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 is examined. The weighted optimal initial perturbations have spanwise wavenumber 40π and are amplified via the Orr mechanism. At higher spanwise wavenumber, e.g. 120π, a free-stream optimal initial perturbation, upstream of the leading edge in the form of streamwise vortices, is obtained. In nonlinear evolution, this high-wavenumber optimal perturbation tilts the mean shear and generates spanwise periodic high and low-speed streaks. Then through a nonlinear lift-up mechanism, the low-speed streaks are lifted above the high-speed ones and generate a mean shear with inflectional points. This layout of streaks activates secondary instabilities and both inner and outer instabilities addressed in literature are observed.

INTRODUCTION

Flow past a blade cascade has been thoroughly investigated owing to its rich transition related phenomena associated with pressure gradients, free-stream noise, leading-edge effects and surface curvature [START_REF] Gostelow | Effects of free-stream turbulence and adverse pressure gradients on boundary layer transition[END_REF][START_REF] Spalart | Mechanisms of transition and heat transfer in a separation bubble[END_REF]. Bypass transition scenarios have been observed on the suction side around the leading edge of a blade in a previous Direct Numerical Simulation (DNS) work [START_REF] Zaki | Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence[END_REF]. The present study aims at examining the linear mechanisms associated with this observation.

The term bypass transition refers to the transition scenario where instabilities are absent or difficult to identify. In this route of transition, high and low-speed streaks, which are dominated by streamwise velocity components, are well observed upstream of the transition region. These streaks have spanwise wavenumber higher than the Λ structures and are elongated in the streamwise direction. The transition to turbulence is initiated by the distortion or secondary instabilities of the streaks around the top of the boundary layer, triggered by high-frequency noise in the free-stream [START_REF] Jacobs | Simulations of bypass transition[END_REF].

The velocity streaks can be generated by streamwise vortices, which tilt the mean shear via a linear 'lift-up' mechanism [START_REF] Phillips | Shear-flow turbulence[END_REF]. The streamwise vortices have been found to be optimal initial perturbations in boundary layer flow [START_REF] Andersson | Optimal disturbances and bypass transition in boundary layers[END_REF][START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF] without a leading edge. As predicted by the linear theory, the high and low-speed streaks appear periodically in the streamwise direction. However the streaks observed in DNS are not periodic. It will be shown that this aperiodicity is critical to the breakdown of streaks and subsequently the bypass transition.

In this work, a free-stream optimal initial perturbation in the form of streamwise vortices upstream of the leading edge is obtained for the first time by solving flow around the leading edge of the blade. Such an initial perturbation induces bypass transition through a linear lift-up mechanism, which generates periodic streaks, and a nonlinear mechanism, which lifts the low-speed streaks above the high-speed ones and activates secondary instabilities in the streaks.

TRANSIENT GROWTH METHODOLOGY

Assuming the fluid to be Newtonian and the flow incompressible, the relevant equations of motion are the incompressible Navier-Stokes (NS) equations:

∂ t u = -u • ∇u -∇p + Re -1 ∇ 2 u, ∇ • u = 0, ( 1 
)
where u is a velocity vector field and p denotes pressure, all considered in a spatial domain Ω. Decomposing the flow field into the sum of a base flow and a perturbation, u = U + u , p = P + p , inserting into (1), and retaining only terms linear in the perturbation, one obtains the linearized NS equations

∂ t u = -U •∇u -u •∇U -∇p +Re -1 ∇ 2 u , ∇•u = 0. (2)
If the base flow is homogeneous in one direction, e.g. the spanwise direction, the perturbation can be further decomposed, such that u = ∞ β=0 ûβ exp(i βz) + c.c., where β is the spanwise wavenumber. Since the governing equations (2) are linearized, Fourier modes with different β are decoupled and can be studied separately. In the following, the term perturbation refers to the Fourier mode and the subscript β will be omitted.

To evaluate the growth of perturbations over the entire or a part of the domain, we define weighted transient growth of perturbations over time τ as

G = max û(0) (F û(τ), F û(τ)) ( û(0), û(0)) = max û(0) (FA û(0), FA û(0)) ( û(0), û(0)) ( 3 
)
where F is a scalar spatial window function which isolates the region of interest, with value ranging from 0 to 1; the inner product is defined as (a, b) ≡ Ω a • bdv; A is an operator whose action is obtained by integrating the linearized NS equations over time interval τ.

