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Abstract

It is common practice to treat small jumps of Lévy processes as Wiener noise and to ap-
proximate its marginals by a Gaussian distribution. However, results that allow to quantify the
goodness of this approximation according to a given metric are rare. In this paper, we clarify what
happens when the chosen metric is the total variation distance. Such a choice is motivated by its
statistical interpretation; if the total variation distance between two statistical models converges to
zero, then no test can be constructed to distinguish the two models. We elaborate a fine analysis
of a Gaussian approximation for the small jumps of Lévy processes in total variation distance.
Non asymptotic bounds for the total variation distance between n discrete observations of small
jumps of a Lévy process and the corresponding Gaussian distribution is presented and extensively
discussed. As a byproduct, new upper bounds for the total variation distance between discrete
observations of Lévy processes are provided. The theory is illustrated by concrete examples.
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1 Introduction

Although Lévy processes, or equivalently infinite divisible distributions, are mathematical objects
introduced almost a century ago and even though a good knowledge of their basic properties has
since long been achieved, they have recently enjoyed renewed interest. This is mainly due to the
numerous applications in various fields. To name some examples, Lévy processes or Lévy-type processes
(time changed Lévy processes, Lévy driven SDE, etc...) play a central role in mathematical finance,
insurance, telecommunications, biology, neurology, telecommunications, seismology, meteorology and
extreme value theory. Examples of applications may be found in the textbooks [2] and [6] whereas the
manuscripts [4] and [17] provide a comprehensive presentation of the properties of these processes.

The transition from the purely theoretical study of Lévy processes to the need to understand Lévy
driven models used in real life applications has led to new challenges. For instance, the questions of
how to simulate the trajectories of Lévy processes and how to make inference (prediction, testing,
estimation, etc...) for this class of stochastic processes have become a key issue. The literature
concerning these two aspects is already quite large; without any claim of completeness, we quote [1],
Chapter VI in [2], [3], [5] and Part II in [6]. We specifically focus on statistics and simulation for Lévy
processes, because our paper aims to give an exhaustive answer to a recurring question in these areas:
When are the small jumps of Lévy processes morally Gaussian?

Before entering into details, we take a step back and see where this question comes from. Thanks
to the Lévy-Itô decomposition, the structure of the paths of any Lévy process is well understood and
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it is well known that any Lévy process X can be decomposed into the sum of three independent Lévy
processes: a Brownian motion with drift, a centered martingale M associated with the small jumps
of X and a compound Poisson process describing the big jumps of X (see the decomposition (2) in
Section 1 below). If the properties of continuously or discretely observed compound Poisson processes
and of Gaussian processes are well understood, the same cannot be said for the small jumps M . As
usual in mathematics, when one faces a complex object a natural reflection is whether the problem
can be simplified by replacing the difficult part with an easier but, in a sense, equivalent one. There
are various notions of equivalence ranging from the weakest, convergence in law, to the stronger con-
vergence in total variation.

For some time now, many authors have noticed that marginal laws of small jumps of Lévy processes
with infinite Lévy measures resemble to Gaussian random variables, see Figure 1 and 2. This remark

Figure 1: Discretized trajectory of a Lévy process

(0, 0,
1(0,ε](x)

x1+β ) for (n = 103,∆ = 1, ε = 10−2, β = 0.9).

Figure 2: Discretized trajectory of a Lévy process

(0, 0,
1[−ε,ε]\{0}(x)

x1+β ) for (n = 103,∆ = 1, ε = 0.5, β = 1.8).

has led to propose algorithms of simulation of trajectories of Lévy processes based on a Gaussian
approximation of the small jumps, see e.g. [5] or [6], Chapter 6. Regarding estimation procedures, a
Gaussian approximation of the small jumps has, to the best of our knowledge, not been exploited yet.
A fine control of the total variation distance between these two quantities could open the way of new
statistical procedures. The choice of this distance is justified by its statistical interpretation: if the
total variation distance between the law of the small jumps and the corresponding Gaussian component
converges to zero then no statistical test can be built to distinguish between the two models. In terms
of information theory, this means that the two models are asymptotically equally informative.

Investigating the goodness of a Gaussian approximation of the small jumps of a Lévy process in
total variation distance makes sense only if one deals with discrete observations. From the continuous
observation of a Lévy process, the problem of separating the continuous part from the jumping part
does not arise: the jumps are observed. The measure corresponding to the continuous observation of
a continuous Lévy process is orthogonal to the measure corresponding to the continuous observation
of a Lévy process with non trivial jump part, see e.g. [11]. However, the situation changes when
dealing with discrete observations. The matter of disentangling continuous and discontinuous part of
the processes is much more complex. Intuitively, fine techniques are needed to understand whether,
between two observations Xt0 and Xt1 , there has been a chaotic continuous behavior, many small
jumps, one single bigger jump, or a mixture of these.

A criterion for the weak convergence for marginals of Lévy processes is given by Gnedenko and
Kolmogorov [9]:
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Theorem 1 (Gnedenko, Kolmogorov). Marginals of Lévy processes Xn = (Xn
t )t≥0 with Lévy triplets

(bn, σ
2
n, νn) converge weakly to marginals of a Lévy process X = (Xt)t≥0 with Lévy triplet (b, σ2, ν) if

and only if
bn → b and σ2

nδ0 + (x2 ∧ 1)νn(dx)
w−→ σ2δ0 + (x2 ∧ 1)ν(dx),

where δ0 is the Dirac measure in 0 and
w−→ denotes weak convergence of finite measures.

A remarkable fact in the previous statement is the non-separation between the continuous and
discontinuous parts of the processes: the law at time t of a pure jumps Lévy process can weakly
converge to that of a continuous Lévy process. In particular, if X is a Lévy process with Lévy measure
ν then, for any ε > 0 and t > 0, the law of the centered jumps of Xt with magnitude less than
ε converges weakly to a centered Gaussian distribution with variance tσ2(ε) := t

∫
|x|<ε x

2ν(dx) as

ε → 0. We aim to understand this phenomenon, using a notion of closeness stronger than the weak
convergence, providing a quantitative translation of the result of Gnedenko and Kolmogorov in total
variation distance.

