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Signatures of ecological processes in
microbial community time series
Karoline Faust1* , Franziska Bauchinger2, Béatrice Laroche3, Sophie de Buyl4,5, Leo Lahti1,6,7, Alex D. Washburne8,9,
Didier Gonze5,10 and Stefanie Widder11,12,13*

Abstract

Background: Growth rates, interactions between community members, stochasticity, and immigration are
important drivers of microbial community dynamics. In sequencing data analysis, such as network construction and
community model parameterization, we make implicit assumptions about the nature of these drivers and thereby
restrict model outcome. Despite apparent risk of methodological bias, the validity of the assumptions is rarely
tested, as comprehensive procedures are lacking. Here, we propose a classification scheme to determine the
processes that gave rise to the observed time series and to enable better model selection.

Results: We implemented a three-step classification scheme in R that first determines whether dependence
between successive time steps (temporal structure) is present in the time series and then assesses with a recently
developed neutrality test whether interactions between species are required for the dynamics. If the first and
second tests confirm the presence of temporal structure and interactions, then parameters for interaction models
are estimated. To quantify the importance of temporal structure, we compute the noise-type profile of the
community, which ranges from black in case of strong dependency to white in the absence of any dependency.
We applied this scheme to simulated time series generated with the Dirichlet-multinomial (DM) distribution,
Hubbell’s neutral model, the generalized Lotka-Volterra model and its discrete variant (the Ricker model), and a self-
organized instability model, as well as to human stool microbiota time series. The noise-type profiles for all but DM
data clearly indicated distinctive structures. The neutrality test correctly classified all but DM and neutral time series
as non-neutral. The procedure reliably identified time series for which interaction inference was suitable. Both tests
were required, as we demonstrated that all structured time series, including those generated with the neutral
model, achieved a moderate to high goodness of fit to the Ricker model.

Conclusions: We present a fast and robust scheme to classify community structure and to assess the prevalence of
interactions directly from microbial time series data. The procedure not only serves to determine ecological drivers
of microbial dynamics, but also to guide selection of appropriate community models for prediction and follow-up
analysis.

Keywords: Noise types, Community dynamics, Community models, Time series analysis, Neutrality test, Pink noise,
Brown noise
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Background
Microbial communities perform essential ecosystem ser-
vices and carry out important functions in their hosts. For
instance, the healthy human gut microbiome protects its
host from pathogens, expands the host’s digestive capaci-
ties and contributes to human immune system maturation
[1]. Thanks to recent advances in sequencing technology,
we now have access to data sets that capture the dynamics
of entire microbial communities at a high phylogenetic
resolution over long periods of time. Such densely sam-
pled long-term time series data have been collected for in-
stance for skin and gut [2, 3], but also for lakes and oceans
[4, 5]. These studies have illustrated that proportions of
microbial taxa do not always remain constant, but can
vary over time, sometimes considerably so, for instance in
cases of seasonality [5] and succession [6].
Fluctuations in microbial community composition have

been linked to a variety of inter-dependent factors, includ-
ing ecological interactions between community members,
environmental conditions, immigration from adjacent
ecosystems, the history of the community, and the evolu-
tion of community members [7, 8]. The importance of
these factors varies across ecosystems; hence, a better
characterization of their contribution will enable selecting
suitable community models and improve our understand-
ing of microbial community functions.
A popular strategy to learn more about microbial com-

munity structure and dynamics is to fit community models
to sequencing data of microbial communities and to analyze
the parameterized models. Two frequently selected commu-
nity models are Hubbell’s neutral model [9, 10] and the gen-
eralized Lotka-Volterra (gLV) model [11, 12], where the
former assumes that species are ecologically equivalent and
community dynamics is governed by local extinction and
immigration from a metacommunity, whereas the latter de-
scribes the change of species abundances as a function of
growth rates and species interactions. The parameters (and
therefore the species interactions) of the deterministic gLV
model and its stochastic, time discrete version, the Ricker
model, have been inferred directly from time series data by
several authors (e.g., [13–18]). The continuous form of the
Hubbell model developed by Sloan [19] served as a null
model against which over- or under-representation of mi-
crobial taxa was tested [20, 21]. The self-organized instabil-
ity (SOI) model [22] proposed by Solé and colleagues
combines aspects of the gLV and neutral model, namely in-
teractions with stochastic immigration and extinction. Al-
ternative ways to integrate interactions and immigration
have also been suggested [23–26].
Although these models emphasize different aspects of

community dynamics, they can be seen as realizations of
an encompassing community model framework spanning
a gradient from stochastic to deterministic and from un-
structured to temporally structured in time (Fig. 1).

