem. Constants include the demand forecast d that
defines the demand level for each site and time bucket of
the time horizon, the unit costs µ∗ (inventory , backorders,
transfers, repairs), the user-defined costing weights ω∗ and
the initial state I . The initial state I is an assignment of all
the variables at time bucket 0. The variables are separated
in two categories: the decision variables (in bold style) and
the auxiliary variables. The decision variables are related to
actions and provide information on supply mh, return mf and
repair mr. They are associated with the arcs represented on

TABLE I
CONSTANTS AND VARIABLES

Constants
demand forecast d : L× T → N
inventory costs µs

h
, µs

f
: L× T → N

backorder costs µb : L→ N
transfer costs µm

h
, µm

f
: L× L→ N

repair costs µm
r
: L→ N

weights ωs, ωb, ωmhf
, ωmr ∈ N

initial state I
Variables
inventory sh, sf : L× T → N
backorders b : L× T → N
healthy potential ph : L× T → Z
faulty potential pf : L× T → N
transfers mh,mf : L× L× T × T → N
repairs mr : L× T × T → N
costs c, cs, cb, cm

hf
, cm

r ∈ N

the space-time graph such that if an arc does not exist then
the corresponding value is set to 0. Auxiliary variables are
directly computed from the decision variables. They not only
describe the state supply chain for each time bucket and site
but also detail the different costs for this particular state. Given
a particular time bucket t and a particular site l, then shl,t
(resp. sfl,t) details the inventory levels for healthy (resp. faulty)
items and bl,t the pending backorders that are still to be met.
Variables phl,t and pfl,t explicit the domain of potential values.
These variables represent respectively the balance between
the amount of healthy items available to be sent out and the
remaining backorders and the quantity of faulty items available
to be sent out from location l at time bucket t.

We define a plan (solution of TDPP) as a set of supply,
return and repair actions. It can be represented on the space-
time graph as the set of edges labelled with a positive value.
Labels on arcs may be viewed as item quantities being
transferred or repaired between two sites. A plan precisely
describes for each route between two sites l, l′, from time
bucket t to time bucket t′ the quantity of healthy (mh

l,l′,t,t′ ) and
faulty (mf

l,l′,t,t′ ) items transferred. Likewise, it also defines
the quantity of items sent to repair at time bucket t from a
particular site l and retrieved at time bucket t′ (mr

l,t,t′ ). Note
that this operation is topologically restricted to link a site with
itself.

We also introduce cost variables to measure the quality of
a solution. They are all evaluated on the same financial scale
to allow a comparison. The quality is defined through 4 main
objectives: backorders (cb), inventory (cs), transfers (cm

hf

) and
repairs (cm

r

).



a) Core of the problem:

∀l ∈ L, t ∈ T, sfl,t = pfl,t −
∑
t′∈T

mr
l,t,t′ −

∑
l′∈L,
t′∈T

mf
l,l′,t,t′

(1a)

∀l ∈ L, t ∈ T,
∑
t′∈T

mr
l,t,t′ +

∑
l′∈L,
t′∈T

mf
l,l′,t,t′ ≤ p

f
l,t

(1b)

∀l ∈ L, t ∈ T\{0}, pfl,t = sfl,t−1 +
∑
l′∈L,
t′∈T

mf
l′,l,t′,t + dl,t

(1c)

Equations (1a) to (1c) characterize faulty items management.
They define the stock requirement constraint (i.e. an item
can be transferred only if the stock is positive). Specifically,
Equation (1c) represents the quantity of faulty items that can
be returned from a particular site l on a particular time bucket
t. They also describe the link between demands and faulty
items. A faulty item is added to the stock when a demand
occurs.