There exist already several results for distances between Lévy processes. Most of them (see for
example [8], [11] and [12]) are distances on the Skorohod space, distances between the continuous
observation of the processes, and thus out of the scope of this paper. Concerning discretely observed
Lévy processes we mention the results in [13] and [14]. Liese [13] proved the following upper bound in
total variation for marginals of Lévy processes Xj ∼ (bj ,Σ

2
j , νj), j = 1, 2: for any t > 0

‖L (X1
t )−L (X2

t )‖TV ≤ 2

√
1−

(
1− H2(N (t̃b1, tΣ2

1),N (t̃b2, tΣ2
2))

2

)2

exp(−tH2(ν1, ν2))

with b̃1 = b1−
∫ 1

−1
xν1(dx), b̃2 = b2−

∫ 1

−1
xν2(dx) and H denotes the Hellinger distance. This result is

the analogous in discrete time of the result of Mémin and Shyryaev [15] for continuously observed Lévy
processes. There is a clear separation between the continuous and discontinuous parts of the processes,
which is unavoidable on the Skorohod space but that can be relaxed when dealing with the marginals.
Clearly, from this kind of upper bounds it is not possible to deduce a Gaussian approximation for the
small jumps in total variation: the bound is actually trivial whenever tH2(ν1, ν2) > 1.

Such an approximation may hold in total variation as proved in [14], where the convolution structure
of Lévy processes with non-zero diffusion coefficients is exploited to transfer results from Wasserstein
distances to total variation distance.

In the present paper we complete the work started in [14], providing a comprehensive answer to
the question: Under which asymptotics does a Gaussian approximation capture the behavior of the
small jumps of a discretely observed Lévy process adequately so that the two corresponding statistical
models are equally informative? Differently from [14] which deals with marginals, we also establish
sharp bounds for the distance between n given increments of the small jumps. This is an essential
novelty. Even though from a bound in total variation between marginals one can always deduce a
bound for the n sample using ‖P⊗n − Q⊗n‖TV ≤

√
2n‖P −Q‖TV , this kind of control is in general

sub-optimal as in many situations, ‖P⊗n−Q⊗n‖TV is of order of
√
n‖P −Q‖TV , as n goes to infinity.

This faster rate can be obtained using the methods developed in the present work.

Our main results are presented below in a simplified context. First, we established an upper bound
for the Gaussian approximation of the small jumps in total variation.

Main Result 1. Let ε > 0 and M(ε) be a Lévy process with Lévy triplet (0, 0, νε) where νε is a Lévy
measure support in [−ε, ε]. Set σ2(ε) =

∫ ε
−ε x

2νε(dx), µ3(ε) =
∫ ε
−ε x

3νε(dx) and µ4(ε) =
∫ ε
−ε x

4νε(dx).
Fix b ∈ R and Σ ≥ 0 as well as ∆ > 0, n ≥ 1. Under the assumptions of Theorem 2 below, there

exists a constant C > 0 that depends only on the constants in the assumptions of Theorem 2 (and
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therefore independent of b,Σ, ν,∆, n and ε) and such that∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N
(
b∆,∆(Σ2 + σ2(ε)

)⊗n∥∥
TV
≤

C

[√
nµ2

4(ε)

∆2(Σ2 + σ2(ε))4
+

nµ2
3(ε)

∆(Σ2 + σ2(ε))3
+

1

n

]
.

Main Result 1 is non-asymptotic, which allows to quantify just how “small” the small jumps must
be, in terms of the number of observations n and their frequency ∆, in order for it to be close in total
variation to the corresponding Gaussian distribution.

More precisely, fix n and ∆, provided µ2
4(ε)/(σ2(ε))4 → 0 and µ2

3(ε)/(σ2(ε))3 → 0 as ε → 0, the
total variation in Main Result 1 for Σ = 0, that we write r̃n,∆(ε), is bounded under the assumptions
of Main Result 1 by a quantity of order

√
nr∆(ε) + 1/n :=

√
n

(
µ4(ε)

∆(σ2(ε))2
+

|µ3(ε)|√
∆(σ2(ε))3/2

)
+

1

n
. (1)

A sufficient condition to ensure r̃n,∆(ε) → 0 as ε → 0 is that ε/σ(ε) →ε→0 0 - since we have, taking
N = max(n, 1/r∆(ε)2/3) ≥ n, that r̃n,∆(ε) ≤ r̃N,∆(ε) . It is straightforward to see that if µ3(ε) 6= 0

then r̃n,∆(ε)→ε→0 0 as soon as
√
nε/
√

∆σ(ε)→ε→0 0. When µ3(ε) = 0, this can be further improved
to the condition

√
nε2/∆σ2(ε) →ε→0 0. To exemplify, consider the small jumps of symmetric β-

stable processes with Lévy measure νε = 1|x|≤ε/|x|1+β , β ∈ (0, 2). Then, a sufficient condition for

r̃n,∆(ε)→ε→0 0 is
√
nεβ/∆→ε→0 0 - see Theorem 3 and Proposition 2.

An interesting byproduct of Main Result 1 is Theorem 6 in Section 3 which provides a new upper
bound for the total variation distance between n given increments of two Lévy processes. A peculiarity
of the result is the non-separation between the continuous and discontinuous part of the processes.
Then, Theorem 6 is close in spirit to Theorem 1 although it holds for the stronger notion of total
variation distance.

Main Result 1 can be sharpened by considering separately large and rare jumps, see Theorem 3 -
this has an impact in the case where the jumps of size of order ε are very rare. It is optimal, in the
sense that whenever the jumps of size of order ε are not “too rare” and whenever the above quantity
r in (1) is larger than a constant, then the upper bound in Main Result 1 is trivial, but the total
variation distance can be bounded away from 0 as shown in Main Result 2 below.

Main Result 2. Let ν be a Lévy measure, b ∈ R and Σ ≥ 0. For any ε > 0, ∆ > 0 and n ≥ 1
such that ε ≤

√
(Σ2 + σ2(ε))∆ log(e ∨ n)2 and

∫ ε
−ε dν ≥ ∆−1 ∨

(
log(e ∨ n)/(n∆)

)
, there exist an

absolute sequence αn → 0 (independent of b, ν, ε,Σ,∆) and an absolute constant C > 0 (independent
of b, ν, ε,Σ,∆, n) such that the following holds:∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (b∆,∆(Σ2 + σ2(ε))⊗n

∥∥
TV
≥{

1− C

[
∆(Σ2 + σ2(ε))3

nµ3(ε)2
∧ ∆2(Σ2 + σ2(ε))4

nµ4(ε)2

]
− αn

}
,

where M(ε) is a Lévy process with Lévy triplet (0, 0, ν1[−ε,ε]).