Temporal structure is defined here in the sense of a Mar-
kovian structure, which means that the state of the system
at a certain time point depends on its state at preceding
time points. Structured models, which include all models
considered here except the DM, encode rules that describe
how the community composition changes from one time
step to the next. In contrast, unstructured models, which
are stochastic, successively sample independent microbial
community composition from a probability distribution,
such as the Dirichlet-multinomial distribution [27, 28].
Temporally structured stochastic models, such as the

neutral and the SOI model, describe microbial commu-
nity dynamics at the level of individuals. With increasing
number of individuals, their behavior approaches that of
deterministic models describing community dynamics at
the level of populations, such as the gLV and its discrete
variant, the Ricker model [14]. These deterministic
models in turn can move towards the stochastic end of
the gradient by integrating intrinsic noise or random en-
vironmental fluctuations of increasing strength.
In this work, we aim to provide guidelines that help

distinguish the different generating processes directly
from the time series, thereby complementing and
guiding standard model fitting procedures. More pre-
cisely, our goal is to determine whether the inference
of a microbial network from a time series data set is
meaningful.
Our proposed classification scheme consists of three

steps: (i) test for temporal structure, (ii) test for neutral-
ity, (iii) fit an interaction model (Fig. 2). This classifica-
tion scheme is complementary to the one proposed by
Gibbons and colleagues, which does not test for the
presence of temporal structure or neutrality [29]. In the
following, we will apply this scheme to simulated and
real-world microbial time series data.

Results
In order to demonstrate the efficacy of our classifica-
tion scheme, we generated time series with the
Dirichlet-multinomial (DM) distribution, Hubbell’s
neutral model, the SOI model, the Ricker model with
varying levels of noise, and the generalized
Lotka-Volterra model. In addition, we included time
series from two individuals (A and B) from a long-term
study of the human gut microbiota [3]. In total, we gen-
erated 60 community time series with various param-
eter settings, each including 100 species followed over
3000 time points. Since such long time series are not
yet available in practice, we also repeated every test for
the first 100 time points of each time series. An over-
view of the parameter settings, time series properties,
and test results is given in Additional file 1: Table S1.
Time series generation is summarized in “Methods”;
model details are provided in Additional file 2.
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Noise types differentiate between unstructured and
structured models
The first step of the classification scheme distinguishes be-
tween the presence of temporal structure, i.e., rules that
govern the dynamics, and its absence. To test for the pres-
ence of temporal structure, we exploit the fact that it will
introduce a dependency between time points that is absent
otherwise. Different measures exist that can detect depend-
ency on previous community states, such as autocorrel-
ation, the Hurst exponent, and noise types. We focus on
the latter here, but also tested the two other measures with
similar results (see Additional file 3: Figure S1). The noise
type of a species is obtained by decomposing its abundance
fluctuations (or relative abundance fluctuations in most
cases) into spectral densities at specific frequencies using a
Fourier transform. When spectral densities tend to be high
at low frequencies (i.e., long intervals) and vice versa, they
signal a strong dependency on previous time points, which
is visible as a negative slope of densities versus frequencies
in the periodogram. Depending on the value of this slope in
log-log scale, one can distinguish black (below − 2), brown
(around − 2), pink (around − 1), and white noise (no nega-
tive slope). A shift in the noise color from black to pink in-
dicates a reduced dependency on previous community
states. In brief, the dependency on previous time points is
strongest for black noise and weakest for pink noise, while
it is absent for white noise.
We computed the noise type for each species and re-

ported the percentage of black, brown, pink, and white
species in each community time series (Fig. 3). While

structured community models (gLV, Ricker, Hubbell, and
SOI) generate time series with no or only a small percent-
age of white noise species, the DM distribution gives rise
to mostly white noise species, as expected for unstruc-
tured data. Deterministic models such as gLV and Ricker
with low intrinsic noise are dominated by black noise spe-
cies, whereas Hubbell time series are mostly composed of
brown noise species and SOI time series of pink noise spe-
cies. However, we found that longer intervals and shorter
time series increase the number of white noise species in
the stool data and SOI time series, that higher connec-
tance increases the proportion of black taxa at the cost of
pink ones in Ricker but not SOI time series (Add-
itional file 4: Figure S2 and Additional file 5: Figure S3),
that high mortality rates favors pink instead of brown
noise in the Hubbell time series (Additional file 6: Figure
S4), and that increasing intrinsic noise increases the per-
centage of pink and brown noise in Ricker time series.
These delicate shifts in noise-type profiles illustrate the ef-
fect of confounding factors such as sampling interval and
noise. While confounders complicate recognizing an
underlying model on the basis of its noise-type profile
alone, they do not affect the distinction between tempor-
ally structured and unstructured community models.
This noise-type-based test for structure is also robust to

compositionality and Poisson and multinomial noise (Add-
itional file 7: Figure S5 and Additional file 8: Figure S6) and
increases in accuracy with increasing number of time
points (Additional file 9: Figure S7 and Additional file 10:
Figure S8). While it is more effective for the first 100 time

Fig. 1 Overview of community models. The position of community models in this overview diagram is determined by two axes, which represent the
importance given to structure and to noise, respectively. The first gradient orders models by the level of stochasticity, with neutral models at one
extreme and the noise-free Ricker and generalized Lotka-Volterra model at the other. When increasing the strength of the noise or decreasing the
number of individuals, deterministic models can move towards the stochastic end of the spectrum. The second axis orders models according to the
role of structure, i.e., the strength of the dependency on previous time points. The Dirichlet-multinomial distribution and other probability distributions,
which generate counts that do not depend on previous states, are at one end of the spectrum, whereas models with a high dependency on previous
states, such as the generalized Lotka-Volterra, are at the other
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points in the transient part of the time series, it also distin-
guishes temporally structured from unstructured data in
the last 100 time points (Additional file 7: Figure S5).

