
HAL Id: hal-01891456
https://hal.science/hal-01891456v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A combinatorial optimisation approach for closed-loop
supply chain inventory planning with deterministic

demand
Pierre Desport, Anne Liret, Carla Di Cairano - Gilfedder, Gilbert Owusu,

David Lesaint, Frédéric Lardeux

To cite this version:
Pierre Desport, Anne Liret, Carla Di Cairano - Gilfedder, Gilbert Owusu, David Lesaint, et al..
A combinatorial optimisation approach for closed-loop supply chain inventory planning with deter-
ministic demand. European Journal of Industrial Engineering, 2017, �10.1504/EJIE.2017.084878�.
�hal-01891456�

https://hal.science/hal-01891456v1
https://hal.archives-ouvertes.fr


A Combinatorial Optimisation Approach for
Closed-Loop Supply Chains Inventory Planning With
Deterministic Demands

Abstract: Supply chains in equipment-intensive service industries often involve
repair operations. In this context, tactical inventory planning is concerned with
optimally planning supplies and repairs based on demand forecasts and in the
face of conflicting business objectives. This paper considers closed-loop supply
chains and proposes a mixed-integer programming model and a metaheuristic
approach to this problem. The model is open to a variety of network topologies,
site functions and transfer policies. It also accommodates multiple objectives
by the means of a weighted cost function. We report experiments on pseudo-
random instances designed to evaluate plan quality and impact of cost weightings.
In particular, we show how appropriate weightings allow to emulate common
planning strategies (e.g., just-in-time replenishment, minimal repair) and validate
approaches.

Keywords: Supply Chains Planning; Planning Strategies; Mixed Integer
Programming; Metaheuristics; Closed-Loop

1 Introduction

The concept of reverse logistics and closed-loop supply chains (CLSC) have gained
attention in recent years following growing concerns over the environmental impact of
products reaching end-of-life (Krikke et al., 2003; Savaskan et al., 2004). Generally
speaking, the aim is to create or recapture value from used products by means of
recycling, repair or disposal operations (Govindan et al., 2015). Reverse logistics represents
both a challenge and an opportunity to industry, notably in equipment-intensive sectors
that consume, produce and supply parts in high volumes (automotive, electronics, etc.)
(Fleischmann et al., 1997; Stock, 1992).

Technically, reverse and forward supply chains can be combined to create a closed-loop
supply chain that manages both “forward” and “reverse” flows (Akçalı et al., 2009). A CLSC
describes the “design, control, and operation of a system to maximize value creation over the
entire life cycle of a prod- uct with the dynamic recovery of value from different types and
volumes of returns over time” (Guide and Van Wassenhove, 2006). Telecommunications
operators, for instance, rely on multi-level CLSC to support service maintenance and repair
tasks carried out by field engineers (Desport et al., 2015). These tasks require many different
parts with varying degrees of reusability (cables, network cards, IT equipment, etc.) In this
context, the function of the CLSC is to replenish field depots with spare parts and transfer
used parts back to warehouse centres for recycling or repair.

CLSC are operated through inventory systems that control, allocate and plan inventory
through supply and repair decisions (see (Govindan et al., 2015; Ilgin and Gupta, 2010;
Stindt and Sahamie, 2014) for a comprehensive review). On the one hand, systems are tied to
the underlying network topology, on the other hand they depend on inventory management

Copyright © 2009 Inderscience Enterprises Ltd.



2 author

strategies (e.g., centralisation, cross-filling) and on the interconnection between repair
facilities. Examples of topologies based on multi-level networks include networks
with single inventory and repair warehouse centres, field depots with remanufacturing
capabilities (Lieckens et al., 2013), or warehouse centres meeting local demand (Cattani
et al., 2011). Inventory systems also differ based on whether demand is stochastic (e.g.,
faulty parts are generally unknown prior to field repair tasks) or deterministic (e.g.,
maintenance and provision tasks are generally well-specified and scheduled in advance).
Inventory control models based on reactive policies (?) prevail in stochastic environments
and can be coupled with analytical or simulation methods to maintain high-quality service
and minimise inventory costs (Guide et al., 2003; Gupta et al., 2013). In deterministic
environments however, centralised inventory planning systems based on combinatorial
optimisation methods provide a suitable alternative.

In this paper, we restrict our attention to single-item spare parts inventory planning
systems under deterministic demand. We consider the general situation where demand for
spare parts matches with supply of used parts, that is, when a used part is placed in a
field depot, a spare part is immediately taken from on-hand inventory or backordered. For
simplicity, we assume that replenishment is confined to the supply chain (i.e., no external
procurement) and that all used parts may be repaired (i.e., no scrap). The inventory planning
problem specifically consists in generating a plan of supply (transfer of healthy item),
return (transfer of faulty items) and repair actions for all sites (e.g., warehouse centres,
repair centres, hubs, field depots). The planning horizon is discretised into consecutive time
periods (e.g., a weekly plan spanning over 5 days) and the plan is built based on an exact
forecast specifying the number of parts to deliver or pick-up, per site and time period.
Planned actions are then performed at the start of each period until a new plan is generated.

Our problem is close to many logistics problems. A major aspect of our problem is
the delivery of spare parts to customers. This goal points out that the Tactical Distribution
Planning Problem (TDPP) is close to the classic Inventory Routing Problem (IRP) (Bertazzi
and Speranza, 2012; Coelho et al., 2013; Campbell et al., 1998). However, the goal of the IRP
is to define a policy that can be applied repeatedly to minimise transport cost while meeting
the demand (considered as a periodic constant volume per product). In our case, objectives
are multiple and include storage and repair costs. Moreover, while demand forecast are
deterministic, they can vary from one time period to another and delivery schedules are
predefined. Another well-known problem is the Multi-Level Lot Sizing Problem. Although
this problem takes place in a multi-level supply chain, it is more concerned with scheduling
the production activities and does not focus on distribution and refurbishing aspects(Drexl
and Kimms, 1997; Cornelli et al., 2006).

We present a mixed-integer program to model this tactical distribution planning problem
(TDPP) that is applicable in a wide range of environments. The model leaves full flexibility
as to the stocking capability of each site (spare parts, used parts or both), its repair capability,
and whether it fulfils demand or not. The supply networks for spare parts and used parts join
on repair sites but their topology is otherwise not limited by constraints (from arborescences
to complete graphs). A schematic example is illustrated in Figure 1 where a warehouse S1
provides spares to two sites (S2 and S3) where demands occurs. These sites can send back
faulty parts to S1 and consequently to a repairer that retrieve them as healthy spares later
on. The model does not enforce any restriction either on supply and repair lead times or on
schedules. Inventory is managed centrally in this approach and flow constraints are enforced
to compute and maintain inventory levels across sites and over time. Constraints on spares
match on-site demand, backorders, and outgoing inventory (as per transfer decisions) with



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands 3

on-hand and incoming inventory including repaired parts (as per repair decisions). Flow
constraints for used parts follow similar patterns. As expected, integrity constraints forbid
backordering if inventory is available and prevent from transferring or carrying inventory if
orders are outstanding. Lastly, the objective function is a weighted sum of linear functions
costing the total number of units that are backordered, held in inventory, shipped or repaired.
No start-up penalty applies and weights are user-defined to support different prioritisation
strategies between service levels and operational costs.

