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CASPT 2018 Extended Abstract

Short-Term Multi-Step Ahead Forecasting of Railway
Passenger Flows During Special Events With Machine
Learning Methods

Florian Toqué · Etienne Côme · Latifa Oukhellou ·
Martin Trépanier

Abstract Forecasting of public travel demand is of great importance to public transport
management. It is a very challenging task that relies on many kinds of dependencies, such
as temporal, spatial or exogenous factors (e.g., weather, event, service breakdown, ...). This
paper investigates the short-term multi-step ahead forecasting (t +1, ..., t +8) of passenger
demand aggregated by time step of 15 minutes. The forecasting is performed with smart
card data on a railway public transport network. Predicted flows could permit to optimize
resource allocation, propose the best trip planning to passengers and better understand pas-
senger flows during special events. We propose a state of the art deep learning approach,
namely the gated recurrent unit (GRU), recurrent neural network, to tackle the short-term
forecasting problem. We compared it to a well-known machine learning model namely Ran-
dom Forest and long-term forecasting models. The experiments are conducted on a real
2-year smart card dataset provided by the transport organization authority of Ile-de-France
(Ile-de-France Mobilités). The dataset depicts the passenger demand of 30 stations of the
main Paris business district named La Défense, which corresponds to different transporta-
tion modes such as train (suburban railway service), metro, RER (Regional Express Net-
work) and tramway. The evaluation of the models focuses on their performances in the
presence of specific events through two subsets of data extracted from the whole dataset.
These special periods correspond to transport network service anomaly periods such as ser-
vice breakdown and special days period in term of passenger flow patterns such as public
holiday.
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1 Introduction

Every day a large amount of digital footprints is generated by citizens during their trips
(GPS, WiFi, Bluetooth, smart card, social networks logs, etc.). These data can hold a high
descriptive value of the urban mobility that could be helpful to develop innovative tools.
Such tools can be useful to improve quality of services and to better organize the mobility of
citizens in a city. Public authorities wish to develop sustainable urban mobility practices that
aim to increase the use of public transport and reduce the pollution involved by private car
use. In order to achieve such challenge, the understanding of urban mobility across public
transport network is essential. We focus the study on one of the mainly used digital footprints
which is the smart-card data collected by automated fare collection systems.

As early as 2004, Bagchi and White (2) studied the potential role that smart card data
can play for travel behavior analysis and considered their potential to complement existing
data collection such as survey methods. Since 2005, a multitude of studies highlighted the
potential uses of smart card data in transit planing and transit uses (3; 24; 18; 19). One of
the major disadvantage of this type of data, is the lack of information about the destination
of passenger travels. In this respect, researches have been oriented to improve this source
of data with studies like data completion and enrichment with the aim to estimate origin-
destination (16) or to validate travel behavior estimation (15) and to perform trip purpose
inference (10).

In order to encourage the use of public transport, transit planners need to correctly adapt
the fare proposed to the passengers. To achieve such challenge, an in-depth understanding
of the passenger behavior seems essential. In this context, passenger behavior analysis is a
field that has been widely studied, which concerns the clustering of passengers depending on
their transportation network activity (1; 13; 28; 21; 9; 14), or the characterization of station
pattern (21).

Another parameter that directly impacts the satisfaction and the increase of public trans-
port passengers is a good equilibrium between the offer and the demand of transport ser-
vices. In this respect, urban mobility researchers recently studied the passenger demand
with a focus on the short-term forecasting of railway passenger flows in (7; 8; 22; 23).
Thereafter, researchers have oriented their work on the spatio-temporal aspect of the fore-
casting problem. For this purpose, researchers have worked on traffic forecasting with deep
neural network and more precisely with combined convolutional and recurrent neural net-
work in (25; 5) or graph convolutional neural network in (26). In the same line of work,
authors of (27) have predicted the Citywide crowd flows with spatio-temporal convolutional
neural network, and authors of (29) have designed spatio-temporal neural network to predict
different sources of related space-time series.

Recently, studies involving passenger flows forecasting in public transport network have
been oriented under atypical event. In (11), the authors use a multiscale radial basis function
networks to perform a short-term multi-step ahead forecasting (t+15min, t+30min) sub-
way passenger flow under special events scenarios without exogenous data about special
event. In (17), short-term prediction approaches were developed to forecast subway passen-
ger flows for the next 4 hours using social media data. The authors focused on the prediction
of the total number of passengers (sum of entry and exit) of one subway station of the New
York City network. They proposed a two-step methodology: hashtag-based event detection
followed by the combined use of linear regression and a seasonal autoregressive moving
average model using the social media event as exogenous features in input of the model.