Neutrality test distinguishes neutral from non-neutral
dynamics
To distinguish neutral from non-neutral structured models,
we applied a test previously developed to recognize neutral-
ity in time series data [30]. Neutrality, in this test, is defined
as a general feature in which demographic rates and per-
formance are independent of species identities. The idea of
the neutrality test is to test for group invariance, which
means that time series properties are not affected by sum-
ming species into groups that represent higher-level taxa
such as genera or families. In particular, the group invari-
ance of inter-species quadratic covariation is tested; thus,
not only group invariance of covariance is tested, but also
its correspondence to a type of covariance common to all

neutral processes. When validating this test on our commu-
nity time series, the DM and Hubbell time series are classi-
fied as neutral (p values > 0.05) as expected, whereas the
other simulated time series are correctly classified as
non-neutral (Fig. 4a, b). The time interval between samples
is an important variable when defining neutrality, since for
stool data, time series sampled at larger intervals are classi-
fied as neutral. Thus, neutrality is defined relative to the
time-scale of an investigation. Furthermore, the addition of
Poisson noise introduces false positives (time series falsely
classified as non-neutral; Additional file 11: Figure S9).

Microbial network inference through deterministic model
fitting
The first two tests classify the stool data as resulting from
a temporally structured, non-neutral community. Thus,
gut microbial community dynamics is to a large part
shaped by interactions between community members,

Noise types 
Fourier transform 

of abundance changes 

1. Temporal  
data structure

Neutrality test
Community-wide
group invariance

Fitting  
interaction-based

model

2. Interaction
potential

3. Ecological
process 

Interaction prediction
System parameterization
Quantitative simulation

Temporally 
unstructured
processes 

Neutral processes 
Niche dynamics 

white noisecolored noise

negativepositive

Longitudinal sampling

Fig. 2 Classification of time series data. First, noise-type distributions are established. Darker noise colors indicate increasing temporal
dependence between time points. White noise suggests random processes without temporal structure that can be caused for instance by
technical bias such as insufficient sampling density or too large measurement noise, or reflect an intrinsic lack of time structure. Second,
the presence of neutral dynamics are tested. A positive test result (p value below the significance level) suggests a potential for
interactions in the microbial community and can be followed up for instance by fitting community models that assume interactions, by
network analysis or by causal model approaches. For high levels of external noise or too large sampling intervals, the neutrality test may
yield a false positive outcome. In neutral communities, variation can be suitably analyzed within stochastic frameworks
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which is in agreement with our knowledge of the numer-
ous cross-feeding and competition interactions taking
place between gut organisms [31]. A number of algo-
rithms have been developed to parameterize the gLV or
Ricker model directly from time series data [14, 18, 32],
thereby inferring ecological interactions. Here, we employ
LIMITS [14] to test this parameterization step. We ap-
plied it to the top 60 most abundant species in our test
time series and measured inference accuracy as the mean
correlation between the known and the inferred inter-
action matrix. The LIMITS algorithm was found to per-
form well on time series data with known interaction
matrices (Fig. 4c). Interestingly, the accuracy of LIMITS is
also relatively high for SOI time series, although LIMITS
assumes a different community model. These results were
reproduced with lower accuracy for short time series and

selected time series with Poisson noise (Additional file 11:
Figure S9 and Additional file 12: Figure S10).
The goodness of fit to the Ricker model was com-

puted as the mean correlation between the commu-
nity time series predicted with the parameterized
Ricker in a step-wise manner and the test time
series (Fig. 4d). Not surprisingly, the goodness of fit
is inversely correlated to the strength of the intrinsic
noise in Ricker (Spearman’s rho − 0.76, p value <
0.0001). We also applied LIMITS to neutral time
series. Although the Hubbell model does not assume
direct ecological interactions between species, it
does introduce competition between all species. Not-
ably, the goodness of fit of Hubbell time series to
the Ricker model was high, but the absolute inter-
action strengths were significantly smaller than those

Fig. 3 The noise-type profile distinguishes between temporally structured and unstructured community time series. a Noise types. b Noise types
(100 time points). The bar plots depict for each community time series the percentage of species with white, pink, brown, or black noise. White
noise indicates the absence of structure, all other noise types its presence. Labels for time series are colored according to the level of non-zero
intrinsic noise (sigma) for Ricker, according to the death rate if larger than one for Hubbell, according to the interval if larger than one (with
interval coloring taking precedence over sigma) and black otherwise time series for the full-length time series (a) as well as for shortened time
series consisting of the first 100 time points (b)
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inferred for all other time series, even when ran-
domly sub-sampling from the latter to account for
different sample numbers (Wilcoxon rank sum test
p value < 0.0001).
After having tested its performance, we applied