A more technical and general lower bound, that holds without condition on the rarity of the jumps
of size of order ε, is also available, see Theorem 5. This lower bound matches in order the general
upper bound of Theorem 3 - implying optimality without conditions of our results. The proof of the
lower bound for the total variation is based on the construction of a sharp Gaussian test for Lévy
processes. This test combines three ideas, (i) the detection of extreme values that are “too large” for
being produced by a Brownian motion, (ii) the detection of asymmetries around the drift in the third
moment, and (iii) the detection of too heavy tails in the fourth moment for a Brownian motion. It
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can be of independent interest as it does not rely on the knowledge of the Lévy triplet of the process
and detects optimally the presence of jumps. It uses classical ideas from testing through moments
and extreme values [10], and it adapts them to the specific structure of Lévy processes. The closest
related work is [16]. We improve on the test proposed there as we go beyond testing based on the
fourth moment only, and we tighten the results regarding the presence of rare and large jumps.

The paper is organized as follows. In the remaining of this Section we fix notations. Section 2 is
devoted to the analysis of the Gaussian approximation of the small jumps of Lévy processes. More
precisely, in Section 2.1 we present upper bounds in total variation distance whereas in Section 2.2 we
provide lower bounds proving the optimality of our findings. In Section 3 new upper bounds for the
total variation distance between n given increments of two general Lévy processes are derived. Most
of the proofs are postponed to Section 4. The paper also contains two Appendices. In Appendix A
technical results can be found. In Appendix B we recall some results about total variation distance
and present some general, and probably not new, results about the total variation distance between
Gaussian distributions and discrete observations of compound Poisson processes.

Statistical setting and notation

For X a Lévy process with Lévy triplet (b,Σ2, ν) (we write X ∼ (b,Σ2, ν)), where b ∈ R, Σ ≥ 0 and ν
satisfies

∫
(x2 ∧ 1)ν(dx) <∞, the Lévy-Itô decomposition gives a decomposition of X into the sum of

three independent Lévy processes: a Brownian motion with drift b, a centered martingale associated
with the small jumps of X and a compound Poisson process associated with the large jumps of X.
More precisely, for any ε > 0, X ∼ (b,Σ2, ν) can be decomposed as

Xt = b(ε)t+ ΣWt + lim
η→0

(∑
s≤t

∆Xs1η<|∆Xs|≤ε − t
∫
η<|x|≤ε

xν(dx)

)
+
∑
s≤t

∆Xs1|∆Xs|>ε,

:= b(ε)t+ ΣWt +Mt(ε) + Zt(ε), ∀t ≥ 0 (2)

where ∆Xt = Xt − lims↑tXs denotes the jump at time t of X and

• b(ε) := b+

{
−
∫
ε<|x|≤1

xν(dx) if ε ≤ 1∫
1<|x|≤ε xν(dx) if ε > 1.

;

• W = (Wt)t≥0 is a standard Brownian motion;

• M(ε) = (Mt(ε))t≥0 is a centered Lévy process (and a martingale) with a Lévy measure νε :=
ν1[−ε,ε] with support in [−ε, ε] i.e. it is the Lévy process associated to the jumps of X smaller
than ε. We write σ2(ε) =

∫
x2νε(dx) for the variance at time 1 of M(ε).

• Z(ε) = (Zt(ε))t≥0 is a Lévy process with a Lévy measure concentrated on R \ [−ε, ε] i.e. it is a

compound Poisson process of the form Zt(ε) :=
∑Pt
i=1 Zi with intensity Λε := ν(R \ [−ε, ε]) and

jump measure P(Z1 ∈ B) = 1
Λε

∫
B

1R\[−ε,ε](x)ν(dx);

• W , M(ε) and Z(ε) are independent.

Note that in the present article we only focus on W and M(ε) and Z(ε) will not be taken into account.
Finally, we recall that the total variation distance between two probability measures P1 and P2

defined on the same σ-field B is defined as

‖P1 − P2‖TV := sup
B∈B
|P1(B)− P2(B)| = 1

2

∫ ∣∣∣∣dP1

dµ
(x)− dP2

dµ
(x)

∣∣∣∣µ(dx),

where µ is a common dominating measure for P1 and P2. In order to ease the reading, if X and Y are
random variables with densities fX and fY with respect to a same dominating measure, we sometimes
write ‖X − Y ‖TV or ‖fX − fY ‖TV instead of ‖L (X)−L (Y )‖TV .
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2 Gaussian approximation for the Lévy process in total vari-
ation distance

2.1 Upper bound results

We investigate under which conditions on ∆, n and ε, a Gaussian approximation of the small jumps
is valid, provided that ν is sufficiently active. Define

λη,ε :=

∫
η<|x|<ε

ν(dx), 0 ≤ η < ε, and λ0,ε = lim
η→0

λη,ε, (3)

where λ0,ε = +∞ if ν is an infinite Lévy measure. These quantities account for the activity of the
Lévy measure ν.

Theorem 2. Let ν be Lévy measure, fix 0 < ε, ∆ > 0, n ≥ 1, b ∈ R and Σ ≥ 0. Assume that
λ0,ε ≥ 24 log(e ∨ n)/∆ and that there exist two constants c > 1, C ′ > 0 (independent of b, ν, ε,Σ,∆
and n) such that for all integers k ∈ [0, 401 log(e ∨ n)] it holds∫ +∞

clog(e∨n)

|Ψ(k)
ε (t)|2dt ≤ C ′2kk!n−2, where Ψε(t) := E[eitX̃∆(ε)]− e−∆λ0,ε1{Σ=0} (HΨ(ε))

and X̃∆(ε) :=
ΣW∆ +M∆(ε)√

∆(Σ2 + σ2(ε))
.

Finally, assume that there exists c̃ ∈ (0, 1] such that

cc̃ ≤
√

log(e ∨ n)/4 and ε ≤ c̃
√

(σ2(ε) + Σ2)∆/
√

log(e ∨ n).

Then there exists a constant C > 0 that depends only on c, C ′ and such that∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N
(
b∆,∆(Σ2 + σ2(ε)

)⊗n∥∥
TV
≤

C

[√
nµ2

4(ε)

∆2(Σ2 + σ2(ε))4
+

nµ2
3(ε)

∆(Σ2 + σ2(ε))3
+

1

n

]
. (4)

Remark 1. In (HΨ(ε)), Ψε is the characteristic function of the rescaled increment X̃∆(ε) restricted to
the event “the process jumps at least once in the case of a finite pure jump Lévy processes.” Otherwise,
if the Lévy measure is infinite and/or if it has a Brownian component, it is simply the characteristic

function of X̃∆(ε). The addition of the indicator function in Ψε permits to keep (some) compound
Poisson processes in the study, e.g. compound Poisson processes with continuous jump density, for
which lim|t|→+∞ E[exp(itX̃∆(ε))] converges to e−∆λ0,ε . However these compound Poisson processes
should also satisfy λ0,ε ≥ 24 log(e ∨ n)/∆, i.e. their intensity cannot be too small. The latter assump-
tion implies that the probability of observing no jump in any of our n observations converges to 0,
which is a necessary assumption if Σ = 0 in order to avoid getting a trivial bound, as explained below
in Subsection 2.1.1.