Urban mobility forecasting in public transport is a very challenging task, since it depends
on plethora of external factors such as calendar, weather, events or service breakdown. These



factors can be hardly taken into account because of their high temporal and spatial irregular-
ity. In this paper, we mainly focus on the problem of short-term multi-step ahead passenger
forecasting demand under special events, in order to be able to face some abnormal behav-
ior in the data caused by temporal factors like days off, Christmas Eve, New Year’s Eve and
exogenous factors such as service breakdown. We can summarize the main contribution of
this study in the three following points:

– Comparison of short-term forecasting model of the state of the art with multi-step ahead
horizon.

– Comparison between short-term multi-step ahead forecasting models with long-term
forecasting models, in order to evaluate until which step ahead, it is useful to perform
short-term forecasting against long-term forecasting.

– Analyze short-term multi-step ahead forecasting results under special events. With spe-
cial events corresponding to days with anomalies on the public transport network or
specials periods such as public holiday.

2 Short-term forecasting

2.1 Context and objective

Passenger demand forecasting performed in a long-term horizon (until one year ahead) can
be very useful to transit planners for strategic long-term planning of the network in order to
reduce operating costs and optimize vehicle use over the network. Nevertheless, long-term
prediction has inherent disadvantages in forecasting passenger demand under special event
scenarios. Indeed, these special events can cause disruptive impacts on the transportation
system, which are hard to predict because they correspond to abnormal behavior patterns.
These special events could be categorized, into two groups (i) Anticipated events which
may be known or expected in advance such as weather, cultural or sporting event, etc. Col-
lect such event database could be difficult but nonetheless useful to incorporate in demand
prediction models (20) (ii) Unexpected events particularly those corresponding to service
breakdown, or events that are not often or never observed in the historical dataset. Taking
into account such type of special event, demand prediction should be formalized as a short-
term forecasting problem, requiring the use of last observations of the time series in the
prediction model (11). We focus this study on the short-term forecasting of passenger de-
mand by using only passenger demand historical database and calendar information such as
Month, Day, Holiday, Public School Holiday, Extended Weekend, Christmas Eve and New
Year’s Eve. In this paper, a clear emphasis is given to the evaluation of the short-term multi-
step ahead forecasting performances on an extracted subset of a 2 years smart card dataset,
including special events. The main objective of this work is to achieve the more accurate
passenger flows forecasting in the case of specific events, by means of dedicated forecasting
models able to capture the behavior of passengers in such situations. Accurate forecasting
results will help transit operators, to improve the re-routing of passengers and to adapt the
supply transport the more precisely to fit the passenger demand, in case of atypical event.

We compare different type of short-term models that forecast the number of passengers
entering each station during the next 8 time step of 15 minutes (2 hours). In order to evaluate
the models in case of abnormal patterns, we select two subset of data that correspond to
abnormal periods:

– Days off, Christmas Eve and New Year’s Eve: this period can be known in advance and
correspond to days with very specific behavior.



– Days with anomaly on the transportation network system: this period is selected with a
database given by the transport organization authority. It corresponds to service break-
down due to different sources, such as, technical problems, fire incident or strike of
transit operator.

2.2 Forecasting methodology

We work on multi-step short-term forecasting using past historical observation and exoge-
nous features to predict the number of passengers entering the studied railway stations at
the 8 next time step (data are aggregated with 15 minutes time step). Both univariate, mul-
tivariate and multivariate to univariate models are considered to forecast passenger flows.
We compared six different models: a long-term model baseline, a long-term machine learn-
ing model, a naive short-term model, a statistical model, a machine learning model and a
deep learning model with different variants. Each input and output of short-term models are
described in Table 1.

Table 1 Inputs and outputs of passenger forecasting models at time step t on day d

Model Input Output
HA Day (Monday, .., Sunday) and time step feature Ŷ A

t
RF LT time information τ Ŷ A

t
LOCF Y A

t−1 Y A
t−1

VAR Y A
t−n:t−1 Ŷ A

t
RF ST UNI Y s

t−n:t−1 and time information τ Ŷ s
t

RF ST MULTI Y A
t−n:t−1 and time information τ Ŷ A

t
GRU UNI Y s

t−n:t−1 and time information τ Ŷ s
t

GRU MULTI Y A
t−n:t−1 and time information τ Ŷ A

t
GRU FUSION Y A

t−n:t−1, Y s
t−n:t−1 and time information τ Ŷ A

t
GRU MULTI-UNI Y A

t−n:t−1 and time information τ Ŷ s
t

Where τ is the time information defined as time step t, encoded as integer value (1-96) and day encoded as day type dt with
the vector of categorical variables described in Section 2.2.4. Ŷ A

t represents the predicted number of passengers in all the
studied stations and Ŷ s

t , the predicted number of passengers in the station s at time step t.