LIMITS to explore the interaction networks of the two
stool time series. While gLV/Ricker models have been
parameterized on stool time series previously [14, 17],
the LIMITS algorithm has to our knowledge not yet
been applied to the stool time series collected by David
and colleagues [3] (see Additional file 13: Figure S11 for
a time series plot). We noticed that repeated rarefactions
alter the noise-type classification of a few taxa (Add-
itional file 14: Figure S12) and therefore inferred inter-
action networks from the 30 top-abundant OTUs
consistently classified as pink, brown, or black across
several rarefactions. The resulting interaction networks

have a large percentage of negative links (70% for indi-
vidual A, 63% for individual B), in agreement with the
theoretical expectation that a high percentage of nega-
tive interactions is needed to stabilize the community
[33]. The same Faecalibacterium OTU (OTU_165924)
forms negative hubs in both networks (with nine and
five negative links, respectively; Fig. 5). In both net-
works, Firmicutes and Bacteroidetes OTUs form signifi-
cantly more links within their phylum than expected at
random, with the majority of within-phylum links being
negative, while inter-phylum link numbers are not
higher than expected at random. Thus, for top-abundant
representatives of Bacteroidetes and Firmicutes,
intra-phylum competition may be more intense than
competition with members of other phyla. Our finding
that Faecalibacterium forms hub nodes is in agreement
with the results of an alternative network inference

Fig. 4 Neutrality test and LIMITS results. a The neutrality test distinguishes non-neutral from neutral time series. A long interval is a confounding
factor. b The neutrality test also classifies short time series correctly. c The accuracy of the interaction matrix inferred with LIMITS is high for time
series from the three deterministic models, but decreases with connectance. d The goodness of fit of time series to the Ricker model is high for
all time series except for the unstructured DM data. The goodness of fit was quantified as the correlation between the original time series and
the time series predicted with the Ricker model parameterized with LIMITS. Plots were made with ggplot2 [52]. The dashed lines in a and b
indicate the value corresponding to a p value of 0.05. Values above represent significant p values, for which neutrality is rejected
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method (Granger causality) applied to the same data
[29]. However, not all links represent ecological interac-
tions, since networks inferred from real-world data likely
contain more false positive links due to underlying en-
vironmental variables.

Discussion
Our results show that several criteria can be combined
to discriminate processes underlying the dynamics of
microbial communities from time series.
The tendency of ecological time series to display pink,

brown, or black noise was noticed previously [34] and
linked to the environment [35]. However, since none of
our tested models takes environmental factors into ac-
count, our results indicate that such noise types can re-
sult from the intrinsic community dynamics alone.
Self-organized critical systems, to which the SOI model
is closely related, in particular are known for their pink
(1/f ) noise [36], whereas the neutral model was stated
previously to generate brown noise [37]. The noise types
measure dependency between time points, which can be
referred to as a memory effect. The strongest memory
effect is found in the gLV and noise-free Ricker time
series with their black noise. In general, the gLV time
series quickly reach a steady state and thus represent the
extreme case of perfect memory. However, for two of

the noise-free Ricker time series, all taxa are classified as
black while displaying periodicities. Adding a noise term
in the Ricker model weakens the memory effect, thereby
shifting the noise type from black via brown to pink.
It is current practice in microbial network inference to

filter out rare taxa, where rareness of a taxon is defined
arbitrarily by applying prevalence or abundance thresh-
olds. Filtering taxa by noise type may constitute an inter-
esting alternative. Taxon abundances that are not
dependent on previous abundances belong to taxa that
either do not interact or are too rare to reveal interac-
tions and will thus introduce false interactions in the
network model. While our work is a first step in this dir-
ection, a number of challenges have to be overcome:
first, differentiating white from non-white taxa involves
a threshold choice and is affected by confounding factors
such as noise. For instance, we found that while overall
noise-type percentages were conserved, a few (abundant)
taxa in the stool data changed their noise type upon
re-rarefaction. Second, it is conceivable that although
white taxa are not affected by other taxa, they may influ-
ence other taxa, for instance through cross-feeding. Ex-
tensions of the gLV have been proposed previously to
deal with external factors such as antibiotic treatment
[14, 17] and environmental factors [4]. White taxa sus-
pected to affect other taxa could be treated as external

a b

Fig. 5 Inferred interactions in stool data sets. The inferred interaction matrices are represented as directed networks, where nodes are
OTUs labeled with their genus or higher-level taxon name and directed edges represent non-zero entries in the inferred interaction
matrix. Directed edges with positive signs are colored in green, those with negative in red. Orphan nodes are not shown. a In the
network inferred for the stool time series of individual A, a negative hub is formed by a Faecalibacterium OTU. b In the network of
individual B, the same Faecalibacterium OTU (OTU_165924) also forms a negative hub. Interaction matrices inferred with LIMITS were
visualized with igraph [53]
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factors in the gLV parameterization. Tools such as
MDSINE allow such a treatment directly, whereas we
modified the LIMITS algorithm to support external factors.
Cross-sectional microbial network inference on the time
series directly or regression on the residuals after gLV
model fitting may be able to pinpoint such white taxa.
In this context, we would like to emphasize that the

absence of temporal structure in time series only has im-
plications for analyses that assume its presence, such as
the inference of interaction networks. Analyses that do
not rely on the presence of temporal structure, such as
ordination or the comparison of microbial composition
between conditions, are not concerned.
In our evaluation of LIMITS, we found high correlation