∀l ∈ L, t ∈ T, shl,t = max(0, phl,t −
∑
l′∈L,
t′∈T

mh
l,l′,t,t′)

(2a)

∀l ∈ L, t ∈ T,
∑
l′∈L,
t′∈T

mh
l,l′,t,t′ ≤ max(0, phl,t) (2b)

∀l ∈ L, t ∈ T\{0}, phl,t = shl,t−1 +
∑

l′∈L,t′∈T

mh
l′,l,t′,t

+
∑
t′∈T

mr
l,t′,t − bl,t−1 − dl,t (2c)

∀l ∈ L, t ∈ T, bl,t = max(0,−phl,t) (2d)

Equations (2a) to (2d) detail healthy items management.
Again, they define the stock requirement constraint. The
potential value for a particular site at a particular time bucket
is also defined. It is important to notice that these equations
reflect a management rule that ensure the consumption of
available items on sites if demands occur on the same day.

b) Fitness function:

cs =
∑

l∈L,t∈T

(shl,t × µsh

l + sfl,t × µsf

l ) (3a)

cb =
∑

l∈L,t∈T

bl,t × µb
l (3b)

cm
hf

=
∑

l,l′∈L,
t,t′∈T

(mh
l,l′,t,t′ × µmh

l,l′ +mf
l,l′,t,t′ × µmf

l,l′ ) (3c)

cm
r

=
∑
l∈L,

t,t′∈T

(mr
l,t,t′ × µmr

l l′) (3d)

Global min :

c = ωs × cs + ωb × cb + ωmhf

× cm
hf

+ ωmr

× cm
r

(3e)

These equations allow to compute the different costs of the
supply chain. Note that Equation (3e) representing the global
fitness is a weighted function that will allow to emulate differ-
ent planning strategies by enforcing some of the objectives.

C. Reduction to the Subset Sum problem
Theorem 1. TDPP is NP-Hard.

Proof. We demonstrate that our problem is NP-Hard by reduc-
ing the Subset Sum Problem to the TDPP in polynomial time.
The Subset Sum Problem is known to be NP-Complete [4] and
it is defined by only one question: Given a finite multiset of x
positive integers K [y1..yx] and a positive integer B, is there a
subset K ′ ⊆ K such that

∑
k∈K′ yk = B ? As we can check

a solution in polynomial time, this reduction demonstrates that
the TDPP is NP-Hard. This reduction is based on the implicit
constraint induced by equations (2d), (2c), (2a) and (2b) that
ensure the consumption of available items on sites if demands
occur on the same day. It allows us to assure a non-separation
of the outflow on the origin sites in order to have enough items
in the supply chain to meet the demands in the stores.
We propose the following reduction:

1) The time horizon T is set to 3 time buckets.
2) Create 3 distinct sets of sites L1, L2 and L3 such that

L1 = [1..x] , L2 = [x+1..3x] and L3 = [3x+1..3x+2].
We define L = L1

⋃
L2

⋃
L3.

3) We set up the initial stock levels such that ∀l ∈
L1, shl,0 = yl + 1.

4) We create the demand forecast such that ∀l ∈ L2, bl,1 =
1, b3x+1,3 = B and b3x+2,3 =

∑x
k=1 yk −B.

5) We define the associated costs such that ∀l ∈ L2, µb
l = 0,

µb
3x+1 = 1 and µb

3x+2 = 1.
6) ∀l ∈ L1, create 2 healthy transfers mh

l,l+x,1,2 and
mh

l,l+2x,1,2.
7) ∀l ∈ L1, create 2 transfers mh

l+x,3x+1,2,3, mh
l+2x,3x+2,2,3.

8) All the unmentioned costs are assumed to be 0.
If the fitness is equal to 0 (i.e. we can meet all the demands
occurring on l = 3x+1 and l = 3x+2) then it exists a subset
K ′ ⊆ K such that

∑
k∈K′ yk = B.

Example. Figure 4 shows an example of transformation with
K = [8; 18; 9; 2] and B = 17.

s1,0
h

=9

d5,1=1

d13,3=17

s2,0
h

=19 s3,0
h

=10 s4,0
h

=3

d6,1=1 d7,1=1 d8,1=1 d9,1=1 d10,1=1 d11,1=1 d12,1=1

d14,3=20

Fig. 4. Subset Sum to TDPP for K = [8; 18; 9; 2] and B = 17



III. METAHEURISTICS

Firstly, we have proposed a Mixed Integer Programming
(MIP ) model to solve the TDPP problem. The MIP is
directly derived from the equations presented in Section II.
This exact method is working well but when the number
of sites and the planning horizon grows up, it quickly has
difficulty providing a solution in acceptable time (see Section
IV).