2.2.1 Historical average, HA

This model model predicts the number of passenger in the corresponding time step by av-
eraging the value of the historical observations by day (Monday, Tuesday, ..., Sunday). The
prediction at 10:00 am on Monday corresponds to the average of all the historical values for
Monday at 10:00 am. This model is the baseline of the long-term forecasting model.

2.2.2 Last observation carried forward, LOCF

It is a naive method used in short-term time series forecasting. It returns the last observed
value (observation at the previous time step).



2.2.3 Vector autoregressive, VAR

It is a well known statistical model (12) used in time series forecasting. It is a variant of the
univariate autoregressive model (AR) which is a time-series regression model that predicts
the next value by linearly taking into account a stochastic term and the previous observation.
The VAR method is a multivariate linear forecasting approach that captures the linear inter-
dependencies among the different time series to perform prediction. Each predicted variable
can be forecasted by resolving an equation representing its evolution based on its own past
observation and the past observation of the other variables.

2.2.4 Random forest, RF

The random forest is a machine learning model that has been used for several real-world
applications on problem of regression or classification. This model has been introduced by
Breiman (4), it is an ensemble learning algorithm based on the average prediction of different
decision trees (forest). The results obtained by the different trees make the RF more accurate
and robust than a unique decision tree.

Random forest long-term, RF LT: This model forecast the number of passenger on each
station until one year ahead. The inputs of the model are only the information of the time
and date defined as day type, encoded with the following features:

– Day of the week (1-7): Monday, Tuesday, ..., Sunday.
– Month (1-12): January, February, ..., December.
– Public holiday (0-1): Public holiday in the studied region (for this study, Paris area).
– Extra day off (0-1): Working day of an extended weekend between public holiday and

weekend, e.g., Friday is considered as an extra day off if the day before (Thursday) is a
public holiday.

– School holiday (0-1): Day in period of school holiday.
– Christmas Eve (0-1): December 24.
– New Year’s Eve (0-1): December 31.

Random forest short-term univariate, RF ST UNI: The RF short-term model is a univariate
model, in order to forecast all the station one model per station is created. This RF ST
UNI takes the n last observed values, often named the lag, the information of time and date
defined as day type with the features detailed in Section 2.2.4.

Random forest short-term multivariate, RF ST MULTI: In order to take into account the
transport network connection in the forecasting, we create a second type of RF model that
is a multivariate variant. The principal objective is to learn information about incoming
passenger flow from the predicted station and other stations of the transport network. The
model takes the n last observed values of all the predicted stations, the day type defined with
the features depicted in Section 2.2.4, and the time step in input.

2.2.5 Gated recurrent unit, GRU

This model is a variant of recurrent neural networks (RNNs) and has been introduced by (6).
RNNs consider that outputs are dependent on previous computations in contrast with tradi-
tional neural networks where inputs (and outputs) are temporarily considered independent of



each other. Recurrent neural networks keep a ”memory” of previous calculations under the
form of a constantly updated hidden state. GRU, as well as long short-term memory (LSTM)
[35], are a special type of RNN with a gate mechanism that prevents the vanishing gradient
problem [36] associated with the base RNN model in order to be able to learn long-term
range dependencies. Unlike the LSTM, GRU are composed of a simpler gate mechanism
that allows a faster computation time during the learning and predicting step. Currently,
GRU are state-of-the-art models for problems involving time series analysis (e.g., machine
translation, music modeling). In this study we propose four different versions of the GRU
model:

Gated recurrent unit univariate, GRU UNI The first version is an univariate model that
uses the past observations of one time series in addition to time step and date information to
predict the next value of the same time series. One model per station is created.

Gated recurrent unit multivariate, GRU MULTI In order to take into account the spatial
information in the prediction model, we created a gated recurrent model with a multivariate
shape. This model uses the past observations of all the time series to predict the next values
of all the stations.