Figure 1 A 2-echelon CLSC system allowing lateral transshipments of spare parts.

Integrity constraints put aside, TDPP reduces to a minimum cost network flow problem.
The core problem may indeed be represented by a space-time graph with nodes subject
to conservation-of-flow equations, arcs labelled with convex cost functions, and a global
cost function itself convex. This sub problem reduces to the minimum convex network flow
problem Guisewite and Pardalos (1990) and is therefore polynomial. We show however
that TDPP is NP-hard due to the above mentioned integrity constraints which enforce
“mutual exclusion” rules between backordering decisions and decisions to carry or release
inventory. The result is established by reducing the subset sum problem (Kellerer et al.,
2004). Alternatively to the MIP model, we introduce a metaheuristic to solve TDPP. We
compare both approaches on a range of pseudo-random instances generated from a concrete
case in the telecommunications service sector. Instances feature different profiles of demand
and initial stock levels but share the same topology (i.e., a 3-echelon CLSC with single
distribution and repair centres) and temporal structure (i.e., lead-times and schedules).
Results attest the superiority of the metaheuristic in terms of solution fitness (as measured
by the objective function), run time and scalability.

From a decision support perspective, the TDPP solver can be packaged in a periodic
planning system as sketched in 2. The key parameter of this system is the plan recomputation
frequency.

This paper is organised in 5 sections. Section 2 introduces the MIP model for TDPP,
proves it is NP-hard by reduction of Subset Sum, and casts the core sub problem into a
minimum convex network flow problem. Section 3 introduces the metaheuristic and its
key components. Section 4 presents the case study, the experiments comparing MIP and
metaheuristic approaches and the sensitivity analysis. Section 5 concludes and discusses
possible extensions to this work.



4 author

Figure 2 A periodic planning system for CLSC.

2 Problem Description

We introduce in this section the Tactical Distribution Planning Problem (TDPP). The
proposed version is limited to single item planning as, in our case study, items are
independent. We also consider that faulty parts are all either repaired or replaced by new
ones by the repairer. We propose in section 2.2 a list of possible extensions to our model
(buying or selling items, capacity constraints, attrition rate, …). We show that the TDPP is
close to flow problems such as the Minimum Cost Flow Problem (MCNFP).
We also demonstrate the complexity of the TDPP by reducing the Subset Sum Problem to
it. Note that in the rest of the paper we use the terms “healthy items” to designate spare
parts and “faulty items” to nominate used parts.

2.1 Formalisation

We cast below the TDPP as a class of finite domain constraint optimisation problems (COP).
TDPP is parameterised with a planning horizon T , a set of sites L and a space-time graph
G∗ whose vertices are all the possible pairings of sites and time points (#L×#T ) and arcs
the routes interconnecting sites through the time horizon. Specifically, G∗ can be divided
into 3 subgraphs Gh, Gfand Gr where Gh describes the supply routes for healthy items,
Gf the return routes for faulty items andGr the repair routes. Parameters are more formally
defined in Table 1. Figure 3 is an example of space-time graph. These subgraphs describe the
network and schedules of the CLSC. Note that this representation is generic and is suitable
to any topology and schedule. The parameters define the structure of the problem which
the sets of constants, variables, constraints and cost terms are based upon. Tables 2 and 3
present the constants and the variables of the problem which are indexed either using the
sites of the CLSC (e.g., repair costs), the nodes of the space-time graph (e.g., inventory level
per site and time bucket) or its arcs (e.g., transfers). We introduce the following notation
xyz where x is the name of the constant (or variable), y the state (i.e., healthy, faulty, healthy
stock,-...), z the space-time parameters (i.e., locations, time buckets).



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands 5

Figure 3 An example of space-time graph based on Figure 1

Table 1 Parameters of an instance

Paremeters
Set of sites L : L ⊆ N
Time horizon T : T ⊆ N
Supply routes Gh : L× L× T × T
Return routes Gf : L× L× T × T
Repair routes Gr : L× T × T

Table 2 Constants of an instance

Constants
demand forecast d : L× T → N

inventory costs µsh , µsf : L→ R

backorder costs µb : L→ R

transfer costs µmh

, µmf

: L× L→ R

repair costs µmr

: L→ R

weights ωs, ωb, ωmhf

, ωmr ∈ N
initial state I

The constants of a TDPP instance are the demand forecast d that defines the demand
level for each site and time bucket of the horizon, the unit costs µ∗ (note that it is possible
to make dynamic the costs changing its definition byL× T → N orL× L× T × T → N

or L× T × T → N), the user-defined costing weights ω∗ and the initial state I . The initial
state I is an assignment of all the variables at time bucket 0.

Variables are split into decision variables (in bold style) and auxiliary variables. The
former model the set of actions defining a plan and the latter model the resulting state of
the supply chain.

For two sites l and l′, and time buckets t and t′, decision variablemh
l,l′,t,t′ (respectively,

mf
l,l′,t,t′ ) denotes the quantity of healthy (resp., faulty) items transferred from l at t and

reaching l′ at t′. Likewise, decision variable mr
l,t,t′ denotes the quantity of faulty items

whose repair starts at t and ends at t′ on site l. Notice that Repair operations transform faulty
items into healthy items and effectively link up the faulty and healthy subgraphs within a



6 author

Table 3 Variables of an instance

Variables
inventory sh, sf : L× T → N

backorders b : L× T → N

healthy potential ph : L× T → Z

faulty potential pf : L× T → N

transfers mh,mf : L× L× T × T → N

repairs mr : L× T × T → N

costs c, cs, cb, cm
hf

, cm
r ∈ R

repair time and cost. As such, they are a particular type of transfer operations topologically
restricted to link a site with itself. Any decision variable that has no corresponding arc in the
space-time graph is forced to 0. In effect, a plan is a labelling of the arcs of the space-time
graph with positive or null values. The labelling of an arc represents the quantity of items
(possibly null) being transferred or repaired between the site(s) connected by the arc.

Auxiliary variables are directly computed from the decision variables. They model the
state and resulting cost associated to each site and time bucket. Given time bucket t and site
l, variable shl,t (resp. sfl,t) denotes the inventory level for healthy (resp., faulty) items and
bl,t the backorders. Variable phl,t (resp., pfl,t) represents the healthy (resp., faulty) potential
of site l at time bucket t. phl,t is the difference between on-hand inventory and backorders.
pfl,t is the quantity of faulty items available to be sent out from site l at time bucket t. Lastly,
four auxiliary variables are used to model the backordering (cb), inventory (cs), transfer
(cm

hf

) and repair costs (cm
r

) of a plan.
Equations (1a) to (1c) characterize faulty items management. They define the stock

requirement constraint (i.e. an item can be transferred only if the stock is positive).
Specifically, Equation (1c) represents the quantity of faulty items that can be returned from
a particular site l on a particular time bucket t. They also link demands and faulty items by
adding a faulty item when a demand occurs.