If Σ = 0, we immediately get the following Corollary using that

µ4(ε) ≤ ε2σ2(ε), µ3(ε) ≤ εσ2(ε). (5)

Corollary 1. Let ν be a Lévy measure satisfying the assumptions of Theorem 2, and consider the
same notations. Then, it holds
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• If ν is symmetric, then,

‖M∆(ε)⊗n −N (0,∆σ2(ε))⊗n‖TV ≤ C
[√

n
ε4

∆2σ4(ε)
+

1

n

]
. (6)

• If ν is not symmetric, then,

‖M∆(ε)⊗n −N (0,∆σ2(ε))⊗n‖TV ≤ C
[√

n
ε2

∆σ2(ε)
+

1

n

]
. (7)

Theorem 2 can be improved as follows. We provide a control of the distance between the increments
of a Lévy process (b,Σ2, νε), where νε has support [−ε, ε] and the closest Gaussian distribution, which
may not be the one with average b∆ and variance ∆(Σ2 +σ2(ε)). It permits to weaken the assumption
ε .

√
∆(Σ2 + σ2(ε))/ log n through the introduction of the following quantities. Set u+ := u+

νε for the
largest positive real number such that

λu+,εn∆ ≥ log(e ∨ n).

Note that such a u+ exists and is unique whenever νε is a Lévy measure such that λ0,ε ≥ log(e∨n)
n∆ ,

which holds under the assumptions of Theorem 2. Consider the quantity

ũ∗ = sup
{
u : u ∈ [u+, ε], u ≤ c̃

√
(σ(u)2 + Σ2)∆/

√
log(e ∨ n)

}
∨ u+.

The introduction of the latter quantity permits to remove the assumption on ε in Theorem 2 .

Theorem 3. Let ν be a Lévy measure and fix 0 < ε, ∆ > 0, n ≥ 1, b ∈ R and Σ ≥ 0. Assume
that λ0,ε ≥ 24 log(e ∨ n)/∆. Assume that there exist two constants c > 1, C ′ > 0 (independent of
b, ν, ε,Σ,∆ and n) such that Assumption (HΨ(ε)) is satisfied at point ũ∗, i.e. for all integers k such
that 401 log(e ∨ n) ≥ k ≥ 0∫ +∞

clog(e∨n)

|Ψ(k)
ũ∗ (t)|2dt ≤ C ′2kk!n−2, where Ψũ∗(t) := E[eitX̃∆(ũ∗)]− e−∆λ0,ũ∗1{Σ=0} (HΨ(ũ∗))

and X̃∆(ũ∗) :=
ΣW∆ +M∆(ũ∗)√

∆(Σ2 + σ2(ũ∗))
.

Assume that 1 ≥ c̃ > 0 and cc̃ ≤
√

log(e ∨ n)/4, in the definition of ũ∗. Then, there exists a constant
C > 0 that depends only on c, C ′ such that

min
B∈R,S2≥0

∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (B∆,∆S2)⊗n
∥∥
TV
≤[

e−λũ∗,εn∆C
[√ nµ2

4(ũ∗)

∆2(Σ2 + σ2(ũ∗))4
+

nµ2
3(ũ∗)

∆(Σ2 + σ2(ũ∗))3
+ 1/n

]
+
[
1− e−λũ∗,ε∆n

]]
. (8)

2.1.1 Comments

Discussion on the rates of Theorem 2 and Corollary 1. The results are non asymptotic and we
stress that (4), (6) (7) and (8) hold without assuming to work with high or low frequency observations.
An explicit relation between ε, Σ, n and ∆ depending on ν via σ2(ε), µ3(ε) and µ4(ε) is given. More
precisely, we derive from Theorem 2 and under its assumptions that the total variation distance in (4)
is bounded by

C
(√

n

(
µ4(ε)

∆(Σ2 + σ2(ε))2
+

µ3(ε)√
∆(Σ2 + σ2(ε))3/2

)
+

1

n

)
. (9)
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As highlighted in Corollary 1, a sufficient condition (under the assumptions of Theorem 2) for the
total variation distance to be small is given by ε/σ(ε) → 0 as ε → 0, with a rate depending on n,∆.
Unsurprisingly, we observe that the rate of convergence for a Gaussian approximation of the small
jumps is faster when the Lévy measure is symmetric.

The assumption of Theorem 2 that ε .
√

∆(Σ2 + σ2(ε)/
√

log n imposes a constraint on the cu-
mulants of ν. It is restrictive, but intuitively meaningful, it means that the jumps cannot take values
that are too extreme with respect to the standard deviation of the increments. These extreme values
would indeed enable to differentiate it easily from a Gaussian distribution. Theorem 3 allows to get
rid of this assumption.

Finally, the remainder term 1/n in (4) is a consequence of the strategy of the proof and can be
improved, at the expanse of modifying some details in the proof.

Discussion on Theorem 3. A restrictive assumption in Theorem 2 and Corollary 1 is that ε ≤
c̃
√

(σ2(ε) + Σ2)∆/
√

log(e ∨ n), i.e. ε smaller than the standard deviation
√

∆(σ2(ε) + Σ2) of the
increments (up to a multiplicative constant and a logarithmic term). This assumption is avoided in
Theorem 3, which follows directly from Theorem 2 by dividing the total variation on two events, where
respectively all jumps are smaller than ũ∗, or where there is at least one jump larger than ũ∗. The idea
behind this subdivision is that the Gaussian distribution that is the closest to N (b∆,∆Σ2)∗M∆(ε))⊗n

is not N (b∆,∆(Σ2 +σ2(ε)))⊗n, but rather N (b∆,∆(Σ2 +σ2(ũ∗)))⊗n. Indeed all jumps that are larger
than ũ∗ are very rare and large enough to be recognized as non-Gaussian. The upper bound on the
total variation distance is then composed of two terms, the first one that appears in (9), but expressed
in ũ∗ and not ε, and the second one is the probability of observing a jump larger than ũ∗, namely
exp(−n∆λũ∗,ε).