Gated recurrent unit fusion, GRU FUSION As multivariate and univariate models perform
differently depending on the observed passenger flows, we created a model that combines
the predictions of both multivariate and univariate models. This method is a combined model
that links a weight with each of the multivariate and univariate model prediction. These
weights are generated by an attention mechanism that captures the importance of each model
(multivariate and univariate) at each time step of the prediction. The final output detailed in
Equations 1 and 2 corresponds to the weighted sum of the model predictions.

αs(t) = φ(HU
s (t)) (1)

Ŷ F
s (t) = αs(t)ŶU

s +(1−αs(t))Ŷ M
s (2)

where Ŷ F
s (t) is the prediction of the number of passengers at station s at time step t of

the GRU FUSION model (M corresponds to the GRU MULTI model and U to the GRU UNI
model). The weights αs(t) (one weight per station) are obtained by the attention mechanism
represented by the sigmoid function φ over the hidden state (HU

s (t)) of the univariate GRU
model at time step t.

Gated recurrent unit multivariate to univariate, GRU MULTI-UNI To account for the spa-
tial information in the prediction model, we compute a multivariate-univariate variant of the
gated recurrent model. This model uses the past observations of all the time series to predict
the next values of one station. This variant involves the computation of one model per time
series.

The univariate and multivariate-univariate approach builds as many models as there are
stations, whereas the multivariate approach uses one model to forecast the passenger flows
for all stations.



2.3 Multi-step ahead forecasting

Short-term multi-step ahead forecasting aims to predict the values of all stations A at time
step t + n, with n > 1. In this study, we forecast until 8 step ahead, {Y A

t+n|n ∈ J1,8K}, with
15 minutes aggregated data. Multi-step ahead forecasting is a challenging task because of
the lack of updated observation and the accumulated errors of the model. Different methods
of multi-step ahead forecasting can be built. Here we have adopted the iterative method
meaning that we iteratively use the prediction at time t+1 as input variables for the next step
prediction. Thus, we can repeatedly predict step by step until obtaining the target horizon
forecasting.

3 Experiments

3.1 Problem case study

To evaluate our models, a real 2 years smart card dataset (2014-2015) with passenger de-
mand aggregated per 15 minutes is used. This dataset is provided by the transport organiza-
tion authority of Ile-de-France (Ile-de-France Mobilités) and depicts the number of passen-
gers entering the 30 stations of the multimodal transport network of the business district La
Défense of Paris in France. The considered stations include different transport modes such
as train (suburban railway service), metro, RER (Regional Express Network) and tramway.
The considered district includes one tramway line with 13 stops and five metro, RER and
train lines with 17 stations. Each day the studied railway stations handle more than 215k
passengers while the tramway line transport 35k passengers. In order to highlight the anal-
ysis of passenger demand forecasting under special events, the evaluation of the proposed
models is performed on the whole dataset as well as on a subset of data which contains only
periods with non-regular behaviors.

A weeklong example (Monday, February 23, 2015 to Sunday, March 1, 2015) of the
most visited stations of each transportation mode (train and tramway) with data aggregated
by 15 minutes is depicted in Figure 1. This figure shows that tram stations has noisy pattern,
moreover it reveals for all transport modes, a familiar temporal trends in public transport
usage such as the difference between week-end and weekday characterized by activity peaks
in the morning the evening and by low passenger flows during the weekend. The greater
number of passenger during the evening activity peak than the morning activity peak of the
train station ”La Défense Grande Arche” is due to the fact that this station is located in the
center of the business district.

3.2 Evaluation methods

We evaluate the results obtained by the different forecasting models with several well-known
metrics. In order to have a better understanding of the errors, two different measures of
prediction accuracy were used, namely the Root Mean Square Error (RMSE) and the Mean
Average Percentage Error at v (MAPE@v). The errors can be expressed as:

RMSE =

√
∑

S
s=1 ∑

T
t=1(ŷs(t)− ys(t))2

T ×S
(3)
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Fig. 1 Weekly pattern of the number of ticketing logs of the most visited train and tram stations aggregated
by 15 minute intervals. The weeklong example extends from Monday, February 23, 2015 to Sunday, March
1, 2015.

∀ys(t)> v, MAPE@v =
100

T ×S
×

S

∑
s=1

T

∑
t=1

∣∣∣∣ys(t)− ŷs(t)
ys(t)

∣∣∣∣ (4)

where ŷs(t) is the forecast value of station s at time step t, ys(t) is the actual value, µs is the
mean of the observed values ys and S is the station number.