In such case, metaheuristics are known to take up the slack
[5]. They potentially allow us to find a very good solution in
a reasonable time. We propose a metaheuristics denoted BIS
(Best Improving Sequence). Classically, a metaheuristics is
defined by: a solution, a neighborhood function, an evaluation
function, and of course a choice of heuristics.

Search space and evaluation function
In our case, a solution is a plan which is a set of actions
between adjacent sites in the space-time graph G∗ realized
in a given time horizon. The search space is defined by:
S = 2M where M is the set of possible actions given by
the topology. In order to compare each solution an evaluation
function (fitness : S → R) is defined using the cost function
given by Equation (3e).

Neighborhood
The neighborhood function explores the solutions reachable
by a move (move: N : S → 2S ). A move between 2 plans
corresponds to a sequence of unitary actions (only one item is
transferred or repaired each time) improving global objective
function.
We introduce the notion of sequence. A sequence is a
series of actions possibly empty. Actions included in a
sequence are constrained temporarily and geographically
such that given a sequence seq and 2 consecutive actions
ml1,l2,t1,t2,m

′
l3,l4,t3,t4 ∈ seq, we have l2 = l3 and t2 ≤ t3.

The type of action is also important. Supply and repair
actions can only be followed by supply actions whereas a
return can be followed either by another return or by a repair.
For instance, a sequence could be compounded by a unique
supply action or by a series of return, repair and supply
actions. The maximum size of a sequence is T − 1 actions.

Local Search
A plan can be viewed as a set of sequences where
all sequences are strongly interdependent. It is then
computationally expensive to deduce the global impact
of a sequence of actions. We then propose a method
that evaluates locally the impact of a sequence. This
method is denoted improve(m,P, seq) with m ∈
G∗, a plan P and a sequence of actions seq.
It returns the maximum improvement value that a sequence
initiated by seq and followed by the action m (seq

⋃
m)

could bring to the plan P . Note that the number of potential
sequences evaluated with this method can increase very
quickly. The computation of the improvement value only

takes into account backorder, inventory, repair and transfer
costs. Figure 5 describes an example of improve(m,P, seq).
In that case, 5 sequences of actions are executable after m
and improve(m,P, seq) will return the maximum positive
improvement value that one of these sequences could bring
and 0 otherwise. The computation of the improvement value
could seem expensive but this cost is in fact limited by to
the usage of a data structure allowing to easily compute
the improvement value of a sequence. This data structure
is a delta matrix that details the improvement value of the
different sequences based on actions. The matrix is created
antichronologically and built around a propagation algorithm
that consists in using subsequences to avoid the exploration
of all the possible sequences. We also notice that even if the
first computation of the matrix is costly, we only recompute
it partially later on.

Fig. 5. Example of improve(m,P, seq)

This improve function allows to define the graph G|seq .
Given a plan P and a sequence seq as this graph represents
the doable actions (satisfying the stock constraints) m ∈ G∗
following the sequence seq and with improve(m,P, seq) > 0.
For instance, if the last action m of a sequence seq is a
supply action from site 1 to site 2 completed on time bucket
10 then G|seq include all the possible supply actions taking
place from site 2 after time bucket 10 whose improvement
value is positive. Algorithms 1 and 2 describe the process
of selection and application of a sequence and Algorithm 3
presents the BIS method. We can notice that we use the best
improvement selection (i.e. we select the action m such that
improve(m,P, seq) is maximum). It ensures us to only apply
very efficient sequences of actions and provides good results
in most of the cases. However, in some cases this selection will
lead to a local optimum. It can be caused by different factors
such as a complex topology, asynchronous schedules or stock
positioning. Therefore, even if this selection process is good
to drive the search, it has to be paired with a diversification
process. This diversification process is represented by the
α probability that allows us to explore the search space
by selecting “less improving” sequences. This diversification
probability is fixed to 1 in the first iteration of the BIS
Algorithm and then decreases following a geometrical series. It
allows to bifurcate at each step of the creation of the sequence
such that with α = 0, we can explore all the sequences seq of
the search space initiated by m with improve(m,P, seq) > 0.