∀l ∈ L, t ∈ T, sfl,t = pfl,t −
∑
t′∈T

mr
l,t,t′ −

∑
l′∈L,
t′∈T

mf
l,l′,t,t′ (1a)

∀l ∈ L, t ∈ T,
∑
t′∈T

mr
l,t,t′ +

∑
l′∈L,
t′∈T

mf
l,l′,t,t′ ≤ p

f
l,t (1b)

∀l ∈ L, t ∈ T\{0}, pfl,t = sfl,t−1 +
∑
l′∈L,
t′∈T

mf
l′,l,t′,t + dl,t (1c)

Equations (2a) to (2d) are conservation-of-flow constraints on healthy items that
also give priority to the fulfilment of local demand. This prioritization policy forbids
backordering when inventory is available and forbids transferring or carrying inventory
when orders are outstanding on a site.

∀l ∈ L, t ∈ T, shl,t = max(0, phl,t −
∑
l′∈L,
t′∈T

mh
l,l′,t,t′) (2a)



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands 7

∀l ∈ L, t ∈ T,
∑
l′∈L,
t′∈T

mh
l,l′,t,t′ ≤ max(0, phl,t) (2b)

∀l ∈ L, t ∈ T\{0}, phl,t = shl,t−1 +
∑

l′∈L,t′∈T

mh
l′,l,t′,t

+
∑
t′∈T

mr
l,t′,t − bl,t−1 − dl,t (2c)

∀l ∈ L, t ∈ T, bl,t = max(0,−phl,t) (2d)

Equation (3e) models the fitness function which is a weighted sum of the four different
costs computed by equations (3a) to (3d). All these costs are linear functions based on unit
costs that are site- or route-specific. For instance, the backordering cost for a site is its total
number of backorders times its unit cost for backordering. The backordering cost associated
to a plan is then the sum of backordering costs over all sites. The weighted sum will allow
us to emulate inventory management policies (see Section 4).

cs =
∑

l∈L,t∈T

(shl,t × µsh

l + sfl,t × µ
sf

l ) (3a)

cb =
∑

l∈L,t∈T

bl,t × µb
l (3b)

cm
hf

=
∑

l,l′∈L,
t,t′∈T

(mh
l,l′,t,t′ × µmh

l,l′ +mf
l,l′,t,t′ × µ

mf

l,l′ ) (3c)

cm
r

=
∑
l∈L,

t,t′∈T

(mr
l,t,t′ × µmr

l ) (3d)

Global min :

c = ωs × cs + ωb × cb + ωmhf

× cm
hf

+ ωmr

× cm
r

(3e)

2.2 Extensions

The TDPP is generic problem and can easily be updated to include a large variety of
extensions. We sketch a non-exhaustive list of extensions that seem relevant in a supply
chain management context.
The TDPP is limited to 3 basic operations (supply, return and repair) such that the number of
items moving or installed in the supply chain is constant. Other operations can be added to the
model to increase or decrease the quantity of items. For example, it is reasonable to include
selling and purchasing operations, to be able to meet a surplus of demands or oppositely
to evacuate unused items. Equally, our model is currently restrained to maintenance or
replacement procedures. We can include other procedures such as installation (i.e., supply a
spare to a new site) and dismantling (i.e., the faulty items are not replaced). These procedures
can be easily incorporated to our model by adding 2 matrices of constants.
Another common constraint in supply chain management problems is the capacity



8 author

constraint. In the TDPP, capacity constraints could be applied on transfer, storage and repair
quantities. Matrices and inequalities can easily model these constraints but we intuitively
understand that they add some complexity to the problem. The model may also be extended
to model the notion of safety stock. It can be represented either with a strict capacity
constraint or by adding an objective to the fitness function. The second method provides
the possibility to prioritize objectives (i.e. meet the demands and if possible keep the stock
level over the safety stock level).
Other extensions include accounting for unrepairable and recyclable items (using an attrition
rate and a repair rate), supporting interchangeable item types (to cope with product/service
platform lifecycles) or inter-dependent item types (to reflect bills of materials associated to
service operations).

2.3 TDPP as a flow management problem

The TDPP can be easily seen as a flow problem thanks to its space-time graph. We present
in this section the minimum cost network flow problem (MCNFP) and demonstrate how to
transform the core of the TDPP into this flow problem.

2.3.1 The MCNFP problem

The minimum cost network flow problem (MCNFP) is a classic flow problem occurring in
a directed graph I = (NI , AI) of k nodes (Goldberg et al., 1989; Guisewite and Pardalos,
1990; Pardalos, 1993). A k-vector π represents the potential value of each node. Each arc
(i, j) has a flow value xi,j bounded by ai,j ≤ xi,j ≤ bi,j associated with a cost function
ci,j such that its total cost is ci,j(xi,j).
The objective is then to solve:

global min
∑
i,j∈A

ci,j(xi,j) (4)

subject to∑
(i,k)∈A

xi,k −
∑

(k,i)∈A

xk,i = πi,∀i ∈ NI (5)

and

0 ≤ ai,j ≤ xi,j ≤ bi,j , (i, j) ∈ AI (6)

Note that a system is called consistent if
∑n

i=1 πi = 0 and that a node with πi < 0 is a
sink, contrary to a node with πi > 0 called a source. The concave version of this problem
(i.e., with fixed charge costs) has been proven NP-Hard (Guisewite and Pardalos, 1990).

2.3.2 TDPP and MCNFP

We describe here the process to transform the core of a TDPP instance into an uncapacitated
MCNFP instance (Goldberg et al., 1989). We reuse the notations introduced in Section 2.1.

1. For each pair (site l ∈ L, time bucket t ∈ T ), create three nodes nhl,t, n
b
l,t and nfl,t.



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands 9

2. For each node, define the potential value:

∀l ∈ L πnh
l,0

= shl,0 (7a)

∀l ∈ L πnb
l,0

= −bl,0 (7b)

∀l ∈ L π
n
f
l,0

= sfl,0 (7c)

∀l ∈ L, t ∈ T\{0} πnh
l,t

=
∑

l′∈L,t′∈T,t′≤0

mh
l′,l,t′,t +

∑
t′∈T,t′≤0

mr
l,t′,t (7d)

∀l ∈ L, t ∈ T\{0} πnb
l,t

= −dl,t (7e)

∀l ∈ L, t ∈ T\{0} π
n
f
l,t

=
∑

l′∈L,t′∈T,t′≤0

mf
l′,l,t′,t + dl,t (7f)

Note that Equation (7d) only involves variables mh
l′,l,t′,t and mr

l,t′,t such that t′ ≤ 0.
These variables are actually constants set with the initial state data.