As explained in Figure 2, four training and test sets were used for the short term predic-
tion. Short-term forecasting errors over the test set have been performed by concatenating
the prediction of the 4 test sets. This kind of split better reflects the real situation where
the model will be updated every quarter. Days with free transportation because of pollution
peaks were removed from the dataset. There were four such days in 2014 and six days in
2015 (Friday 14 to Monday 17 March 2014, Saturday 21 to Monday 23 March 2015 and
from Sunday 29 to Monday 30 November 2015). The transport was also free on Sunday 11
January 2015 because of the people’s march through Paris after the terrorist attack. We also
remove from the dataset the period between 23 July and 24 August 2015, because of the
renovation work on the principal line of the study (RER A line).

4 Results

The results for the two long-term models and the four short-term prediction models detailed
in Section 2.2 are summarized in terms of RMSE in Table 2 and MAPE@5 in Table 3. Ac-
cording to the evaluation protocol explained in Section 3.2, the performances for both the
global training and test sets are given in this table. The high difference between the train
set and the test set in terms of MAPE and RMSE error of the multivariate models (RF ST
MULTI and GRU FUSION), demonstrate that these models are overfitted. The univariate
models RF ST UNI and GRU UNI perform the best prediction in the test set in terms of
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Fig. 2 Train sets are colored in blue, test sets are red and unused data is shown in gray. Four training and test
sets (TT1, TT2, TT3, TT4) were used to capture real situations (the model is updated every three months) for
the short-term forecasting.

RMSE and MAPE errors. Besides these analysis we can also observe that recurrent neu-
ral network GRU models perform better multi-step prediction than the others short-term
models and seems to be less sensible of error propagation between the different multi-step
prediction.

Table 2 Results of the short-term multi-step ahead prediction models for passengers entering railway and
tram stations in 15 min intervals on the global training and test set, in term of RMSE.

RMSE - Train set (2014) - Global set
t +1 t +2 t +3 t +4 t +5 t +6 t +7 t +8

HA 87.19 87.19 87.19 87.19 87.19 87.19 87.19 87.19
RF LT 39.18 39.18 39.18 39.18 39.18 39.18 39.18 39.18
LOCF 64.28 104.56 145.12 182.33 217.59 248.78 275.92 299.37
VAR 31.34 38.12 45.74 53.26 61.02 67.74 73.24 77.92
RF ST UNI 20.63 27.14 31.86 35.64 39.20 42.43 45.35 47.85
RF ST MULTI 13.02 18.79 23.74 28.17 32.61 36.76 40.68 44.20
GRU UNI 27.22 29.26 31.71 33.61 35.11 36.45 37.57 38.5
GRU MULTI 27.77 30.35 32.54 34.27 35.68 36.87 37.93 38.85
GRU FUSION 25.04 26.99 29.06 30.67 31.95 32.98 33.84 34.55
GRU MULTI-UNI 26.69 29.79 32.62 34.67 36.38 37.85 39.21 40.43

RMSE - Test set (2015) - Global set
HA 88.03 88.03 88.03 88.03 88.03 88.03 88.03 88.03
RF LT 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29
LOCF 65.72 107.52 149.86 188.23 224.74 256.85 285.08 309.38
VAR 34.60 42.41 51.35 59.60 68.42 76.18 82.82 88.58
RF ST UNI 31.34 34.42 38.08 40.84 44.12 46.78 49.50 51.51
RF ST MULTI 41.00 42.92 45.42 47.57 50.26 52.41 54.43 56.21
GRU UNI 31.27 33.14 36.02 38.20 40.53 42.44 44.45 46.08
GRU MULTI 37.74 41.54 44.64 46.83 48.67 50.23 51.61 52.79
GRU FUSION 32.33 34.74 37.74 40.23 42.52 44.30 45.92 47.28
GRU MULTI-UNI 34.98 38.70 42.56 45.09 47.08 48.77 50.39 51.91

HA, LOCF, VAR, RFs and GRUs are the models described in Section 2.2, and RMSE and MAPE@5 are the measures of
prediction defined in Section 3.2.

In order to better understand how the models work, we focus the analysis of the fore-
casting results during two specific periods (i) Public holiday and special day period and (ii)
transport network anomaly period. Indeed, such special periods are harder to predict and
specifically at multi-step ahead.