between inferred and known (simulated) interaction
matrices. However, in real-world applications, one does
not know the true interaction matrix for assessment. In-
stead, the observed time series is usually compared to the
predicted time series [17]. Based on this criterion, LIMITS
performed well on Hubbell time series, although their
generating model assumes the absence of specific eco-
logical interactions (the replacement step introduces a
generic competition between all species). In general, the
goodness of fit criterion is biased by the amount of mem-
ory present in the time series, since it is easier to predict a
time series that is highly autocorrelated than one less so.
This strongly highlights the need to test for non-neutrality
before network inference. The fact that an agreement be-
tween observed and predicted time series can be mislead-
ing was also discussed in [38].
Interestingly, in our tests, LIMITS reached reasonable

accuracies (quantified as the correlation between known
and inferred interaction matrix) not only for Ricker but
also for gLV and SOI time series. Thus, the inference is ro-
bust with respect to discrete or continuous implementa-
tion of a model (Ricker versus generalized Lotka-Volterra)
and even to the resolution (populations in the Ricker and
gLV model, individuals in the SOI model). In addition,
LIMITS performance was not much affected by Poisson
noise. However, as also pointed out by Cao et al. [39], net-
work inference accuracy drops with an increasing sam-
pling interval.
The first step in our proposed classification scheme,

i.e., the computation of noise types, is robust to compo-
sitionality, the presence or absence of transient dynam-
ics, the presence of Poisson and multinomial noise and
to the tested sampling intervals and works for relatively
short time series, yet it is currently unknown how sensi-
tive it is to the impact of the environment. While the en-
vironment may influence community dynamics [40], we
may reasonably assume that it will only in extreme cases
introduce temporal structure when it is absent other-
wise. Moreover, as we remove the linear trend from the
time series prior to power spectrum estimation, our

approach should be robust to slowly varying environ-
mental conditions. However, this point requires further
investigation. It is of note that all the models with tem-
poral structure presented in this work can be modified
to account for the influence of external drivers. Al-
though a number of confounding factors (strength of in-
trinsic noise, external noise, sampling interval) can alter
the noise type and hence prevent the identification of
the underlying model from the noise-type profile, these
processes do not introduce non-white taxa when these
are absent. Thus, the presence of non-white taxa is a ro-
bust indicator of temporal structure.
The second step, which tests for neutrality, is more

sensitive to sampling interval and external noise than
the first. While a high percentage of brown noise taxa
gives an additional and independent hint for neutral dy-
namics, this indicator can also be biased by the effects of
intrinsic noise, a high death rate and the sampling inter-
val. This highlights the importance of sufficiently dense
sampling in longitudinal studies.
According to our tests, the stool data are temporally

structured and non-neutral, the latter in agreement with
previous results [19, 41]. The noise-type profile of the
stool data is closest to the noisy Ricker and SOI time
series, indicating the presence of stochasticity. This overall
deterministic behavior with a stochastic component agrees
well with our expectation for a microbial community
whose members are known to engage in various
cross-feeding and competitive interactions while being ex-
posed to daily perturbations through the host (e.g., diet).

Conclusion
In conclusion, we have demonstrated that knowledge
about the fundamental properties of microbial commu-
nity dynamics is required for unbiased community study
and model inference. We have proposed a classification
scheme for microbial sequencing time series that first
differentiates between unstructured and structured
models, then tests for neutrality and finally determines
the goodness of fit to a deterministic model. To make
these tests accessible, we have implemented a new R
package called seqtime. While several hurdles still have
to be overcome, this classification scheme is a first step
towards model identification from time series data.

Methods
Simulations and empirical data
Below, data generation is briefly described. More detailed
model descriptions can be found in Additional file 2, while
model parameters are given in Additional file 1: Table S1.

Neutral (Hubbell) model
We initialized the local community with 10 species of
even proportions and omitted the first 1000 time steps,
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except for the immigration rate of 0.1, where we omitted
the first 5000 time steps due to the slower convergence
of the dynamics with low immigration rates. The meta-
community species proportions were set to the initial
species proportions. The speciation rate in the meta-
community is zero; hence, the metacommunity compos-
ition is constant.
We generated all neutral test time series with the sim-

Hubbell function in the seqtime R package. As a control,
we also computed noise types for time series generated
with the untb [42] and the WrightFisher R packages [30].

Interaction matrix generation
The SOI, Ricker, and gLV models take an interaction
matrix as a parameter, which specifies which species in-
teracts with which other species.
We used the algorithm by Klemm and Eguíluz [43] to

generate modular and scale-free interaction matrices
that reproduce properties of inferred microbial networks
[44, 45]. We set the clique number parameter of the
Klemm and Eguíluz algorithm to 10.
We assigned interaction strengths by setting diagonal

values to − 1 and sampling off-diagonal values from a
uniform distribution between 0 and 1. We then adjusted
interaction matrix connectance (the ratio of non-zero to
all values in the interaction matrix omitting the diag-
onal) to 0.05 or 0.01, which is close to the range re-
ported for food webs [46] and within the range of
inferred microbial networks [47].
Interaction matrices need to contain a large number of

negative interactions to avoid unbounded increase of spe-
cies abundances [33, 48, 49]. We therefore converted ran-
domly selected positive interactions into negative ones.
After each conversion, we tested matrix stability with a
Ricker simulation and stopped once a stable matrix was
obtained. In this way, we generated interaction matrices
with a positive edge percentage of 0, 16, 40, and 64%.