Algorithm 1 Action Selection
Input: A Graph G, A Plan P , A Sequence seq, A Probability

α
Output: An Action

1: With a probability α, return
argmaxm∈G(improve(m,P, seq)); . In case of
equality, m is selected randomly amongst the best ones

2: With a probability 1− α, Return m ∈ G;

Algorithm 2 Sequence Computation
Input: A Graph G, A Plan P , A Sequence seq, A Probability

α
Output: A sequence

1: while G|seq 6= ∅ do
2: Select an action m by using Algorithm 1 with G|seq ,
P , seq and α;

3: Add m to seq;
4: end while
5: Return seq;

IV. EXPERIMENTATIONS

In this section we present some experiments to prove the
validity of our method. The results presented here are based
on a particular type of instance but experiments also have
been conducted on other topologies (hub and spoke, complete
graph, etc.) with similar results.

A. Experimental Settings

Experiments are carried out on pseudo-random instances.
In this configuration transfer costs are inclusive and do not
depend on the quantity of items consequently they can be
safely ignored. The objective is to assess the impact of the key
features (demand distribution, stock levels, etc.) of problem
instances on the fitness of the plan. To this end, but also to
reduce bias in the analysis, we generate all instances using the

Algorithm 3 The BIS algorithm
Input: The constants of the problem, A number of iterations,
Output: A Plan

1: Set a probability α to 1
2: while Number of iterations is not reached do
3: Create an empty Plan P ;
4: Create an empty sequence seq;
5: while G|seq 6= ∅ do
6: Update seq by computing a sequence with Algo-

rithm 2 with G|seq , P , seq and α;
7: Execute the sequence seq and add it to P ;
8: Empty seq;
9: end while

10: Evaluate P ;
11: α decreases following a geometrical series
12: end while
13: return the best Plan

same topology, time horizon, transfer schedules, lead-times,
transition period, and demand pattern. Settings are chosen
consistently with data emanating from our case study.

The topology is the one presented in Figure 1. We have
generated two sizes of instances. The supply network includes
1 distribution center, 9 (resp. 33) hubs and 15 (resp. 66) stores.
Each hub deserves an exclusive set of stores. The DC serves
all hubs and is the unique repair center. The time horizon
is initialized to 60 day-buckets. Transfers between connected
sites all take 1 day. To fit more precisely the real case, the
repair time is set to 3 days. Sites also have identical pickup
and delivery frequencies (every 5 days) with synchronous
schedules (identical delivery and pickup days) hence transport
cost is ignored. We introduce a “transition period” set to the
first 7 days to coincide with the earliest delivery time for
a store. Demands raised within this period are supposedly
addressed by previous planning decisions. Hence, the results
only depend on our model without any interferences from
previous choices and allow us to devise confidently about
the quality of our method. For this reason, instances have no
demands within the transition period and ongoing transfers all
complete within that time window. Similarly and consistently
with the need to avoid side-effects induced by past decisions,
instances have no residual faulty items.

Instances also share the same demand distribution pattern.
Specifically, all stores have a single demand request that recurs
every 5 days. However, demands may occur on different days
for different sites. The actual variability amongst instances
comes from the volume and allocation of healthy stocks which
we generated using different schemes. As for stock allocation,
healthy items are either all placed in the DC (scheme DC),
all placed randomly in the stores (scheme Stores) or evenly
distributed between the DC and the other stores (scheme Mix).
For the last two schemes, allocation to stores is performed ran-
domly using a uniform distribution law. In terms of volumes,
the total number of items across all sites is either set to 100%
of the total demand (scheme High), 50% (scheme Med) or
0% (scheme Low). Combining the two schemes yields seven
classes of instances (stock allocation is irrelevant for scheme
Low). The unit costs are configured to respect the hierarchy
used in the real case. Solving the backorders is the ultimate
goal of the supply chain; thus its cost is set to 1000 ; repairing
an item costs 100, store an item in a store or in a hub costs
10 and store an item in a DC costs 1. The MIP model is
implemented using CPLEX 12.6 and tests run on a i5-3380M
@ 2.90GHz architecture. We allocate a maximum running time
of 1 hour as the model is ultimately supposed to be running on
a sliding window independently on many thousands of items.
In case the maximum time is reached, we retrieve the lowest
bound found by the model.