Table 3 Results of the short-term prediction models for passengers entering railway and tram stations in 15
min intervals

MAPE@5 - Train set (2014) - Global set
t +1 t +2 t +3 t +4 t +5 t +6 t +7 t +8

HA 40.39 40.39 40.39 40.39 40.39 40.39 40.39 40.39
RF LT 26.32 26.32 26.32 26.32 26.32 26.32 26.32 26.32
LOCF 41.08 49.24 60.14 71.36 84.52 97.06 109.40 122.01
VAR 32.09 36.31 41.32 46.11 51.23 55.21 58.42 60.83
RF ST UNI 17.81 21.23 23.41 24.86 26.07 27.01 27.88 28.77
RF ST MULTI 10.55 14.50 17.86 20.56 22.94 24.97 26.72 28.24
GRU UNI 24.16 24.43 24.77 25.07 25.35 25.57 25.80 26.08
GRU MULTI 24.78 25.36 25.85 26.18 26.45 26.68 26.96 27.21
GRU FUSION 22.25 22.85 23.38 23.78 24.10 24.36 24.59 24.86
GRU MULTI-UNI 24.08 24.96 25.68 26.20 26.65 27.04 27.42 27.82

MAPE@5 - Test set (2015) - Global set
HA 40.80 40.80 40.80 40.80 40.80 40.80 40.80 40.80
RF LT 33.89 33.89 33.89 33.89 33.89 33.89 33.89 33.89
LOCF 40.75 49.00 60.16 71.49 84.58 97.30 110.13 123.2
VAR 34.29 39.49 45.51 51.18 57.41 62.44 66.62 69.76
RF ST UNI 27.49 28.11 28.83 29.50 30.04 30.49 30.90 31.4
RF ST MULTI 30.29 30.82 31.36 31.85 32.40 32.78 33.11 33.43
GRU UNI 27.58 27.94 28.52 28.98 29.43 29.81 30.19 30.52
GRU MULTI 28.46 29.21 29.93 30.43 30.87 31.25 31.58 31.88
GRU FUSION 28.25 28.61 29.14 29.57 29.99 30.29 30.60 30.97
GRU MULTI-UNI 27.97 28.62 29.32 29.84 30.30 30.73 31.22 31.67

HA, LOCF, VAR, RFs and GRUs are the models described in Section 2.2, and RMSE and MAPE@5 are the measures of
prediction defined in Section 3.2.

4.1 Public holiday, Christmas Eve and New Year’s Eve

Public holidays, Christmas Eve and New Year’s Eve, are special days during which passen-
ger demand can be considerably different from normal. Here, we analyze the prediction of
passengers flows aggregated by 15 minutes computed with the multi-step forecasting mod-
els at time step t + n with n in the range [1,8]. In table 4 we can observe the RMSE and
MAPE errors on the sub-test set corresponding to these special types of days (12 days in
2015).

The best results in term of RMSE are obtained by the univariate GRU model until time
step t +3, then it is the long-term model RF that performs the best prediction. These results
could be explained by the fact that short-term models give more importance to past observa-
tion than exogenous calendar features during the prediction and that RMSE explodes after
several multi-step forecast during such special periods. In term of MAPE, multi-step results
are less impacted by the exploding error propagation. The best models are the multivariate
models GRU, due to his high capability to generalize, the GRU FUSION model is the best
prediction model in term of multi-step horizon forecasting.

4.2 Forecasting with Transport network anomaly periods

To quantify the robustness of multi-step ahead prediction models under special events, we
evaluate their performances within special days periods created with an anomaly database
provided by the transport authority of Ile-de-France (Ile-de-France Mobilités). The anoma-
lies of this database can be categorized into the following types:



Table 4 Results of the long- and short-term prediction models for passengers entering train and tram stations
during three special periods: public holidays, Christmas Eve and New Year’s Eve, in term of RMSE and
MAPE errors.

RMSE - Sub test set (2015) - Public holiday, Christmas Eve and New Year’s Eve (12 days)
t +1 t +2 t +3 t +4 t +5 t +6 t +7 t +8

HA 294.64 294.64 294.64 294.64 294.64 294.64 294.64 294.64
RF LT 31.27 31.27 31.27 31.27 31.27 31.27 31.27 31.27
LOCF 26.69 36.32 45.81 53.70 61.95 68.28 74.00 78.80
VAR 24.57 36.08 47.25 56.83 65.86 74.00 80.93 86.62
RF ST UNI 26.57 37.29 45.97 53.66 62.26 70.56 78.21 84.61
RF ST MULTI 25.73 31.70 39.32 44.37 49.84 53.82 57.91 64.14
GRU UNI 21.38 25.34 30.71 35.54 39.53 42.59 45.16 46.90
GRU MULTI 23.57 29.20 34.67 38.77 41.35 43.07 44.26 45.04
GRU FUSION 21.52 26.58 31.65 35.77 38.44 40.40 42.14 44.18
GRU MULTI-UNI 23.15 30.79 39.14 46.04 51.65 56.16 59.70 62.14