Generalized Lotka-Volterra (gLV) model
The gLV model describes community dynamics as a
function of growth rates and species interactions. We
generated the interaction matrix as described above and
sampled the growth rates from a uniform distribution
with values between 0 and 0.5.

Ricker model
The Ricker model is a discrete version of the gLV model.
In addition to the interaction matrix, it takes a vector of
carrying capacities as input. We generated the carrying
capacities from a uniform distribution with values be-
tween 0 and 0.5. As suggested by Fisher and Mehta [14],
we also include a noise term with strength σ.

SOI model
The SOI model (based on model B, [22]) is individual-based
and takes into account species-specific immigration and
extinction probabilities as well as asymmetric interac-
tions between individuals. We set the immigration rates
to the initial species proportions (described below) and
generated extinction rates from a uniform distribution
between 0 and 1.

Dirichlet-multinomial distribution
The DM distribution takes two parameters, namely the
species proportion vector (set to the initial species pro-
portions) and the overdispersion parameter θ, set to 0.2,
0.02, or 0.002. These overdispersion values have been re-
ported for sequencing data previously [47].

Time series simulations
With each model, we simulated the dynamics of 100
species for 3000 time steps. We generated initial species
proportions with the broken stick process [50] imple-
mented in vegan’s function bstick. We also generated
test time series with even initial species proportions.
We tested three sampling rates: once every time step,

once every 5 time steps, and once every 10 time steps.

Stool time series data
The stool data consist of two metagenomic time series of
fecal samples that were collected almost daily by two indi-
viduals [3]. We rarefied the counts to 10,000 reads per
sample and omitted the last time point from individual B,
since there was a gap of 66 days between it and the previ-
ous sample. We then interpolated the data with function
stineman in the stinepack R package [51] to ensure equi-
distant time intervals. A few small negative values intro-
duced by the interpolation were set to zero. After
interpolation, the data set from individual A included 365
time points and the data set from individual B 253 time
points. Finally, we selected the 100 top-abundant OTUs,
ranked by their sum across time points.

Poisson noise
We scaled gLV and Ricker time series by a factor of
1000, Hubbell time series by a factor of 2, DM data by a
factor of 1, and SOI time series by a factor of 50 to ob-
tain counts for gLV and Ricker and similar sequencing
depths across models. We then generated noisy time
series according to the formula: yij = Pois(xij), where xij is
the count of the ith species in the jth sample and yij is
the Poisson-distributed value. We applied LIMITS to se-
lected noisy time series including 12 Ricker, 12 Hubbell,
and 12 SOI time series.
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Multinomial noise
Noise was generated by applying the multinomial distri-
bution to the taxon proportions in each sample. The se-
quencing depth was varied randomly between 1000 and
1500 with a uniform distribution. Data were converted
into relative abundances before noise-type classification.

Computation of time series properties
All properties were computed for the full-length time
series as well as for the first 100 time points. Raw abun-
dances were converted into relative abundances.

Noise types
Frequency and spectral density are calculated for each spe-
cies with R function spectrum with detrending enabled.
Detrending removes linear trends by computing the resid-
uals of the least-squares fit of a line. In log-log scale, a slope
of − 1 indicates pink (1/f) noise, a slope of − 2 brown noise,
and a slope below black noise, whereas white noise is char-
acterized by a slope around 0. We determine the slope by
first fitting a spline with function smooth.spline (whose de-
gree of freedom is set to the maximum of [2,log10(le-
ngth(time series))]) and then computing the minimum of
the first derivative of the spline. In this way, we can accom-
modate to an extent non-linear relationships between fre-
quency and spectral density, where the amount of
non-linearity allowed depends on the length of the time
series. We then classify a species as black when the slope is
below − 2.25, as brown when it is in the range of (− 1.75, −
2.25], as pink when in the range of (− 0.5, −1.75], and as
white otherwise. These boundaries avoid unclassified spe-
cies. However, since the boundaries are arbitrarily chosen,
we also tested a more stringent definition with an allowed
deviation of ± 0.2 from − 1 for pink and from − 2 for brown
noise, which introduced unclassified species, but did not
affect our conclusions (data not shown).

Maximal autocorrelation and Hurst exponent
For each species, we computed the maximal autocorrel-
ation for lags larger than 0 with R function acf and the
Hurst exponent with function HurstK in R package FGN.
We assigned species to four arbitrarily selected maximal
autocorrelation bins (< 0.3, [0.3,0.6), [0.6,0.95), > 0.95) and
Hurst exponent bins (< 0.6, [0.6,0.8),[0.8,0.9), > 0.9) and
computed the percentage of species in each bin.

Neutrality test and LIMITS
Neutrality test
The neutrality test [30] tests the per-capita equivalence
of species by determining whether or not the covari-
ances between species are invariant to grouping. The
test relies on a constant-volatility transformation that
stabilizes the volatility of a two-group (two-species) neu-
tral community irrespective of how species are grouped.