3. For each couple of healthy node and backorder node, nhl,t × nbl,t:

• If t > 0 create an arc (nhl,t−1, n
h
l,t). Its value is the healthy storage flow. We label

it x(nh
l,t−1,n

h
l,t)

and its associated cost is 0 if t− 1 = 0, µsh

l otherwise.

• If t > 0 create an arc (nbl,t−1, n
b
l,t). Its value is the backordering flow. We label it

x(nb
l,t−1,n

b
l,t)

and its associated cost is 0 if t− 1 = 0, µb
l otherwise.

• Create an arc (nhl,t, n
b
l,t). Its value is the consumption flow. We label it x(nh

l,t,n
b
l,t)

and its associated cost is 0.

4. For each faulty node nfl,t with t > 0, create an arc (nfl,t−1, n
f
l,t). Its value is the faulty

storage flow. We label it value x(nf
l,t−1,n

f
l,t)

and its associated cost is 0 if t− 1 = 0, µsf

l

otherwise.

5. Create a residual node ng to ensure the global consistency of the instance so that

πng = −
∑

l∈L,t∈T

(πnh
l,t

+ πnb
l,t

+ πnf
l,t
) (8)

6. For each healthy nodenhl,t with t = #T , create an arc (nhl,t, n
g). It is the healthy storage

overflow. We label its value x(nh
l,t,n

g) and its associated cost is µsh

l .

7. For each backordering nodenbl,t with t = #T , create an arc (ng, nbl,t). It is the backorder
overflow. We label its value x(ng,nb

l,t)
and its associated cost is µb

l .

8. For each faulty node nfl,t with t = #T , create an arc (nfl,t, n
g). It is the faulty storage

overflow. We label its value x(nf
l,t,n

g) and its associated cost is µsf

l .

9. For each healthy transfer mh
l,l′,t,t′ , create a transfer arc (nhl,t, n

h
l′,t′). We label its value

xht
(nh

l,t,n
h
l′,t′ )

and its associated cost is µmh

l,l′



10 author

10. For each faulty transfer mf
l,l′,t,t′ , create a transfer arc (nfl,t, n

f
l′,t′). We label its value

xft
(nf

l,t,n
f

l′,t′ )
and its associated cost is µmf

l,l′

11. For each repair mr
l,l,t′ , create a repair arc (nfl,t, n

h
l,t′). We label its value xrt

(nf
l,t,n

h
l,t′ )

and

its associated cost is µmr

l .

Figure 4 shows the MCNFP instance (without labelling) obtained by transformation of
the TDPP example proposed in Figure 1.

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,1)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

(S2,0)
f

(S2,2)
f

(S2,3)
f

(S2,4)
f

(S2,0)
h

(S2,1)
h

(S2,2)
h

(S2,3)
h

(S2,4)
h

(S2,0)
b

(S2,1)
b

(S2,2)
b

(S2,3)
b

(S2,4)
b

n1,0
f n1,1

f n1,2
f n1,3

f n1,4
f

n1,0
h

n1,1
h n1,2

h n1,3
h n1,4

h

n1,0
b n1,1

b n1,2
b n1,3

b n1,4
b

n2,0
f n2,1

f n2,2
f n2,3

f n2,4
f

n2,0
h n2,1

h n2,2
h n2,3

h n2,4
h

n2,0
b n2,1

b n2,2
b n2,3

b n2,4
b

n3,0
f n3,1

f n3,2
f n3,3

f
n3,4

f

n3,0
h n3,1

h n3,2
h n3,3

h n3,4
h

n3,0
b n3,1

b n3,2
b n3,3

b n3,4
b

ng

Figure 4 A flow modelisation

This transformation shows that the main part of the TDPP can be modelled as a
convex MCNFP problem. This problem is polynomial as Fontes and Gonçalves (2007) have
demonstrated that concave cost functions are mandatory to have a NP-Complete MCNFP
problem. This transformation does not include the integrity constraint and we show in the
next Section that this constraint transforms our problem in a NP-Hard one.

2.4 Reduction to the Subset Sum problem

Theorem 1 TDPP is NP-Hard.

Proof: We demonstrate that our problem is NP-Hard by reducing the Subset Sum Problem
to the TDPP in polynomial time. The Subset Sum Problem is known to be NP-Complete
(Garey and Johnson, 1990) and it is defined by only one question: Given a finite multiset of



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands11

z positive integers K [y1..yz] and a positive integer B, is there a subset K ′ ⊆ K such that∑
k∈K′ yk = B ? This reduction is based on the implicit constraint induced by equations

(2d), (2c), (2a) and (2b) that ensure the consumption of available items on sites if demands
occur on the same day. It allows us to ensure a non-separation of the outflow on the origin
sites in order to have enough items in the supply chain to meet the demands in the stores.
We propose the following reduction:

1. The time horizon T is set to 3 time buckets.

2. Create 3 distinct sets of sites L1, L2 and L3 such that L1 = [1..z] , L2 = [z + 1..3z]
and L3 = [3z + 1..3z + 2]. We define L = L1

⋃
L2

⋃
L3.

3. We set up the initial stock levels such that ∀l ∈ L1, shl,0 = yl + 1.

4. We create the demand forecast such that ∀l ∈ L2, dl,1 = 1, d3z+1,3 = B and
d3z+2,3 =

∑z
k=1 yk −B.

5. We define the associated costs such that ∀l ∈ L2, µb
l = 0, µb

3z+1 = 1 and µb
3z+2 = 1.

6. ∀l ∈ L2, create 2 healthy transfers mh
l,l+z,1,2 and mh

l,l+2z,1,2.

7. ∀l ∈ L1, create 2 transfers mh
l+z,3z+1,2,3, mh

l+2z,3z+2,2,3.

8. All the unmentioned costs are assumed to be 0.

If the fitness is equal to 0 (i.e. we can meet all the demands occurring on l = 3z + 1 and
l = 3z + 2) then it exists a subset K ′ ⊆ K such that

∑
k∈K′ yk = B. �

Example. Figure 5 shows an example of transformation withK = [8; 18; 9; 2] andB = 17.

s1,0
h

=9 s2,0
h

=19 s3,0
h

=10 s4,0
h =3

d5,1=1 d6,1=1 d7,1=1 d8,1=1 d9,1=1 d10,1=1 d11,1=1 d12,1=1

d13,3=17 d14,3=20

Figure 5 Subset Sum to TDPP for K = [8; 18; 9; 2] and B = 17

3 Metaheuristics

Firstly, we have proposed a Mixed Integer Programming (MIP ) model to solve the TDPP
problem. The MIP is directly deducted from the equations presented in Section 2. This



12 author

exact method is working well but when the number of sites and the planning horizon grows
up, it quickly has difficulty providing a solution (see Section 4).

In such case, metaheuristics (Gendreau and Potvin, 2010) are known to take up the
slack. They potentially allow to find a very good solution in an acceptable time. We propose
an algorithm denoted BIS(Best Improving Sequence) that can be classified as an ILS
(Iterated Local Search) metaheuristic. Classically, a metaheuristic is defined by: a solution,
a neighbourhood function, an evaluation function, and of course a choice of heuristics.