B. Experimental Results

Table II presents the results. The first two columns denote
the schemes characterising each class of instances and the
third column denotes the cost weighting used for the test.
Weights are represented as a triplet < ωb, ωmr

, ωs >. Ex-



periments have been run on all combination of weightings.
The remaining columns provide for the 2 sizes of instances
information depending on the method used: Mip-Fitness is
the best bound retrieved by the MIP in 1 hour, Mip-Time
the run time of the MIP in milliseconds, Meta-Fitness the
mean value of the metaheuristics on 100 iterations, Meta-s.d.
the standard deviation of the metaheuristics, and Meta - Time
the average run time of the metaheuristics in milliseconds.
Note that if Mip-Time indicates ′−′, it means that the MIP
has reached the time limit. A bold value in the column Meta-
Fitness means that either the MIP did not return a bound
or that the bound returned is worse than the average value
retrieved by the metaheuristics.

As expected, initial stock levels strongly influence service
levels. Scheme High dominates scheme Med when the weight
on backorders is activated for any given distribution scheme
and weighting. Likewise, Med dominates Low. Stock distribu-
tion also plays a key role. Comparing when the weight on
backorders is activated again, distribution DC dominates Mix

which dominates Stores for any given stock volume scheme
and weighting. It highlights the importance of well locating
items. This is particularly true in our case as healthy items
cannot be sent back from the stores to the DC. Thus, bad
positioning the items is a major risk and is highly depending on
the quality of the forecast. When looking at the instances with
weighting 〈1, 1, 1〉 we notice that the results returned by the
scheme High and the scheme Med are close. It gives us the hint
that the optimum quantity needed to solve all the backorders
and limit the inventory cost is between these two schemes.
The distribution also affects the running time. For a particular
scheme, distribution DC is slower than Mix, itself slower than
Stores. Indeed, the more items are positioned in stores in the
initial situation the less transfers you can perform. Hence, it
indirectly cuts the search space and impacts the solving time.

We now compare the MIP with the metaheuristics. We first
denote that the average value returned by the metaheuristics is
equal or very close to the best bound retrieved by the MIP .
We also point out that in all cases the metaheuristics reaches
at least once the best bound value. The standard deviation
remains low and demonstrates the stability of our method. The
results validate the well-functioning of our metaheuristics on
studied instances. In terms of scalability and running time,
the metaheuristics appears to be the best method. In most
of the cases, the metaheuristics is at least 100 times faster
than the MIP model and consequently a complete run of
100 iterations still outperformed the MIP . We note that the
bigger the instances are, the harder it is for the MIP to
complete. Indeed, it reaches the time limit in 10 cases on
instance 25 165 and in 18 cases on instance 100 726. We also
remark that on instance 100 726 the MIP fails to return a
bound in 3 cases and in 1 case returns a higher bound than the
mean of the metaheuristics. It confirms that the MIP faces
a scalability issue due to the increasing number of possible
actions. On the contrary, the metaheuristics reaches very good
quality solutions in a reasonable time.

V. DISCUSSION

The TDPP is a generic problem and can easily be updated
to include a large variety of extensions. Supply chain man-
agement problems are concrete problems that generally do
not fit immediately a particular model as it is necessary to
include some specific management rules. We sketch a non-
exhaustive list of extensions that seems relevant in a supply
chain management context.

The TDPP is limited to 3 basic actions (supply, return and
repair) such that the number of items moving or installed in
the supply chain is constant. Other actions can be added to
the model to increase or decrease the quantity of items. For
example, it is reasonable to include selling and purchasing
actions to be able to meet a surplus of demands or oppositely
to evacuate unused items. Equally, our model is currently
restrained to maintenance or replacement operations. We can
include other procedures such as installation (i.e. supply an
item to a new site) and dismantling (i.e. the faulty items are
not replaced). These procedures can be easily incorporated to
our model by adding 2 matrices of constants.