Considering that the function F satisfies (a, F b) = (F a, b), equation ( 3) can be reformulated as

G = max û(0) (A * F 2 A û(0), û(0)) ( û(0), û(0)) , ( 4 
)
where A * is the adjoint operator of A satisfying (a, A b) = (A * a, b). The action of A * can be obtained by integrating the adjoint equation:

-∂ t u * = U • ∇u * -u * • (∇U ) T -∇p * + Re -1 ∇ 2 u * , with ∇ • u * = 0 (5)
From ( 4), the optimal growth G and the corresponding optimal initial perturbation are the largest eigenvalue and the corresponding eigenvector of the operator A * (τ)F 2 A(τ). It is noticed that when F is not constant, the initial condition of the adjoint operator, e.g. F 2 A û(0), may be not divergencefree. The non-divergence-free component of F 2 A û(0) is filtered at the first step when integrating the adjoint equation. The optimal energy growth (and the corresponding optimal initial perturbation) can be obtained by applying an Arnoldi method to a Krylov sequence, established by repeated action the joint operator A * (τ)F 2 A(τ) on a random initial perturbation [START_REF] Barkley | Direct optimal growth analysis for timesteppers[END_REF].

DISCRETIZATION, VALIDATION AND CONVER-GENCE

The governing equations are discretized via quadrilateral spectral elements with nodal tensor-product expansion bases in the xy plane, and Fourier decomposed in the spanwise z direction. A second-order backward-difference time-splitting scheme with equal-order interpolation of velocity and pressure is used for time integration [START_REF] Karniadakis | Highorder splitting methods for the incompressible Navier-Stokes equations[END_REF]. A side view of the computational domain is provided in figure 1, with10340 spectral elements in each xy plane shown in the lower half of the geometry. The domain is repeated in the y-direction for clarity. The grid resolution is determined based on the discretization and pressure distributions in [START_REF] Zaki | Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence[END_REF]. We note that the outflow section is significantly elongated in order to accommodate the unsteady wake, which acts as an 'amplifier' to upstream disturbances. The boundary conditions are also shown in figure 1. An incident free-stream velocity at 42 o is applied at the inflow boundary. A zero Neumann outflow condition is adopted for (1), whilst a zero Dirichlet condition is used for (2) and ( 5) [START_REF] Blackburn | Convective instability and transient growth in flow over a backward-facing step[END_REF]. On the upper and lower boundaries, periodic boundary conditions are applied. The Reynolds number based on the inflow velocity and the blade chord length is 138, 500, which is equal to the value adopted in previous DNS studies [START_REF] Zaki | Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence[END_REF][START_REF] Zaki | Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade[END_REF].

A 2D simulation is performed by integrating (1) and snapshots of the simulation are saved after the flow converges to a quasi-periodic state, as presented in figure 2. These time snapshots are used to construct the time dependent base flow through a third-order Lagrangian interpolation when solving (2) and ( 5) [START_REF] Mao | Transient growth and bypass transition in stenotic flow with a physiological waveform[END_REF].

In order to verify the accuracy of the numerical solution, the pressure coefficient C p ≡ (P -P r e f )/( ρU 2 0 /2) is calculated and compared against the results from [1] in figure 3. The two sets of data agree very well and there is slight discrepancy on the suction surface downstream of the secondary bubble, which is due to the choice of time horizon to calculate the mean value of C p , which assumes that the flow is quasi-periodic in this region. In the above comparison of C p to published data, the polynomial order used in the spectral element method is P = 7. The accuracy of the numerical soutions of the linearized NS and adjoint equations are verified via calculating the transient growth without filtering at τ = 0.1, β = 0 and various values of P, as shown in table 1. The optimal energy growth converges to three significant figures at P = 7. Therefore P = 7 is adopted throughout this study.

RESULTS

Linear transient growth

On the pressure side where the pressure gradient is predominantly adverse, both streaks and discrete instability waves were observed in previous DNS [START_REF] Zaki | Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence[END_REF]. In the present work, these instabilities will be studied by evaluating the weighted energy growth. The weight factor is defined as unity in the region enclosed by the pressure surface and x = 0, x = 0.2 and y = 0.65x + 0.3, as shown by the thick lines in figure 1, and zero elsewhere.

The weighted transient energy growth is shown in figure 4. The maximum amplification takes place around τ = 0.3 and β = 40π; at higher values of final time, e.g. τ = 0.5, the peak growth appears at approximately β = 120π. These two peaks correspond to two typical types of optimal initial perturbations and subsequently different linear perturbation growth mechanisms and transition scenarios.

The weighted optimal initial perturbations are shown in figure 5. At small values of τ and β, specifically τ = 0.3 and β = 40π, the optimal perturbation is located inside the boundary layer and is tilted against the shear to take advantage of the Orr mechanism, which realigns the optimal initial perturbation with the shear and amplifies it through the action of the pressure (figure 5a). This Orr mechanism is dominant over small values of the target time τ < 0.2. At higher spanwise wavenumber, another form of the optimal initial perturbation is introduced, and it involves streamwise vorticity. At β = 120π and τ = 0.3, the optimal perturbation is a combination of the tilted structure and streamwise vorticity (see figure 5b). Increasing the target time, τ, displaces the optimal perturbation upstream of the leading edge where the Orr mechanism vanishes, and only the streamwise vorticity remains (see figure 5c-d).