Remark on the assumption on λ0,ε. What one needs for establishing Theorems 2 and 3 and
Corollary 1, is that λ0,ε ≥ 24 log(e ∨ n)/∆. For establishing Theorem 4 (lower bound on the total
variation distance in Section 2.2) we only need that λ0,ε ≥ ∆−1 ∨ (log(e ∨ n)/(n∆)). Indeed, if this is
not the case, the asymptotic total variation is either 0 or 1.

• Case 1 : an∆−1n−1 ≥ λ0,ε where an → 0. In this case one does never observe any jump with
probability going to 1. So the total variation distance goes to 0 as n→∞.

• Case 2 (only in the noiseless case b = 0,Σ = 0): an∆−1n−1 ≤ λ0,ε ≤ An log(e ∨ n)∆−1

where an → ∞ and An → 0. In this case the probability of observing at least a time step
where one, and only one, jump occurs goes to 1, as well as the probability of having at least
one time step where no jump occur goes to 1 as n → ∞. We conclude therefore that the total
variation distance goes to 1: such a process is very different from a Gaussian process.

Discussion on Assumption (HΨ(ε)). Assumption (HΨ(ε)) is technical, but does not seem to
restrict drastically the class of Lévy processes one can consider. It holds for instance for the large
class of alpha-stable processes - see Proposition 2 in Section 2.3 - which describes well the behavior
of many Lévy densities around 0. It also holds as soon as Σ is large, i.e. whenever Σ is larger than
σ(ε)

√
log(e ∨ n) - see Proposition 1 in Section 2.3. Most usual compound Poisson processes with

Lebesgue continuous jump density and intensity λ0,ε large enough also seem to satisfy it. It imposes
a condition on the decay of the derivatives of the characteristic function of the rescaled increment,
on the event where at least a jump is observed. A condition related to Assumption (HΨ(ε)) in the
particular case where k = 0 has already been investigated (see e.g. Trabs [18]), but the results therein
do not apply to infinite Lévy densities.

This assumption is not straightforward to interpret, but we report the following observation. A
necessary condition for it to be satisfied is that the characteristic function Ψε of the rescaled increment
- on the event where at least a jump is observed - goes to 0. Examples for which (HΨ(ε)) does not
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hold are for instance Lévy processes such that Σ = 0 and ν contains a finite number of Dirac masses.
This is coherent, observations of a pure jump process with jump law taking finitely many values are
perfectly detectable from Gaussian observations, i.e. the total variation is 1. However, if the law of the
increments contains Dirac masses but if the total probability of these masses is much smaller than 1/n,
this in principle does not disturb the total variation bound. This is why, our analysis allows to consider
compound Poisson processes whenever λ0,ε ≥ 24 log(e ∨ n)/∆ (and whenever λ0,ε . log(e ∨ n)/∆, the
bound on the total variation becomes trivial for Σ = 0 as noted above).

2.2 Lower bound

Theorem 2 is optimal in the following sense. If the upper bound of Theorem 2 does not converge, then
the total variation distance between the random vector associated with the increments of the small
jumps -eventually convoluted with Gaussian distributions- and the corresponding Gaussian random
vector does not converge to 0.

Theorem 4. Let ν be a Lévy measure, let b ∈ R and Σ ≥ 0. Assume that λ0,ε ≥ ∆−1∨
(
log(e ∨ n)/(n∆)

)
.

For any ε > 0 such that ε ≤
√

(σ2(ε) + Σ2)∆ log(e ∨ n)2, there exists an absolute sequence αn → 0
(independent of b, ν, ε,Σ,∆) and an absolute constant C > 0 (independent of b, ν, ε,Σ,∆ and n) such
that the following holds:∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (b∆,∆(Σ2 + σ2(ε)))⊗n

∥∥
TV
≥{

1− C

[
∆(Σ2 + σ2(ε))3

nµ3(ε)2
∧ ∆2(Σ2 + σ2(ε))4

nµ4(ε)2

]
− αn

}
.

To establish Theorem 4 we construct an appropriate statistical test and use the following fact.

Lemma 1. Let P and Q be two probability distributions and Φ a test of level α0 ∈ (0, 1) that separates
P from Q from n i.i.d. observation with power larger than 1−α1. Then, ‖P⊗n−Q⊗n‖TV ≥ 1−α0−α1.

Let X ∼ (b,Σ2, ν), with b, Σ2 and ν possibly unknown and consider the problem of testing whether
the process contains jumps of size smaller than ε or not, i.e. whether νε = 0 or not, recall that
νε = ν1[−ε,ε] and that we defined u+ for the largest positive real number such that λu+,εn∆ ≥ log(e∨n).
Write now u∗ for the largest u ∈ [u+, ε] such that

u∗ = sup{u, u ∈ [u+, ε], u ≤
√

∆(Σ2 + σ2(u)) log(e ∨ n)2} ∨ u+,

where sup ∅ = −∞.
We prove the following result, of which Theorem 4 is an immediate corollary.

Theorem 5. Suppose that ε > 0, ν is a Lévy measure, b ∈ R and Σ ≥ 0. Assume that λ0,ε ≥
∆−1 ∨

(
log(e ∨ n)/(n∆)

)
. There exists an absolute sequence αn → 0 (independent of b, ν, ε,Σ,∆) and

an absolute constant C > 0 (independent of b, ν, ε,Σ,∆ and n) such that the following holds:

min
B∈R,S2≥0

∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (B∆,∆S2)⊗n
∥∥
TV
≥{

1− C

[
∆(Σ2 + σ2(u∗))3

nµ3(u∗)2
∧ ∆2(Σ2 + σ2(u∗))4

nµ4(u∗)2

]
− αn

}
∨
(

1− exp(−λu∗,εn∆)− αn
)
.

The construction of the test we use to derive Theorem 5 is actually quite involved, we refer to
Section 4.3.1 for more details. Here, we only illustrate the main ideas.

First, the intuitions behind the quantities u+ and u∗ are the following. The quantity u+ is chosen
such that with probability going to 1, there is (i) at least one jump larger than u+ but (ii) not too
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many of such jumps, i.e. less than 2 log(e ∨ n), and finally (iii) at most one jump larger than u+ per
time increment ∆. Therefore, the discretized process of jumps larger than u+ and smaller than ε (in
absolute value), does not look Gaussian at all. It is composed of many null entries and a few larger
than u+. Now u∗ is the largest quantity (larger than u+) such that u∗ is smaller than a number slightly
larger than the standard deviation of the increment Xi∆ −X(i−1)∆ conditional to the event there are
no jumps larger than u∗ in ((i − 1)∆, i∆]. In other words, any increment having a jump larger than
u∗ is going to be quite visible.