Another common constraint in supply chain management
problems is the capacity constraint. In the TDPP, capacity
constraints could be applied on transfer, inventory and repair
quantities. Matrices and inequations can be included to easily
model these constraints but we intuitively understand that
they add some complexity to the problem. The model may
also be extended to model the notion of safety stock. It can
be represented either with a strict capacity constraint or by
adding an objective to the fitness function. The second method
provides the possibility to prioritize objectives (i.e. meet the
demands and if possible keep the stock level over the safety
stock level).
Our current work includes the ability to implement partic-
ular management strategies by defining strict relation order
between the weights such that a policy can be implemented
thanks to the weights regardless the different costs. We are
also investigating the impact of the frequency parameter to
build some robust plans and manage uncertainties. Preliminary
results show that a high frequency can handle uncertainties,
especially with flexible topologies. However, we have to study
the consistency of the following plans and determine when it
is interesting to use a proactive or a reactive method.

VI. CONCLUSION

This work presented the Tactical Distribution Planning prob-
lem TDPP. We proved its complexity by reducing it to the NP-
Complete Subset Sum problem. We proposed a generic and
applicable model to problems featuring different topologies,
schedules or business objectives. From this formulation, we
introduced a MIP model and a dedicated metaheuristics
(BIS) to solve the TDPP. We detailed a concrete case of this
problem and tested the MIP model and the metaheuristics
against instances strongly inspired from this case. Experiments
demonstrate the scalability issue encountered by the MIP
model and the quality of the metaheuristics on these instances.
They show the importance of well positioning items to get a



TABLE II
COMPARISON MIP VS METAHEURISTICS

25 165 100 726

Weights MIP BIS MIP BIS
Fitness Time Fitness s.d. Time Fitness Time Fitness s.d. Time

H
ig

h

D
C

<1,0,0> 0 4554 0 0 17 0 57000 0 0 220
<0,1,0> 0 3205 0 0 3 - - 0 0 42
<0,0,1> 22725 4175 22726 6 8 99990 20500 99998 14 121
<0,1,1> 23085 4555 23086 2 6 101574 23100 101581 13 80
<1,1,0> 0 3562 2 14 15 0 32480 29 57 221
<1,0,1> 25500 4554 25658 199 20 112200 - 113073 702 280
<1,1,1> 25860 5870 25964 163 18 113784 - 114258 382 256

M
ix

<1,0,0> 0 2125 0 0 11 0 26220 0 0 147
<0,1,0> 0 2085 0 0 3 0 10780 0 0 40
<0,0,1> 31253 1182 31253 0 5 133862 2980 133869 50 70
<0,1,1> 31613 1008 31613 1 3 135446 2840 135446 0 41
<1,1,0> 100 3134 113 33 10 0 29500 12 35 143
<1,0,1> 33423 2696 33573 193 14 143562 - 144348 587 191
<1,1,1> 33880 4134 33959 169 12 145146 - 145508 389 164

St
or

es

<1,0,0> 0 1072 0 0 5 27000 2730 27000 0 69
<0,1,0> 0 820 0 0 3 0 2070 0 0 40
<0,0,1> 58005 943 58005 0 6 256128 2030 256128 0 62
<0,1,1> 58365 791 58365 0 3 257712 2030 257712 0 40
<1,1,0> 1700 1329 1708 27 4 35600 3430 35625 48 71
<1,0,1> 58565 1332 58585 59 6 285983 3510 286053 108 95
<1,1,1> 60574 1423 60590 59 5 295909 3930 295995 137 78

M
ed

D
C

<1,0,0> 0 5105 0 0 15 0 38000 0 0 221
<0,1,0> 0 15161 0 0 3 - - 0 0 40
<0,0,1> 18326 7597 18327 2 8 80751 35410 80757 11 110
<0,1,1> 18686 6863 18687 2 6 82335 31500 82343 18 82
<1,1,0> 8300 - 8306 24 19 36300 - 36336 67 221
<1,0,1> 21101 6321 21275 212 20 92961 - 93839 691 285
<1,1,1> 29512 - 29650 192 19 129756 - 130237 379 252