Based on figures 4 and 5, when the target time is short, the Orr mechanism is dominant and perturbations with low spanwise wavenumber are most amplified by the shear of the base. At sufficiently large final time, the optimal initial perturbation starts upstream of the leading edge and takes the form of streamwise vorticity with high spanwise wavenumbers.

The two linear responses to the optimal initial perturbations are illustrated in figure 6. The first disturbance is tilted forward by the shear at the target time (see figure 6a). The streamwise vorticity perturbation, on the other hand, generates streamwise velocity streaks with low streamwise and high spanwise wavenumbers (see figure 6b).

Both the Orr amplification at low spanwise wavenumber, and the lift-up at high spanwise wavenumber have been reported in a Blasius boundary layer flow [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF]. [START_REF] Andersson | Optimal disturbances and bypass transition in boundary layers[END_REF] has obtained a similar optimal initial perturbation in the form of streamwise vorticity, by optimizing initial perturbations for a flat plate. is an enlarged view of (d). The initial perturbation is optimal at τ = 0.5 and β = 120π, with a relative magnitude r = 0.08, as will be used in all the following plots if not otherwise stated.

Here, in contrast, the region upstream of the leading edge is included in the analysis. The present work is therefore the first investigation that demonstrates the origin of boundary layer streaks when the finite-thickness leading edge is fully resolved.

Since the free-stream optimal perturbation is associated with the bypass transition, the following work will be focused on the second type of the optimal perturbations, i.e. those at β = 120π.

Bypass transition

The nonlinear evolution of the linearly optimal initial perturbation is studied through DNS, where the initial condition is the sum of the base flow and the optimal initial perturbation. Define a perturbation relative magnitude, denoted as r, as the ratio of the maximum initial perturbation velocity with respect to the free-stream base flow velocity. Unless otherwise stated, in all the following studies, the optimal initial perturbation for β = 120π and τ = 0.5 is adopted, with a relative magnitude r = 0.08.

The development of the streamwise disturbance velocity is shown in figure 7. The spanwise domain size is 0.05 and is resolved using 32 spanwise Fourier modes. For clarity, the results are reproduced in the spanwise direction three times. The perturbation has a low streamwise wavenumber, and is initially localized upstream of the blade leading edge (figure 7a). By tilting the mean shear, the initial disturbance triggers the formation of streamwise velocity streaks (figure 7b). These streaks are further amplified, while the high (low) speed ones move towards (away) from the blade surface (figure 7c). Finally the streaks break down to turbulence with the apparent formation of hairpin vortices (figure 7d). The generation, dynamics and secondary inability of the streaks are examined in detail in the following sections.

Nonlinear streaks

The streamwise velocity perturbation at various downstream locations is plotted in figure 8. The high and low-speed streaks appear periodically at x = 0.1. Their initial amplification is due to the linear lift-up mechanism, which can be traced to the action of the streamwise vorticty perturbation onto the baseflow shear. Downstream the streamwise vorticity perturbation acts on the streaks themselves, which is a nonlinear effect (since both the vorticity and the streaks are perturbations quantities). This nonlinear interaction alters the spanwise harmonic appearance of the streaks into trapezoidal shapes (figure 8b). Farther downstream (figure 8c), the nonlinear lift-up displaces the core of the streaks in the wall-normal direction, with the low-speed structures overhanging the high-speed ones. This configuration is prone to secondary instabilities, which are visible in figure 8(e). The instability can be classified as an inner mode, which is symmetric with respect to the streak and can originate in the overlap region between the high and low speed streaks [START_REF] Vaughan | Stability of zero-pressuregradient boundary layer distorted by unsteady Klebanoff streaks[END_REF][START_REF] Hack | Streak instabilities in boundary layers beneath free-stream turbulence[END_REF]. Another instability, featuring asymmetric deformation of the upper part of low-speed streaks, or the outer mode, is clearly observed in figure 8(f ).

The above discussion was based on results from simulations with initial perturbation magnitude r = 0.08. The streaks that results from three initial amplitudes are compared in figure 9. As the initial amplitude is increased, the streak response is more energetic, and the low-speed streaks are increasingly lifted away from the wall. In figure 9(b), when the initial perturbation magnitude reaches 0.04, the streaks exhibit signs of the onset of secondary instabilities, which become much more evident at higher amplitudes (figure 9c).