Second, the idea behind the test, is to build an event that occurs with high probability if νε = 0
and with small probability otherwise. This would then allow to bound the total variation distance
between the two discretized processes using Lemma 1. The sketch of the proof is the following (all
results mentioned below are stated and proved in Section 4 and Appendix A):

• First, we show that u+ defined as above satisfies (i)-(ii)-(iii) with probability going to 1 and we
bound the deviations of the difference of some1 of the increments X2i∆−X(2i−1)∆− (X(2i−1)∆−
X2(i−1)∆) (Lemma 6).

• Second, we build an estimator of the standard deviation of the increments of the Lévy process
(b,Σ, νu+). In order to do so, we use a robust estimator of the mean which drops large increments,
and thus the ones larger than u+ (Lemma 7).

• From these preliminary steps, we prove that a test comparing the largest entry and the expected
standard deviation if νε = 0 detects if there is a jump larger than u∗ in the sample (Proposition
3). In the following steps, we focus on tests conditional to the event there is no jump larger than
u∗ in the sample - otherwise they are eliminated by the latter test. Two cases remain to be
studied.

• If the dominant quantity in Theorem 2 is ∆µ3(u∗): we first construct a test for detecting if
∆µ6(u∗) is larger than a constant times [∆(Σ2 + σ2(u∗))]3, to remove distributions that are too
skewed (Proposition 4). Then, we build a test comparing the (estimated) third moment of the
increments to the expected behavior if νε = 0 (Proposition 5).

• If the dominant quantity in Theorem 2 is ∆µ4(u∗): we build a test comparing the (estimated)
fourth moment of the increments to the expected behavior if νε = 0 (Proposition 6).

2.2.1 Comments

Tightness of the lower bound on the total variation distance. The bounds on the total
variation we establish in Theorems 3 and 5 are tight, up to a log(e∨n) factor due to the differences in the

definitions2 of ũ∗ and u∗, in the following sense. Whenever
(
λu∗,εn∆

)
∨ nµ2

4(u∗)
∆2(Σ2+σ2(u∗))4 ∨ nµ2

3(u∗)
∆(Σ2+σ2(u∗))3

does not converge to 0 with n, the total variation distance does not converge to 0 with n. And if it
converges to +∞ with n, the total variation converges to 1. Moreover, if

(
λũ∗,εn∆

)
∨ nµ2

4(ũ∗)

∆2(Σ2 + σ2(ũ∗))4
∨ nµ2

3(ũ∗)

∆(Σ2 + σ2(ũ∗))3

converges to 0 with n, then the total variation converges to 0 by Theorem 2. Another implication
of these bounds is that the Gaussian random variable closest to (N (b∆,∆Σ2) ∗ M∆(ε))⊗n is not
necessarily N (b∆,∆(Σ2 + σ2(ε))⊗n, in particular when rare and large jumps are present, a tighter
Gaussian approximation is provided by N (b∆,∆(Σ2 + σ2(u∗))⊗n, as pointed out in Section 2.1.1.

1Of all increments when νε = 0 and of those where a jump larger than u∗ occurs otherwise.
2We remind that u∗ is the largest u larger than u+ such that u ≤

√
∆(Σ2 + σ2(u)) log(e∨ n)2, and ũ∗ is the largest

u larger than u+ such that u ≤ c̃
√

∆(Σ2 + σ2(u))/
√

log(e ∨ n) where c̃ is a constant.
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The lower bound on the total variation distance is a jump detection test. The proof of
Theorem 5 is based on the construction of a test of Gaussianity, adapted to Lévy processes, that
detects whether the discrete observations we have at our disposal are purely Gaussian, or whether
they are realizations of a Lévy process with non trivial Lévy measure. More precisely, (see the proof
of Theorem 5 for details) we build a uniformly consistent test for the testing problem

H0 : νε = 0, against H1 : lim
η→0

λη,ε = +∞ and E

where

E =
[
µ3(u∗)2 ≥ C∆(Σ2 + σ2(u∗))3

n
or µ4(u∗)2 ≥ C∆2(Σ2 + σ2(u∗))4

n

or a jump larger than u∗ occurs
]
.

This test is of interest in itself: it does not rely on the knowledge of the Lévy triplet.

Remark on the assumptions. Theorem 4 requires ε ≤
√

∆(Σ2 + σ2(ε)) log(e ∨ n)2, i.e. that ε
is smaller (up to a multiplicative log(e ∨ n)2 term) than the standard deviation of the increment. It
implies that all moments of order k of the increment can be efficiently bounded -up to a constant

depending on k- by
(√

∆(Σ2 + σ2(ε)) log(e ∨ n)2
)k

, which is helpful for bounding the deviations of
the test statistics. This assumption is restrictive and is removed in Theorem 5 by introducing u∗ and
considering, two different types of tests in the construction of the lower bound : a test for the third
and fourth moments and a test for extreme values. This latter test allows to detect -with very high
probability- when a jump larger than u∗ occurred.

Therefore, both theorems only rely on the assumption that λ0,ε ≥ ∆−1 ∨ (log(e ∨ n)/(n∆)). This
bound is larger than log(e ∨ n)/∆ (see Theorems 2 and 3). As explained in Section 2.1.1, whenever

λ0,ε is smaller than log(e∨n)
∆ (up to a multiplicative constant) simple arguments enable to bound the

total variation distance when Σ = 0. In this sense, assumption λ0,ε ≥ ∆−1 ∨ (log(e ∨ n)/(n∆)) is not
constraining as it permits to treat all relevant cases.