M
ix

<1,0,0> 0 3120 0 0 13 0 25680 0 0 185
<0,1,0> 0 9871 0 0 3 0 120500 0 0 40
<0,0,1> 19407 1620 19408 6 6 88669 18250 88675 29 85
<0,1,1> 19767 1569 19767 1 4 90253 14240 90272 55 54
<1,1,0> 8300 - 8303 17 13 36300 - 36315 38 188
<1,0,1> 22112 4543 22323 278 17 100339 - 101192 608 237
<1,1,1> 30523 - 30623 130 15 - - 137643 451 215

St
or

es

<1,0,0> 31000 2542 31000 0 10 93000 11730 93000 0 148
<0,1,0> 0 1536 0 0 3 0 4480 0 0 39
<0,0,1> 25895 1261 25895 0 4 114648 6051 114648 0 63
<0,1,1> 26255 1514 26255 0 3 116232 3900 116232 0 43
<1,1,0> 39300 - 39303 17 12 129300 - 129310 36 148
<1,0,1> 59100 3458 59141 78 13 217263 19240 217482 228 171
<1,1,1> 67511 - 67564 81 12 254058 - 254342 281 163

L
ow -

<1,0,0> 2625000 - 2625090 319 6 11550000 - 11550700 1923 94
<0,1,0> 0 744 0 0 3 0 2000 0 0 40
<0,0,1> 15045 1291 15045 0 4 66198 8410 66198 0 65
<0,1,1> 15405 1408 15405 0 3 67782 8140 67782 0 40
<1,1,0> 2635500 - 2635540 196 6 11603200 - 11596400 409 96
<1,0,1> 2641620 - 2641710 289 7 11623128 - 11623500 1063 104
<1,1,1> 2652165 - 2652160 2 7 11669526 - 11669900 1285 102

good proactive plan. We also pointed out the next steps of our
work and presented a large variety of extensions that can be
interesting for companies and supply chain experts.

REFERENCES

[1] K.D. Cattani, F.R. Jacobs, and J. Schoenfelder. Com-
mon inventory modelling assumptions that fall short: ar-
borescent networks, poisson demand, and single echelon
approximations. Journal of Operations Management,
29(5):488–499, 2011.

[2] P. Desport, F. Lardeux, and D. Lesaint. Tactical inventory

planning in the telecommunications service industry : a
case study. Roadef Marseille France, 2015.

[3] M. Fleischmann, J.M. Bloemhof-Ruwaard, R. Dekker,
E. Van der Laan, J.A. Van Nunen, and L.N. Van Wassen-
hove. Quantitative models for reverse logistics: A review.
European journal of operational research, 103(1):1–17,
1997.

[4] M.R. Garey and D.S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[5] M. Gendreau and J-Y. Potvin. Handbook of Metaheuris-
tics. Springer Publishing Company, Incorporated, 2nd



edition, 2010.
[6] K. Govindan, H. Soleimani, and D. Kannan. Reverse

logistics and closed-loop supply chain: A comprehensive
review to explore the future. European Journal of
Operational Research, 240(3):603 – 626, 2015.

[7] V.D.R Guide, T.P. Harrison, and L.N. Van Wassenhove.
The challenge of closed-loop supply chains. Interfaces,
33(6):3–6, 2003.

[8] G.M. Guisewite and P.M. Pardalos. Minimum concave-
cost network flow problems: Applications, complex-
ity, and algorithms. Annals of Operations Research,
25(1):75–99, 1990.

[9] A. Gupta, P.C. Tewari, and R.K. Garg. Inventory models
and their selection parameters: a critical review. Int.
Journal of Intelligent Enterprise, 2(1):1–20, 2013.

[10] K. Lieckens, P.J. Colen, and M. Lambrecht. Optimiza-
tion of a stochastic remanufacturing network with an
exchange option. Decision Support Systems, 54(4):1548–
1557, 2013.

[11] J.R. Stock. Development and Implementation of Reverse
Logistics Programs. Council of Logistics Management,
1992.