The linear and nonlinear amplifications of streaks are schematically plotted in figure 10. The optimal initial perturbations are streamwise vortices which displace, or lift-up, the mean flow and creates low and high-speed streaks. In the linear limit of infinitesimal disturbance amplitudes, the interaction of the streamwise vorticity and streaks is negligible. However, when the initial magnitude of the perturbation is sufficiently large, the streamwise vorticity acts on the streaks, and induces a vertical displacement and a lateral deformation. The nonlinear streaks distort the mean profile. The distortion is an 

Deformation of streaks

The low and high-speed streaks are subject to two classes of secondary instabilities: an outer instability and an inner instability [START_REF] Vaughan | Stability of zero-pressuregradient boundary layer distorted by unsteady Klebanoff streaks[END_REF][START_REF] Hack | Streak instabilities in boundary layers beneath free-stream turbulence[END_REF]. The former affects the lifted low-speed streaks, and the latter is due to the near-wall inflection point that can form at the overlap between the low-and high-speed streaks. The nature of these instabilities motivate examining the low-and high-speed streaks separately, as shown in figures 11 and 12, respectively. At t = 0.52, the high-speed streaks are deformed in a manner suggestive of varicose instability (see figure 11a). In the mean time, the lifted low-speed streaks are meandering in a sinuous motion (see figure 12a). At t = 0.58, the secondary instability of the high-speed streaks leads to the formation of the Λ structures (figure 11b). At t = 0.66 (figure 11c), the high-speed streaks start to locally break down to turbulence. This process features the formation of hairpin vortices from the stretching of the Λ structures, which was previously discussed in connection with figure 7(d). The low-speed streaks, on the other hand, continue the low-wavenumber meandering motion but with an increasing magnitude (see figures 12b and 12c).

CONCLUSION

The flow around a NACA 65 blade cascade at Re = 138, 500 is studied through both weighted transient growth analyses and DNS. As reported in a previous DNS work [START_REF] Zaki | Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence[END_REF], freestream noise induced bypass transition occurs around the leading edge on the suction side of the blade. The present work is focused on revealing the linear/nonlinear mechanism of this transition scenario.

To capture the linear perturbation amplifications in the region of interest, weighted transient growth analyses are adopted to filter perturbation growth in space. Two types of optimal initial perturbations are obtained, as has been observed in a boundary layer flow without leading-edge [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF]. One has low spanwise wavenumber, e.g. β = 40π and tilts against the mean shear. Another one has higher spanwise wavenumber, e.g. β = 120π and is in the form of streamwise vortices. By increasing the value of the final time and only considering perturbation growth around the leading edge, this optimal initial perturbation can be pushed to the upstream of the leading edge. This is the first time a purely free-stream optimal perturbation that triggers bypass transition is calculated. This initial perturbation firstly tilts the mean shear and generates high and low-speed streaks through a linear 'linear-up' mechanism. These streaks are spanwise periodic as predicted by linearized studies [START_REF] Andersson | Optimal disturbances and bypass transition in boundary layers[END_REF].

In DNS, when the perturbation magnitude is large enough, the spanwise vortices act on the streaks and lift the low-speed streaks above the high-speed ones. Since both the vortices and the streaks are perturbations, this mechanism is nonlinear. Such a layout of streaks is prone to instabilities and both inner and outer instabilities reported in literature are observed [START_REF] Hack | Streak instabilities in boundary layers beneath free-stream turbulence[END_REF].
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 1 Figure 1. Boundary conditions and computational domain subdivided into spectral elements. The thick solid line and the pressure side isolate the region of interest.
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 2 Figure 2. Contour of spanwise vorticity for a time-slice of the base flow.
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 4 Figure 4. Contour of the logarithm of the weighted energy amplification, log(G). The optimal initial perturbations at points 'a', 'b', 'c' and 'd' are illustrated in figure 5(a), (b), (c) and (d), respectively.
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 56 Figure 5. Contours of streamwise vorticity for the weighted optimal initial perturbations at (a) ( β, τ) = (40π, 0.3), (b) ( β, τ) = (120π, 0.3), (c) ( β, τ) = (120π, 0.5) and (d) ( β, τ) = (120π, 0.6).
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 7 Figure 7. (a) Iso-surfaces of streamwise perturbation vorticity 10 (red) and -10 (blue) at t = 0; (b), (c) and (d) iso-surfaces of streamwise velocity perturbation -0.05 (blue) and 0.05 (red) at t = 0.1, t = 0.5 and t = 0.8, respectively. (e)is an enlarged view of (d). The initial perturbation is optimal at τ = 0.5 and β = 120π, with a relative magnitude r = 0.08, as will be used in all the following plots if not otherwise stated.
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 1 Convergence of the unfiltered (F = 1 all over the domain) energy growth G with respect to the polynomial order P at Re = 138, 500, β = 0 and τ = 0.1.
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