Neutrality was tested on relative abundances using 500
randomly drawn constant-volatility transformations
through the function NeutralCovTest in the Wright-
Fisher R package (https://github.com/reptalex/Wright-
Fisher) with method logitnorm. p values produced from
the neutral covariance test were used as a measure of
the incompatibility of the data with the neutral model.

LIMITS
We translated the LIMITS algorithm [14], originally im-
plemented in Mathematica, into R. We then ran LIMITS
on the 60 top-abundant species of relative abundance
time series. When the inferred interaction matrix had at
least one eigenvalue with a positive real part, we applied
a Schur decomposition and modified the diagonal part
to avoid explosions when predicting time series. We
assessed the accuracy by computing the mean correl-
ation of the known and the inferred interaction matrix
rows and the goodness of fit as the mean correlation of
the observed and predicted community time series. The
predicted time series was computed with the parameter-
ized Ricker model in a step-wise manner, i.e. the values
at each time point are computed from the original values
at the preceding time point using the predicted inter-
action matrix. The carrying capacity of a species was es-
timated as the mean of its abundance across time points.

Network analysis
Links between phyla were counted as the number of en-
tries in the interaction matrix, including the diagonal.
The significance of intra- and inter-phylum link number
was assessed by repeatedly (100 times) randomizing the
interaction matrix while preserving the total number of
entries and computing parameter-free p values.

Additional files

Additional file 1: Table S1. lists for each test time series the parameters
used to generate it (sheet “Model parameters”) and the properties of
relative abundance time series, which include noise type, autocorrelation,
Hurst bin percentages, the p values of the neutrality test, and the LIMITS
results (sheet “Time series properties”). In addition, it includes all these
results for the first 100 time points (sheet “First 100 tp properties”), the
last 100 time points (sheet “Last 100 tp properties”) and for time series
with Poisson noise (sheet “Poisson time series properties”). (XLSX 158 kb)

Additional file 2: Ecological models. (DOCX 1011 kb)

Additional file 3: Figure S1. Maximal autocorrelation and Hurst
exponent profiles reproduce patterns seen with noise types. (a) The
species in each time series are grouped in four bins according to their
maximum (lagged) autocorrelation (white: below 0.3, light blue: 0.3 to
0.6, blue: 0.6 to 0.95, dark blue: above 0.95). (b) The species are separated
into four Hurst exponent bins, ranging from white (below 0.6), orange
(0.6 to 0.8), red (0.8 to 0.9) to dark red (above 0.9). Species for which the
maximum autocorrelation or Hurst exponent could not be computed
(due to a large number of zeros) are colored in gray. Labels for time
series are colored according to the level of non-zero intrinsic noise
(sigma) for Ricker, according to the death rate if larger than one for
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Hubbell, according to the interval if larger than one (with interval color-
ing taking precedence over sigma) and black otherwise. (PDF 9 kb)

Additional file 4: Figure S2. The noise-type classification and the neutral-
ity test for Ricker and gLV are robust to positive edge percentage, but con-
nectance affects noise types in Ricker. (a, c) The percentage of taxa with
black, brown, pink and white noise types is plotted against the connectance
of the interaction matrix for Ricker and gLV, respectively. The percentage of
black taxa in Ricker was positively correlated to connectance (Spearman’s
rho: 0.86, p value < 0.00001), whereas the percentage of pink taxa in Ricker
was negatively correlated to connectance (Spearman’s rho: − 0.71, p value
= 0.00049). (b, d) The percentage of taxa with black, brown, pink, and white
noise types is plotted against the positive edge percentage of the inter-
action matrix for Ricker and gLV, respectively. All neutrality test p values
were zero, indicating non-neutral dynamics. Time series were generated for
100 species and 3000 time points. (PDF 16 kb)

Additional file 5: Figure S3. The noise-type classification and the neu-
trality test for SOI are robust to interaction matrix properties. (a) The per-
centage of taxa with black, brown, pink, and white noise types is plotted
against the connectance of the interaction matrix. (b) The percentage of
taxa with black, brown, pink and white noise types is plotted against the
positive edge percentage of the interaction matrix. The stochasticity in
the SOI model is plotted against (c) noise types and (d) neutrality p
values. Stochasticity is defined here as the ratio between the mean of ex-
tinctions and immigrations and the mean of the absolute interaction
strengths (excluding diagonal values). Neutrality test p values for (a) and
(b) were zero, indicating non-neutral dynamics. Time series were gener-
ated for 100 species and 3000 time points. (PDF 16 kb)