Search space and evaluation function
In our case, a solution is a plan which is a set of actions between nodes connected in the
space-time graph G∗ realised in a given time horizon. The search space is defined by:
S = 2M whereM is the set of possible actions given by the topology. In order to compare
each solution an evaluation function (fitness : S → R) is defined using the cost function
given by Equation (3e).

Neighbourhood
The neighbourhood function explores the solutions reachable by a move (move:N : S →
2S ). A move between 2 plans corresponds to a sequence of unitary actions (only one item
is transferred or repaired each time) improving the global objective function.
We introduce the notion of sequence. A sequence is a series of actions possibly empty.
Actions included in a sequence are constrained temporarily and geographically such that
given a sequence seq and 2 consecutive actions ml1,l2,t1,t2,m

′
l3,l4,t3,t4 ∈ seq, we have

l2 = l3 and t2 ≤ t3. The type of action is also important. Supply and repair actions can
only be followed by supply actions whereas a return can be followed either by another
return or by a repair. For instance, a sequence could be compounded by a unique supply
action or by a series of return, repair and supply actions. The maximum size of a sequence
is T − 1 actions.

Local Search
For any given plan, it is computationally expensive to deduce the global impact
of a sequence of actions. We then propose a method that evaluates locally
the impact of a sequence. This method is denoted improve(m,P, seq) with m ∈
G∗, a plan P and a sequence of actions seq.
It returns the maximum improvement value that a sequence initiated by seq and followed by
actionm (seq

⋃
m) could bring to the plan P . Note that the number of potential sequences

evaluated with this method can increase very quickly. The computation of the improvement
value only takes into account backorder, inventory, repair and transfer costs. Figure 6
describes an example of improve(m,P, seq). In that case, 5 sequences of actions are
executable afterm and improve(m,P, seq)will return the maximum positive improvement
value that one of these sequences could bring and 0 otherwise. The computation of the
improvement value could seem expensive but this cost is in fact limited by the usage of a
data structure allowing to easily compute the improvement value of a sequence. This data
structure is a delta matrix that details the improvement value of the different sequences
based on actions. The matrix is created anti-chronologically and built around a propagation
algorithm that consists in using subsequences to avoid the exploration of all the possible
sequences. We also notice that even if the first computation of the matrix is costly, we only
recompute it partially later on.



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands13

Figure 6 Example of improve(m,P, seq)

This improve function allows to define the graphG|seq . Given a plan P and a sequence
seq, this graph represents the doable actions (satisfying the stock constraints) m ∈ G∗
following the sequence seq and with improve(m,P, seq) > 0. For instance, if the last
actionm of a sequence seq is a supply action from site 1 to site 2 completed on time bucket
10 thenG|seq includes all the possible supply actions from site 2 after time bucket 10 whose
improvement value is positive. Algorithms 1 and 2 describe the process of selection and
application of a sequence and Algorithm 3 presents the BIS method. We can notice that we
use the best improvement selection (i.e. we select action m such that improve(m,P, seq)
is maximum). It ensures us to only apply very efficient sequences of actions and provides
good results in most of the cases. However, in some cases this selection will lead to a local
optimum. It can be caused by different factors such as a complex topology, asynchronous
schedules or stock positioning. Therefore, even if this selection process is good to drive
the search, it has to be paired with a diversification process. This diversification process is
represented by the α probability that allows us to explore the search space by selecting “less
improving” sequences. This diversification probability is fixed to 1 in the first iteration of
the BIS Algorithm and then decreases following an arithmetico-geometric series. It allows
to bifurcate at each step of the creation of the sequence such that withα = 0, we can explore
all the sequences seq of the search space initiated by m with improve(m,P, seq) > 0.

Algorithm 1 Action Selection
Input: A Graph G, A Plan P , A Sequence seq, A Probability α
Output: An Action
1: With a probability α, return argmaxm∈G(improve(m,P, seq)); . In case of equality,
m is selected randomly amongst the best ones

2: With a probability 1− α, Return m ∈ G;

Algorithm 2 Sequence Computation
Input: A Graph G, A Plan P , A Sequence seq, A Probability α
Output: A sequence
1: while G|seq 6= ∅ do
2: Select an action m by using Algorithm 1 with G|seq , P , seq and α;
3: Add m to seq;
4: end while
5: Return seq;



14 author

Algorithm 3 The BIS algorithm
Input: The constants of the problem, A number of iterations,
Output: A Plan
1: Set a probability α to 1
2: while Number of iterations is not reached do
3: Create an empty Plan P ;
4: Create an empty sequence seq;
5: while G|seq 6= ∅ do
6: Update seq by computing a sequence with Algorithm 2 withG|seq , P , seq and α;
7: Execute the sequence seq and add it to P ;
8: Empty seq;
9: end while

10: Evaluate P ;
11: α decreases following an arithmetico-geometric series
12: end while
13: return the best Plan

4 Real Case

This section focuses on tactical inventory planning problems arising in equipment-intensive
industries. It is based on a concrete case study in the telecommunications sector where
large quantities and varieties of items are required for service maintenance and repair tasks
at customer premises or company exchanges. Specifically, we consider a multi-echelon
supply chain and tackle the problem of determining an optimal stock distribution plan given
a demand forecast. The supply chain discussed here relies on a classical design with a
tree (hub and spoke) topology organised around a warehouse inventory centre as presented
in Figure 7. Experiments presented in this paper are limited to this single topology as it
matches our case study and is one of the most spread network configuration for supply
chains (O’Kelly, 1998).

Figure 7 A simple example of real case supply chain.

The distribution centre DC (e.g.- warehouse centre) replenishes stores (e.g.- field depots)
with items through intermediate hubs (e.g.- exchange points) and channels faulty items back



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands15

to a warehouse repair centre. Pick-up and delivery schedules are periodic with constant
transportation lead times that are specific to each store. The same applies to the “repair loop"
linking the inventory and repair warehouses. Operationally, a request for an item is resulting
from a service malfunction and is created when a faulty item is placed in a store. This
request is immediately satisfied if the store has items on-hand and prior on-site demands
have been met. Otherwise, it is delayed until fresh items are delivered which results in
service down-time. The faulty item is itself collected at the next pick-up date and stored at
the inventory warehouse.

Decisions to supply stores with items or to repair faulty items are made ahead of time
by an analyst team and revised periodically until execution. This repair and supply plan
prescribes the volume of items to ship at each time bucket (i.e.- period of time) of the
planning horizon. It is based on a demand forecast that estimates the number of items
requested for each item type in each store at each time bucket. Such forecasts are considered
accurate enough for particular items (e.g.- high-volume materials) or specific activities (e.g.-
maintenance tasks).