Improvement of Theorem 4 for mixtures. An immediate corollary of Theorem 4 (see its proof)
is a lower bound on the total variation distance between any two mixture of Gaussian random variables
and mixture of Lévy measures concentrated in [−ε, ε]. More precisely, let dΛ(b,Σ, ν) et dΛ′(b,Σ) be two
priors on Lévy processes and Brownian motions, respectively. Assume that the support of dΛ(b,Σ, ν)
is included in a set A, and that for any (b,Σ, ν) ∈ A, we have ε ≤

√
(σ2(ε) + Σ2)∆ log(e ∨ n)2. Then,

it holds that∥∥∥∥∫ (N (b∆,∆Σ2)∗M (ν)
∆ (ε))⊗ndΛ(b,Σ, ν)−

∫
N (b∆,∆(Σ2 + σ2(ε)))⊗ndΛ′(b,Σ)

∥∥∥∥
TV

≥

min
(b,Σ,ν)∈A

[
1− C

[
∆(Σ2 + σ2

ν(ε))3

n
(
µ

(ν)
3 (ε)

)2 ∧ ∆2(Σ2 + σ2
ν(ε))4

n
(
µ

(ν)
4 (ε)

)2
]
− αn

]
,

whereby M
(ν)
∆ , σ2

ν(ε), µ
(ν)
3 (ε) and µ

(ν)
4 (ε) correspond to M∆, σ

2(ε), µ3(ε) and µ4(ε) for the Lévy measure
ν. A related result can be achieved for Theorem 5. Note that the corresponding lower bound on the
total variation distance is a direct corollary of Theorem 2. The lower bound displayed above is not
trivial, it holds because the test that we construct in the proof of Theorem 5 does not depend on the
parameters of the Gaussian random variable nor on the Lévy triplet.
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2.3 Examples

2.3.1 Preliminaries on Assumption HΨ(ε)

Before displaying the results implied by Theorems 2 and 3 on the class of alpha-stable processes, we
provide two contexts in which Assumptions HΨ(ε) and HΨ(ũ∗) are fulfilled.

Assumption HΨ(ε) when Σ is large enough. We first present the following proposition which
proves that Assumption HΨ(ε) is satisfied, whenever Σ is large enough - namely, σ(ε)

√
log(e ∨ n) . Σ.

Proposition 1. Let ε > 0 and consider a Lévy measure ν. Assume that Σ is such that Σ ≥
cΣσ(ε)

√
log(e ∨ n) where cΣ > 0. If c > 0 is taken large enough depending only on csup, cΣ, then

it holds that for any k ≤ K = 401 log(e ∨ n)∫
|Ψ(k)
ε (t)|2dt ≤ k!n−4 with Ψε(t) := E[eiuX̃∆(ε)], X̃∆(ε) =

X∆(ε)− b∆√
∆(Σ2 + σ2(ε))

.

In this case we may apply directly Theorem 2 and Theorem 3, provided that we apply the previous
proposition at ũ∗ instead of ε.

Assumption HΨ(ε) in the case when ν is polynomially controlled at 0. The following result,
whose proof can be found in Appendix A.4, implies that whenever νsatisfies Assumption (10) below
then Assumption (HΨ(ε)) is fulfilled. Note that Assumption (10) describes a class of functions that
contains any Lévy measure that is regularly varying at 0.

Proposition 2. Let b ∈ R, Σ2 ≥ 0, ∆ > 0, ε > 0, n ≥ 1 and let ν be a Lévy measure absolutely
continuous with respect to the Lebesgue measure. Suppose that there exists two positive constants
c+ > c− > 0 such that, ∀x ∈ [−ε, ε] \ {0},

c−
|x|β+1

dx ≤ dν(x) ≤ c+
|x|β+1

dx, β ∈ (0, 2). (10)

Assume that there exists cmax ≥ 0 such that ncmax∆ ≥ 1 and log(Σ2 + σ2(ε))/ log(e ∨ n) ≤ cmax.
Then, for any c > 0 large enough depending only on β, c+, c−, cmax, and for any (c̃)−1 > 0 large

enough depending only on β, c+, c−, cmax, c such that ε ≤ c̃
√

∆(Σ2 + σ2(ε))/
√

log(e ∨ n), it holds∫
t≥c log(e∨n)

|Ψ(k)
ε (t)|2dt ≤ 3k!n−4, ∀k ∈ [0, 401 log(e ∨ n)],

where Ψε(t) := E[eiuX̃∆(ε)] and X̃∆(ε) = X∆(ε)−b∆√
∆(Σ2+σ2(ε))

.

Remark 2. Whenever there exists κ > 0 a constant that depends only on β, c+, c− such that nκ∆ ≥
1, and (Σ2 + ε2−β)n−κ ≤ 1, then cmax is an absolute constant and the dependence on cmax in the
proposition is not constraining. Moreover, the condition on ε is the same condition as in Theorems 2
and 3. Finally, in Theorems 2 and 3 the constraints on c, c̃ are c > 1, c̃ ≤ 1 and cc̃ ≤

√
log(e ∨ n)/4,

that are easy to satisfy provided that c̃ can be chosen small enough. As Σ2+σ2(ε) is of order (Σ2+ε2−β),
even in the most constraining case Σ = 0, c̃ can be chosen small enough provided that εβ ≤ c̃′∆/ log(e∨
n), where c̃′ is chosen small enough (depending on c̃, β, c+, c−, cmax).

The main condition ε ≤ c̃
√

∆(Σ2 + σ2(ε))/
√

log(e ∨ n) is naturally satisfied for ũ∗, and the fol-
lowing corollary holds. It shows that Assumption (HΨ(ũ∗)) holds for processes which fulfill (10).
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Corollary 2. Let ∆ > 0, ε > 0, n ≥ 1 and let ν be a Lévy measure having a density with respect
to the Lebesgue measure such that there exist two positive constants c+ > c− > 0, such that for any
x ∈ [−ε, ε] \ {0}, Equation (10) holds. Assume that there exists κ > 0 a constant depending only on
β, c+, c− such that nκ∆ ≥ 1, and (Σ2 + ε2−β)n−κ ≤ 1. Then for any c > 1 large enough depending
only on β, c+, c−, and for any (c̃)−1 > 1 large enough depending only on β, c+, c−, c (where c̃ appears
in the definition of ũ∗), we have for all k ≤ 401 log(e ∨ n)∫

t≥c log(e∨n)

|Ψ(k)
ũ∗ (t)|2dt ≤ 3k!n−4, cc̃ ≤

√
log(e ∨ n)/4, c > 1, c̃ ≤ 1.

2.3.2 Stable processes

In this Section we illustrate the implications of Theorem 2 and Theorem 3 on the class of infinite stable
processes. It is possible to extend the results valid for this example to other types of Lévy processes
(e.g. inverse Gaussian processes, tempered stable distributions, etc...) as, around 0, stable measures
well approximate many Lévy measures. Let β ∈ (0, 2), c+, c− ≥ 0, (c+ = c− if β = 1) and assume that
ν has a density with respect to the Lebesgue measure of the form

ν(dx) =
c+
x1+β

1(0,+∞)(x)dx+
c−
|x|1+β

1(−∞,0)(x)dx, ∀x ∈ [−ε, ε].