MAPE@5 - Sub test set (2015) - Public holiday, Christmas Eve and New Year’s Eve (12 days)
t +1 t +2 t +3 t +4 t +5 t +6 t +7 t +8

HA 253.59 253.59 253.59 253.59 253.59 253.59 253.59 253.59
RF LT 39.06 39.06 39.06 39.06 39.06 39.06 39.06 39.06
LOCF 43.62 46.73 51.60 56.23 61.59 67.66 73.23 78.58
VAR 38.18 44.76 53.83 63.21 74.04 84.56 94.23 102.47
RF ST UNI 35.53 38.40 41.33 44.49 47.89 50.94 53.91 56.66
RF ST MULTI 33.62 35.15 36.57 38.03 39.78 41.73 43.62 45.78
GRU UNI 33.82 34.54 35.76 36.94 37.92 38.95 39.96 40.71
GRU MULTI 32.64 33.82 35.25 36.50 37.68 39.00 40.20 40.91
GRU FUSION 33.16 34.22 35.45 36.50 37.28 38.07 38.76 39.35
GRU MULTI-UNI 31.86 33.12 34.93 36.85 38.65 40.78 43.50 45.51

HA, LOCF, VAR, RFs and GRUs are the models described in Section 2.2, and RMSE and MAPE@5 are the measures of
prediction defined in Section 3.2.

– Breakdown or external problem, such as fire.
– Renovation of the station.
– Rail workers strike.
– Special days with an opening of the AFC systems.

We filtered this database in accordance with the station and period study, resulting in a
subset of 45 days during the test set period (2015).

Table 5 depicts the multi-step ahead prediction results of the models, in terms of RMSE
and MAPE during the transport anomaly period.

We can observe that long-term models have difficulty to forecast the number of passen-
ger during anomaly periods in terms of RMSE and MAPE. In contrast, short-term univariate
model GRU UNI performs equivalent result to the global performance in Table 2 and Ta-
ble 3. The results in terms of MAPE error show that GRU models are better prediction
models for multi-step ahead prediction. The short-term model results on this special pe-
riod that contains not predictable events, demonstrate that short-term models perform better
prediction at multi-step ahead than long-term models.

5 Conclusion

Passenger demand prediction could be useful for trip planning, transport operation and pas-
senger information. From this perspective, we investigated the short-term multi-step predic-
tion of passenger flows with real smart card dataset.



Table 5 Results of the long- and short-term prediction models for passengers entering train and tram stations
during special periods: sub-dataset of days with anomalies.

RMSE - Test set (2015) - Sub-dataset transport anomaly
t +1 t +2 t +3 t +4 t +5 t +6 t +7 t +8

HA 114.76 114.76 114.76 114.76 114.76 114.76 114.76 114.76
RF LT 97.19 97.19 97.19 97.19 97.19 97.19 97.19 97.19
LOCF 56.65 90.87 125.85 157.37 187.52 213.98 237.14 257.15
VAR 37.13 48.66 61.02 71.91 82.76 92.71 100.36 107.20
RF ST UNI 32.32 38.39 44.93 50.53 55.76 59.54 63.21 66.06
RF ST MULTI 62.86 66.00 71.52 76.52 82.22 86.15 89.07 91.24
GRU UNI 32.29 35.63 40.88 45.65 50.67 55.44 60.09 64.10
GRU MULTI 52.55 59.83 66.37 71.13 75.19 78.83 81.94 84.56
GRU FUSION 37.60 42.22 48.54 54.17 59.29 63.56 67.49 70.81
GRU MULTI-UNI 44.22 51.09 58.57 63.72 67.92 71.47 74.82 78.00

MAPE@5 - Test set (2015) - Sub-dataset transport anomaly
HA 56.96 56.96 56.96 56.96 56.96 56.96 56.96 56.96
RF LT 47.71 47.71 47.71 47.71 47.71 47.71 47.71 47.71
LOCF 41.55 48.24 58.4 68.21 79.17 90.2 101.54 112.44
VAR 37.83 44.68 52.93 60.70 69.17 76.73 83.27 88.26
RF ST UNI 29.91 31.21 32.60 34.37 35.60 36.92 38.05 39.18
RF ST MULTI 39.02 40.55 42.15 43.63 45.14 46.34 47.23 48.46
GRU UNI 30.67 31.34 32.60 33.81 35.08 36.25 37.46 38.37
GRU MULTI 35.00 36.63 38.52 39.84 41.15 42.27 43.16 43.83
GRU FUSION 32.35 33.19 34.76 36.01 37.24 38.05 38.99 40.00
GRU MULTI-UNI 33.07 34.40 35.99 37.21 38.39 39.63 41.22 42.28

LOCF, VAR, RF ST UNI and RF ST MULTI are the short-term models described in Section 2.2, and RMSE, MAE and
MAPE@5 are the measures of prediction defined in Section 3.2.