Experiments are carried out on pseudo-random instances. The objective is to assess the
impact of the key features of problem instances onto the plan’s fitness (demand distribution,
stock levels, etc.) and to investigate the ability to “emulate" global planning strategies
through different cost weightings. To this end, but also to reduce bias in the analysis, we
generate all instances using the same topology, time horizon, transfer schedules, lead-times,
transition period, and demand pattern. Settings are chosen consistently with data emanating
from our case study.

We have generated many sizes of instances with similar results, but we present in this
paper only two representative sizes of instances (for other sizes the behaviour remains the
same). A small one compounded of 25 sites and a larger one compounded with 100 sites.
The supply network includes 1 distribution centre, 9 (resp. 33) hubs and 15 (resp. 66)

stores. Each hub deserves an exclusive set of stores. The DC serves all hubs and is the
unique repair centre. The time horizon is initialised to 60 day-buckets. Transfers between
connected sites all take 1 day. To fit more precisely the real case, the repair time is set to
3 days instead of only one day as proposed in section 2. Sites also have identical pickup
and delivery frequencies (every 5 days) with synchronous schedules (identical delivery and
pickup days). All transfers are performed according to schedule even if there is not item to
deliver or pick up. Therefore we will ignore transfer cost in our experiments. We introduce
a “transition period” set to the first 7 days to coincide with the earliest delivery time for a
store. Demands raised within this period are supposedly addressed by previous planning
decisions. Hence, the results only depend on our model without any interferences from
previous choices and allow us to devise confidently about the quality of our method. For
this reason, instances have no demands within the transition period, and ongoing transfers
all complete within that time window. Similarly and consistently, with the need to avoid
side-effects induced by past decisions, instances have no residual faulty items.

Instances also share the same demand distribution pattern. Specifically, all stores have a
single demand request that recurs every 5 days. However, demands may occur on different
days for different sites. The actual variability amongst instances comes from the volume
and allocation of healthy stocks which we generated using different schemes. As for stock
allocation, healthy items are either all placed in the DC (scheme DC), all placed elsewhere
(scheme Stores) or evenly distributed between the DC and the other stores (scheme Mix).
For the last two schemes, allocation to stores is performed randomly using a uniform
distribution law. In terms of volumes, the total number of items across all sites is either



16 author

set to 100% of the total demand (scheme High), 50% (scheme Med) or 0% (scheme Low).
Combining the two schemes yield seven classes of instances (stock allocation is irrelevant
for scheme Low). The unit costs are configured to respect the hierarchy used in the real
case. Solving the backorders is the ultimate goal of the supply chain; thus its cost is set
to 1000, sending an item to repair costs 100, store an item in a store or in a hub costs 10
and store an item in a DC costs 1. In these experiments, weights are represented as a
triplet < ωb, ωmr

, ωs >. As explained before, in this study we ignore transfer costs and
thus transfer weight. The MIP model is implemented using CPLEX 12.6 and tests run on a
i5-3380M @ 2.90GHz architecture. We allocate a maximum running time of 1 hour as the
model is ultimately supposed to be running on a sliding window independently on many
thousands of items. In case the maximum time is reached, we retrieve the lowest bound
found by the model.

4.1 Policies

Supply chain management in major telecommunications companies is often based on global
policies. It is motivated by different objectives such as customer satisfaction, costs or even
advertising campaigns.

Classical Policies
In the case of a closed-loop supply chain, a policy can be seen as a triple of policies. The
first one is the faulty items management policy. In our experimental study, this policy is
fixed and can be ignored in this part. The second one is the repair policy. 3 main choices
are possible: repair everything, repair only when needed, never repair. Never repair can
be neglected as it would lead to an impossibility to meet demands. Repair everything is
adopted by companies that want to ensure a maximum customer satisfaction, especially
with a perfectible forecast. Repair only when needed is used by companies with a high
quality forecast. It can also be applied when companies want to reduce the amount of items
moving in the supply chain. The third one is the distribution policy. We distinguish two
main policies, although they can be refined to fit more efficiently concrete cases. The well-
known just− in− time policy consists of dispatching the items just before the demands
happen. This policy is efficient with a high quality forecast. At the contrary, another policy
consists of sending items as soon as possible to the sites that will have demands. This can be
adopted when uncertainties occur on when the demands are going to happen. Note that all
the distribution policies described here are meant to be proactive. They should only be used
with a reliable forecast otherwise it will lead to low customer service and mispositioning
the items.

Weighting and Policies
We now analyse some of the generated plans to get insights into the impact of
weightings and compare them with the previous policies. We consider the class
of instances defined by schemes High and Mix and analyse the plans obtained
with 3 weightings. For each plan, we study the evolution of different metrics over
time, namely, the number of delayed demands (Backorders), the number of healthy
and faulty items stored in the locations (DC healthy stocks, DC faulty stocks,
Site healthy stocks,Site faulty stocks) and the number of repairs (Repair). Figure
8 plots the results.

For weighting 〈1, 0, 0〉, the only objective is to meet demands on time regardless
of costs. The goal is consequently to minimise the quantity of backorders but



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands17

(a) High, Mix, 〈1, 0, 0〉, Fitness = 0. (b) High, Mix, 〈1, 0, 1〉, Fitness = 33423.

(c) High, Mix, 〈1, 1, 0〉, Fitness = 100. (d) High, Mix, 〈1, 1, 1〉, Fitness = 33880.

Figure 8 Policies analysis.

they may still occur in particular cases where they can not be physically solved.
This objective is perfectly met as shown on Figure 8(a) (curve Backorders).

Note that the stock of faulty items across stores and hubs is near-periodic
(Site faulty stocks). This follows from the fact that faulty items are systematically sent
back to the DC, the topology is regular and demand profiles similar for all sites. Since stock
volumes are not penalised, we can also notice that unnecessary repairs and transfers from
the DC are initiated. This weighting matches a basic customer satisfaction oriented policy.

Weighting 〈1, 0, 1〉 pursues an additional objective which is to minimise both backorders
and storage in the supply chain and is presented in Figure 8(b). This weighting allows
to simulate the just− in− time distribution policy. Items are sent to sites just before
demands occur. Note that this policy is due to the hierarchy of costs of our instances (hub
and stores storage cost > DC storage cost). With the opposite hierarchy, we would have
simulated the other distribution policy. Regarding the repair policy, we note that repair
transfers are performed randomly all along the time horizon. It can be assimilated to the
repair everything policy as we avoid any storage cost while repairing.

Weighting 〈1, 1, 0〉 pursues a third objective which is to minimiseRepair in the supply
chain and is presented on Figure 8(c). It prevents replenishment of the DC as shown
by the opposite evolution of healthy and faulty stocks in the DC. Healthy stocks across
sites decrease accordingly since the DC is the single feed (Site healthy stocks). Note
that service level remains unaffected due to the high volume of initial items at the DC
(Backorders). The repair policy can be assimilated to the repair only when needed policy
while the distribution policy is more stochastic as long as we meet the demands in time.