Additional file 6: Figure S4. The noise-type classification and the neu-
trality test are robust for a wide parameter range in the Hubbell model,
but noise types are affected by the death rate. (a) The percentage of taxa
with black, brown, pink and white noise types is plotted against the
death rate. There is a significant negative correlation between the per-
centage of brown species and the death rate (Spearman’s rho: − 0.85, p
value < 0.000001) and a corresponding positive correlation of the per-
centage of pink species to the death rate (Spearman’s rho: 0.94, p value
< 0.000001). (b) The p values of the neutrality test are plotted against the
death rate. (c) The percentage of taxa with black, brown, pink, and white
noise types is plotted against the number of individuals. (d) The p values
of the neutrality test are plotted against the number of individuals. (d)
The percentage of taxa with black, brown, pink, and white noise types is
plotted against the immigration rate. (e) The p values of the neutrality
test are plotted against the immigration rate. Neutrality is rejected for a p
value below 0.05. The p value of 0.05 is indicated by a dashed horizontal
line. Time series were generated for 100 species and 3000 time points.
For the immigration rate, the percentage of noise types of taxa with non-
zero abundances was plotted, since for the low immigration rates tested
in this simulation, many taxa have abundances of zero. (PDF 40 kb)

Additional file 7: Figure S5. The test for temporal structure with noise
types is robust to compositionality and the absence of transient dynamics.
(a) The noise-type profiles for absolute abundances do not differ noticeably
from those for relative abundances shown in Figure 3a. (b) When noise
types are computed for the last hundred time points, most time series are
correctly classified as temporally structured or unstructured. Labels for time
series are colored according to the level of non-zero intrinsic noise (sigma)
for Ricker, according to the death rate if larger than one for Hubbell, accord-
ing to the interval if larger than one (with interval coloring taking prece-
dence over sigma) and black otherwise. (PDF 8 kb)

Additional file 8: Figure S6. The test for temporal structure with noise
types is robust to noise. (a) Noise-type profile in the presence of noise
generated with the Poisson distribution for each species and each sam-
ple. (b) Noise-type distribution in the presence of noise generated with
the multinomial distribution for each sample. Labels for time series are
colored according to the level of non-zero intrinsic noise (sigma) for
Ricker, according to the death rate if larger than one for Hubbell, accord-
ing to the interval if larger than one (with interval coloring taking prece-
dence over sigma) and black otherwise. (PDF 8 kb)

Additional file 9: Figure S7. Increasing the time series length improves
the accuracy of the test for temporal structure. Noise types were

computed for time series sub-sets from 1000 to 1010 (a) and 1000 to
1025 (b) for all data sets with more than 1000 time points. Labels for time
series are colored according to the level of non-zero intrinsic noise
(sigma) for Ricker, according to the death rate if larger than one for Hub-
bell, according to the interval if larger than one (with interval coloring
taking precedence over sigma) and black otherwise. (PDF 8 kb)

Additional file 10: Figure S8. Increasing the time series length
improves the accuracy of the test for temporal structure. Noise types
were computed for time series sub-sets from 1000 to 1050 (a) and 1000
to 1100 (b) for all data sets with more than 1000 time points. Labels for
time series are colored according to the level of non-zero intrinsic noise
(sigma) for Ricker, according to the death rate if larger than one for Hub-
bell, according to the interval if larger than one (with interval coloring
taking precedence over sigma) and black otherwise. (PDF 7 kb)

Additional file 11: Figure S9. The presence of noise decreases the
accuracy of the neutrality test but affects network inference accuracy less.
(a) For the last 100 time points, when many simulated time series reach
equilibrium, neutrality is erroneously rejected for several Hubbell time
series and erroneously detected for a number of Ricker and SOI time
series. The classification does not change for the stool time series. (b) The
addition of Poisson noise does not introduce false negatives in the
neutrality test, but introduces false positives (i.e., Hubbell time series for
which neutrality is rejected). The dashed lines in (a) and (b) indicate the
value corresponding to a p value of 0.05. For values above, neutrality is
rejected. (c) LIMITS accuracy, i.e., mean correlation of inferred and known
interaction matrix, for time series with Poisson noise. Inference failed for
gLV time series. (d) LIMITS goodness of fit for time series with Poisson
noise. The goodness of fit was computed as the mean correlation
between original and predicted time series. The data points are colored
according to the interval in panels (a), (b) and (d), and according to the
connectance in panel (c). (PDF 17 kb)

Additional file 12: Figure S10. The accuracy of network inference with
LIMITS decreases more strongly when applied to the last 100 than to the
first 100 time points. (a) LIMITS accuracy, i.e., mean correlation of inferred
and known interaction matrix, for the first 100 time points. (b) LIMITS
goodness of fit for the first 100 time points. The goodness of fit was
computed as the mean correlation between original and predicted time
series. (c) LIMITS accuracy for the last 100 time points. Since gLV time series
are constant, no network could be inferred for them. (d) LIMITS goodness of
fit for the last 100 time points. The correlation between the goodness of fit
to the Ricker model and the intrinsic noise strength observed in noise-free
time series is lost. The data points are colored according to the connectance
in panels (a) and (c), according to interval in panel (b) and according to the
intrinsic noise strength sigma in panel (d). (PDF 17 kb)

Additional file 13: Figure S11. Time series of the 100 top abundant
OTUs in the processed stool data of individual A and B [3]. The OTUs are
colored according to their noise type (with cyan for white noise). (PDF 17
kb) (PDF 219 kb)

Additional file 14: Figure S12. Variability of noise-type classification
across rarefactions. The noise types of 100 taxa selected to be top abun-
dant in one rarefaction were computed for repeated rarefactions in the
stool data set of individual A [3]. (PDF 5 kb)
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