The case study considered in this paper involves several stations of different modes in a
major business district in the Paris metropolitan area (La Défense). We compare basic and
machine learning long-term models with short-term models under two special periods, in
order to understand the results of short-term multi-step forecasting. We considered differ-
ent variants of short-term models including statistical, machine learning and deep learning
models both in univariate and multivariate case. The results have demonstrated that deep
learning models performed better forecasting during the special periods containing public
holidays and special days. On the other special periods defined by days with transport net-
work anomalies, the univariate models RF and GRU obtained the best results. Besides these
results, this study has demonstrated the effectiveness of recurrent neural networks for multi-
step prediction tasks. These models have shown to be less sensitive to error propagation
along the different time step contrary to the other models such as vector autoregressive or
random forest.

Future research should investigate different methodologies of multi-step ahead forecast-
ing, in order to better incorporate the spatiotemporal links between the different time series.
From this perspective, it could be relevant to investigate other architectures of neural net-
work that could better capture these links within a transport network and thus make better
prediction during atypical periods. Future work should also investigate the application of
prediction model on other cities and new datasets that involve more information such as
event database.
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A Appendix



Table 6 Informations about the studied stations

ID Name Line Type Latitude Longitude Agency
393 LA DEFENSE-GRANDE ARCHE A RER 48.892187 2.237018 RATP
394 LA DEFENSE-GRANDE ARCHE L Transilien 48.892187 2.237018 SNCF
269 ESPLANADE DE LA DEFENSE 1 Metro 48.888631 2.247932 RATP
151 CHARLES DE GAULLE ETOILE A RER 48.874238 2.294491 RATP
577 NANTERRE-PREFECTURE A RER 48.895745 2.223213 RATP
414 LA DEFENSE-GRANDE ARCHE 1 Metro 48.892187 2.237018 RATP
578 NANTERRE-UNIVERSITE A RER 48.901550 2.215232 RATP
357 HOUILLES-CARRIERES-SUR-SEINE A RER 48.920379 2.185353 SNCF
580 NANTERRE-VILLE A RER 48.895126 2.195364 RATP
100 BOULOGNE-PONT DE SAINT CLOUD 10 Metro 48.840745 2.228537 RATP
812 SAINT-CLOUD L Transilien 48.846103 2.217621 SNCF
843 SURESNES-MONT VALERIEN L Transilien 48.871714 2.221030 SNCF
29 ASNIERES J Transilien 48.905706 2.283629 SNCF
436 LE VAL-D’OR L Transilien 48.856420 2.216572 SNCF
217 COURBEVOIE L Transilien 48.898119 2.247943 SNCF
579 NANTERRE-UNIVERSITE L Transilien 48.901746 2.215111 SNCF
712 PUTEAUX L Transilien 48.883384 2.233692 SNCF
413 LA DEFENSE-GRANDE ARCHE T2 Tramway 48.892123 2.237214 RATP
1085 PONT DE BEZONS T2 Tramway 48.923268 2.217590 RATP
844 SURESNES-LONGCHAMP T2 Tramway 48.868239 2.221411 RATP
1090 VICTOR BASCH T2 Tramway 48.914048 2.229572 RATP
1088 CHARLEBOURG T2 Tramway 48.907665 2.238309 RATP
623 PARC DE SAINT-CLOUD T2 Tramway 48.843124 2.221851 RATP
713 PUTEAUX T2 Tramway 48.883335 2.233871 RATP
1086 FAUBOURG DE L ARCHE T2 Tramway 48.896664 2.240079 RATP
1087 LES FAUVELLES T2 Tramway 48.902768 2.239542 RATP
1089 JACQUELINE AURIOL T2 Tramway 48.910803 2.233989 RATP
457 LES COTEAUX T2 Tramway 48.857471 2.220604 RATP
1091 PARC PIERRE LAGRAVERE T2 Tramway 48.917515 2.224812 RATP
461 LES MILONS T2 Tramway 48.849850 2.221233 RATP