The last weighting 〈1, 1, 1〉 (plotted on Figure 8(d)) minimises both lateness, repair and
storage cost in the supply chain. Note that all demands are met in time. Demands are met by



18 author

firstly consuming site inventories and secondly transferring healthy items to empty stores
from the DC. Repairs are only performed in case there are not enough items in the supply
chain to meet all the demands. In our case, only one repair transfer is necessary to avoid
backorders. According to the hierarchy of the costs presented, items are kept in the DC as
long as possible. The repair policy is repair only when needed and the distribution policy
is just− in− time.

Note that we can easily perform both the distribution policies regardless the hierarchy
of costs by dividing thewStorage into two weights (wSitestorage andwDcstorage) that
represent respectively the weights associated with the costs to store an item in a hub or in
a store, and the weight associated with the cost to store an item in a DC.

4.2 Experimental Results

Table 4 presents the results. The first two columns denote the schemes characterising each
class of instances and the third column denotes the cost weightings used for the test.
Experiments have been run on all combination of weightings. The remaining columns
provide for the 2 sizes of instances (small and large), few information depending on the
method used: MIP - Fitness is the best bound retrieved by the MIP in 1 hour, MIP - Time
the run time of theMIP in milliseconds, BIS - Fitness the mean value of the metaheuristics
on 100 iterations, BIS - s.d. the standard deviation of the metaheuristics, and BIS - Time the
average run time of the metaheuristics in milliseconds. Note that if MIP - Time indicates
′−′, it means that the MIP has reached the time limit. A bold value in the column BIS
- Fitness means that either the MIP did not return a bound or that the bound returned is
worse than the average value retrieved by the metaheuristics.

As expected, initial stock levels strongly influence service levels. Scheme High

dominates scheme Medwhen the weight on backorders is activated for any given distribution
scheme and weighting. Likewise, Med dominates Low. Figures 8(d), 9(a) and 9(b) describe
the evolution of the metrics specified in 4.1 for 3 different stock levels with similar
weightings. Stock distribution also plays a key role. Comparing when the weight on

(a) Med, Mix, 〈1, 1, 0〉, Fitness = 30523. (b) Low, 〈1, 1, 1〉, Fitness = 2652165.

Figure 9 Plan analysis.

backorders is activated again, distribution DC dominates Mix which dominates Stores for
any given stock volume scheme and weighting. It highlights the importance of well locating
items. This is particularly true in our case as healthy items cannot be sent back from the
stores to the DC. Thus, bad positioning the items is a major risk and is highly depending
on the quality of the forecast. When looking at the instances with weighting 〈1, 1, 1〉, we



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands19

Table 4 Comparison Mip vs Metaheuristics
Small Large

Weights
MIP BIS (Meta) MIP BIS (Meta)

Fitness Time Fitness s.d. Time Fitness Time Fitness s.d. Time

H
ig

h

D
C

<1,0,0> 0 4554 0 0 17 0 57000 0 0 220
<0,1,0> 0 3205 0 0 3 - - 0 0 42
<0,0,1> 22725 4175 22726 6 8 99990 20500 99998 14 121
<0,1,1> 23085 4555 23086 2 6 101574 23100 101581 13 80
<1,1,0> 0 3562 2 14 15 0 32480 29 57 221
<1,0,1> 25500 4554 25658 199 20 112200 - 113073 702 280
<1,1,1> 25860 5870 25964 163 18 113784 - 114258 382 256

M
ix

<1,0,0> 0 2125 0 0 11 0 26220 0 0 147
<0,1,0> 0 2085 0 0 3 0 10780 0 0 40
<0,0,1> 31253 1182 31253 0 5 133862 2980 133869 50 70
<0,1,1> 31613 1008 31613 1 3 135446 2840 135446 0 41
<1,1,0> 100 3134 113 33 10 0 29500 12 35 143
<1,0,1> 33423 2696 33573 193 14 143562 - 144348 587 191
<1,1,1> 33880 4134 33959 169 12 145146 - 145508 389 164

Si
te

s

<1,0,0> 0 1072 0 0 5 27000 2730 27000 0 69
<0,1,0> 0 820 0 0 3 0 2070 0 0 40
<0,0,1> 58005 943 58005 0 6 256128 2030 256128 0 62
<0,1,1> 58365 791 58365 0 3 257712 2030 257712 0 40
<1,1,0> 1700 1329 1708 27 4 35600 3430 35625 48 71
<1,0,1> 58565 1332 58585 59 6 285983 3510 286053 108 95
<1,1,1> 60574 1423 60590 59 5 295909 3930 295995 137 78

M
ed

D
C

<1,0,0> 0 5105 0 0 15 0 38000 0 0 221
<0,1,0> 0 15161 0 0 3 - - 0 0 40
<0,0,1> 18326 7597 18327 2 8 80751 35410 80757 11 110
<0,1,1> 18686 6863 18687 2 6 82335 31500 82343 18 82
<1,1,0> 8300 - 8306 24 19 36300 - 36336 67 221
<1,0,1> 21101 6321 21275 212 20 92961 - 93839 691 285
<1,1,1> 29512 - 29650 192 19 129756 - 130237 379 252

M
ix

<1,0,0> 0 3120 0 0 13 0 25680 0 0 185
<0,1,0> 0 9871 0 0 3 0 120500 0 0 40
<0,0,1> 19407 1620 19408 6 6 88669 18250 88675 29 85
<0,1,1> 19767 1569 19767 1 4 90253 14240 90272 55 54
<1,1,0> 8300 - 8303 17 13 36300 - 36315 38 188
<1,0,1> 22112 4543 22323 278 17 100339 - 101192 608 237
<1,1,1> 30523 - 30623 130 15 - - 137643 451 215

Si
te

s

<1,0,0> 31000 2542 31000 0 10 93000 11730 93000 0 148
<0,1,0> 0 1536 0 0 3 0 4480 0 0 39
<0,0,1> 25895 1261 25895 0 4 114648 6051 114648 0 63
<0,1,1> 26255 1514 26255 0 3 116232 3900 116232 0 43
<1,1,0> 39300 - 39303 17 12 129300 - 129310 36 148
<1,0,1> 59100 3458 59141 78 13 217263 19240 217482 228 171
<1,1,1> 67511 - 67564 81 12 254058 - 254342 281 163

L
ow -

<1,0,0> 2625000 - 2625090 319 6 11550000 - 11550700 1923 94
<0,1,0> 0 744 0 0 3 0 2000 0 0 40
<0,0,1> 15045 1291 15045 0 4 66198 8410 66198 0 65
<0,1,1> 15405 1408 15405 0 3 67782 8140 67782 0 40
<1,1,0> 2635500 - 2635540 196 6 11603200 - 11596400 409 96
<1,0,1> 2641620 - 2641710 289 7 11623128 - 11623500 1063 104
<1,1,1> 2652165 - 2652160 2 7 11669526 - 11669900 1285 102

notice that the results returned by the scheme High and the scheme Med are close. It gives us
the hint that the optimum quantity needed to solve all the backorders and limit the storage
cost is between these two schemes. We can also notice on the graphs that the quantity of
repair needed also vary a lot depending on the initial healthy stock level. Indeed, the more
healthy items on the initial time bucket the less repairs you will have to proceed to meet the
demands. However, running the algorithm on a really long time horizon will lead somehow



20 author

to a periodic repair loop. The distribution also affects the running time. For a particular
scheme, distribution DC is slower than Mix, itself slower than Stores. Indeed, the more
items are positioned in stores in the initial situation the less transfers you can perform.
Hence, it indirectly cuts the search space and impacts the solving time.

We now compare the MIP with the metaheuristics. We first denote that in all cases
the metaheuristics reaches at least once the best bound returned by the MIP . The
results validate the well-functioning of the metaheuristics on simple instances.The standard
deviation remains low and validate the stability of our method. This result was expected
as the instances proposed here are symmetric and don’t include any particular cases that
can disallow the metaheuristics. In terms of scalability and running time the metaheuristics
appears to be the best method. In most of the cases, the metaheuristics is at least 100 times
faster than the MIP model. We note that the bigger the instances are, the harder it is for
the MIP to complete. Indeed, it reaches the time limit in 10 cases on instance 25_165
and in 18 cases on instance 100_726. We also remark that on instance 100_726 the MIP
fails to return a bound in 3 cases and in 1 case returns a higher bound than the mean of
the metaheuristics. It confirms that the MIP faces a scalability issue due to the increasing
number of possible transfers. On the contrary, the metaheuristics reaches very good quality
solutions in a reasonable time.

5 Summary and Outlooks

This paper presented TDPP - an optimisation problem to address tactical distribution
planning problem in CLSC. This problem is applicable to a wide variety of CLSC featuring
different topologies, transfer policies or business objectives. We modelled TDPP as a MIP
and showed that it is NP-Hard by reducing the Subset Sum problem. We also introduced
a metaheuristic to solve TDPP. We discussed a real case from the Telecommunications
domain and experimentally compared the MIP and the metaheuristic approaches on pseudo-
random instances built on this real case. Experiments demonstrate the ability to implement
classic planning strategies through appropriate weightings of the objective function. They
also show that the MIP approach faces scalability issues whereas the metaheuristic appears
to be both scalable and effective
Future directions will address how to match weightings with well-known inventory
management policies in order to provide better decision support. We will also investigate the
ability to build robust plans on a running window. Indeed, our model is working reasonably
well in the absence of any uncertainty on problem data but in some cases, forecasts are
inaccurate and the challenge is to produce robust and consistent plans over successive time
periods. In this context, the proposed method is the central part of a periodic planning
decision support system presented in Figure 2. One of the next steps of our work is to
evaluate the impact of the recomputation frequency to face uncertainties while keeping
consistency in successive plans.

References

Akçalı, E., Çetinkaya, S., and Üster, H. (2009). Network design for reverse and closed-loop
supply chains: An annotated bibliography of models and solution approaches. Networks,
53(3):231–248.



Closed-Loop Supply Chains Inventory Planning With Deterministic Demands21

Bertazzi, L. and Speranza, M. G. (2012). Inventory routing problems: an introduction.
EURO Journal on Transportation and Logistics, 1(4):307–326.

Campbell, A., Clarke, L., Kleywegt, A., and Savelsbergh, M. (1998). The inventory routing
problem. In Fleet management and logistics, pages 95–113. Springer.

Cattani, K., Jacobs, F., and Schoenfelder, J. (2011). Common inventory modelling
assumptions that fall short: arborescent networks, poisson demand, and single echelon
approximations. Journal of Operations Management, 29(5):488–499.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2013). Thirty years of inventory routing.
Transportation Science, 48(1):1–19.

Cornelli, M., Gourgand, M., and Lemoine, D. (2006). A review of tactical planning models.
In Service Systems and Service Management, 2006 International Conference on, volume 1,
pages 594–600. IEEE.

Desport, P., Lardeux, F., and Lesaint, D. (2015). Tactical inventory planning in the
telecommunications service industry : a case study. Roadef Marseille France.

Drexl, A. and Kimms, A. (1997). Lot sizing and scheduling—survey and extensions.
European Journal of Operational Research, 99(2):221–235.

Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., Van Nunen,
J. A., and Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A
review. European journal of operational research, 103(1):1–17.

Fontes, D. B. and Gonçalves, J. F. (2007). Heuristic solutions for general concave minimum
cost network flow problems. Networks, 50(1):67–76.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Metaheuristics. Springer Publishing
Company, Incorporated, 2nd edition.

Goldberg, A. V., Tardos, É., and Tarjan, R. E. (1989). Network flow algorithms. Technical
report, DTIC Document.

Govindan, K., Soleimani, H., and Kannan, D. (2015). Reverse logistics and closed-loop
supply chain: A comprehensive review to explore the future. European Journal of
Operational Research, 240(3):603 – 626.

Guide, V. and Van Wassenhove, L. (2006). Closed-loop supply chains: An introduction to
the feature issue (part 1). Production and Operations Management, 15(3):345–350.

Guide, V. D. R., Harrison, T. P., and Van Wassenhove, L. N. (2003). The challenge of
closed-loop supply chains. Interfaces, 33(6):3–6.

Guisewite, G. and Pardalos, P. (1990). Minimum concave-cost network flow problems:
Applications, complexity, and algorithms. Annals of Operations Research, 25(1):75–99.

Gupta, A., Tewari, P., and Garg, R. (2013). Inventory models and their selection parameters:
a critical review. International Journal of Intelligent Enterprise, 2(1):1–20.



22 author

Ilgin, M. A. and Gupta, S. M. (2010). Environmentally conscious manufacturing and product
recovery (ecmpro): a review of the state of the art. Journal of environmental management,
91(3):563–591.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Introduction to NP-Completeness of
knapsack problems. Springer.

Krikke, H., Bloemhof-Ruwaard, J., and Van Wassenhove, L. (2003). Concurrent product
and closed-loop supply chain design with an application to refrigerators. International
journal of production research, 41(16):3689–3719.

Lieckens, K., Colen, P. J., and Lambrecht, M. (2013). Optimization of a stochastic
remanufacturing network with an exchange option. Decision Support Systems,
54(4):1548–1557.

O’Kelly, M. E. (1998). A geographer’s analysis of hub-and-spoke networks. Journal of
transport Geography, 6(3):171–186.

Pardalos, P. M. (1993). Complexity in numerical optimization. World Scientific.

Savaskan, R., Bhattacharya, S., and Van Wassenhove, L. (2004). Closed-loop supply chain
models with product remanufacturing. Management science, 50(2):239–252.

Stindt, D. and Sahamie, R. (2014). Review of research on closed loop supply chain
management in the process industry. Flexible Services and Manufacturing Journal, 26(1-
2):268–293.

Stock, J. (1992). Development and Implementation of Reverse Logistics Programs. Council
of Logistics Management.