These processes satisfy Equation (10). In accordance with the notations already used in the paper,
M(ε) will be a Lévy process with Lévy triplet (0, 0, νε) where νε := ν1|x|≤ε. Let b > 0, Σ2 ≥ 0,
∆ > 0, ε > 0, n ≥ 1. In what follows, we will consider the Lévy triplet (b,Σ2, νε). For ε > 0, all
quantities u+, u∗, ũ∗ described above are written respective to this ε. Moreover, in this section, we use
the symbols ≈, ., and o(1) defined as follows. For a, b ∈ R, a ≈ b if there exists c > 0 depending only
on β, c+, c− such that a = cb and a . b if there exists c > 0 depending only on β, c+, c− such that
a ≤ cb. For a sequence (an)n in R+, we have that an = o(1) if limn→+∞ an = 0. In what follows, we
allow ε,∆,Σ, b, ε∗ to depend on n.

We are interested in the question: “Given n and ∆, what is the largest ε∗ ≥ 0 such that it is not
possible to distinguish between n independent realizations of N (b∆,∆Σ2) ∗M∆(ε∗) and the closest
i.i.d. Gaussian vector?”

The answer to this question is provided by Theorems 3 and 5. Let ε ≥ 0 be such that
√
nµ3(ũ∗)√

∆(Σ2 + σ2(ũ∗))3
and

√
nµ4(ũ∗)

∆(Σ2 + σ2(ũ∗))2
and n∆λũ∗,ε, are small,

then the sample of n independent realisations of N (0,∆Σ2) ∗M∆(ε) is almost undistinguishable from
n independent realisations of N (0,∆(σ2(ũ∗) + Σ2)). Conversely, if either

√
nµ3(u∗)√

∆(Σ2 + σ2(u∗))3
or

√
nµ4(u∗)

∆(Σ2 + σ2(u∗))2
or n∆λu∗,ε, is large,

then it is possible to test with low error that the sample of n realizations of the process is not an
i.i.d. Gaussian vector.

Note that
√
nµ4(u) . ∆(Σ2 + σ2(u))2 is equivalent to

u .
( ∆√

n

)1/β

∨
(∆Σ4

√
n

) 1
4−β

. (11)

In the same way, for a very non symmetric process
√
nµ3(u) .

√
∆(Σ2 + σ2(u))3 is equivalent to

u .
(∆

n

)1/β

∨
(√∆Σ3

√
n

) 1
3−β

. (12)
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For any ε ≥ u ≥ 0, 2 c−β (u−β−ε−β) ≤ λu,ε ≤ 2 c+β (u−β−ε−β), so it holds u+ ≈ ε∧
(
n∆/log(e ∨ n)

)1/β
,

which is much larger than the bound on u given by (11) and (12) that describes the distinguishability
frontier in the third or fourth moments. For β-stable Lévy processes, β ∈ (0, 2), the distinguishability
frontier does only depend on the third and fourth moments.

The following two Tables summarize these findings and give the value of ε∗ answering the initial
question above. We distinguish four scenarios (depending on whether the process is symmetric or not,
and on whether Σ is large with respect to σ2(ε∗) or not) and provide for each the optimal ε∗ such that
(i) if ε/ε∗ = o(1), then

inf
B∈R,S≥0

∥∥∥∥∥(N (b∆,∆Σ2) ∗M∆(ε)
)⊗n
−
(
N (B∆,∆S2∆)

)⊗n∥∥∥∥∥
TV

→ 0,

and (ii) else if ε∗/ε = o(1), then

inf
B∈R,S≥0

∥∥∥∥∥(N (b∆,∆Σ2) ∗M∆(ε)
)⊗n
−
(
N (B∆,∆S2)

)⊗n∥∥∥∥∥
TV

→ 1.

In all cases we require, additionally to ν being the Lévy measure of a β-stable process, that there exists
κ > 0 a constant that depends only on β, c+, c− such that nκ∆ ≥ 1, and (Σ2 + ε2−β)n−κ ≤ 1.

ν is symmetric

Σ2 ≥
(

∆
n

) 2−β
β ε∗ ≈

(
∆Σ4
√
n

) 1
4−β

Σ2 ≤
(

∆
n

) 2−β
β ε∗ ≈

(
∆√
n

) 1
β

ν is non symmetric

Σ2 ≥
(

∆√
n

) 2−β
β ε∗ ≈

(√
∆Σ3
√
n

) 1
3−β

Σ2 ≤
(

∆√
n

) 2−β
β ε∗ ≈

(
∆
n

) 1
β

3 Total variation distance between Lévy processes

In this Section, let Xi ∼ (bi,Σ
2
i , νi), i = 1, 2, be two distinct Lévy processes. We shall use the notation

introduced in Section 1 properly modified to take into account the dependencies on X1 and X2. For
instance, µ3(ε) and µ4(ε) become

µj,i(ε) =

∫
|x|≤ε

xjνi(dx), i = 1, 2, j = 3, 4,

where µj,1(ε) (resp. µj,2(ε)), j = 3, 4, denote the 3rd and 4th moment of ν1 (resp. ν2) restricted on
{x : |x| ≤ ε}.

By means of the Lévy-Itô decomposition recalled in Section 1, for any t > 0 and ε > 0 we have
that the law of Xi

t , i = 1, 2, is the convolution between a Gaussian distribution and the law of the
marginal at time t of the processes M i(ε) and Zi(ε), i.e.

Xi
t(ε) = N

(
bi(ε)t, tΣ

2
i

)
∗M i

t (ε) ∗ Zit(ε), i = 1, 2.

By subadditivity of the total variation distance, see Lemma 23 in Appendix B, we have:

‖X1
t −X2

t ‖TV ≤ ‖N
(
b1(ε)t, tΣ2

1

)
∗M1

t (ε)−N
(
b2(ε)t, tΣ2

2

)
∗M2

t (ε)‖TV + ‖Z1
t (ε)− Z2

t (ε)‖TV .
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By triangular inequality first and subadditivity of the total variation distance together with Lemma
21 in Appendix B then, we obtain

‖N
(
b1(ε)t, tΣ2

1

)
∗M1

t (ε)−N
(
b2(ε)t, tΣ2

2

)
∗M2

t (ε)‖TV
≤‖N

(
b1(ε)t, tΣ2

1

)
∗M1

t (ε)−N
(
b1(ε)t, tΣ2

1

)
∗ N

(
0, tσ2

1(ε)
)
‖TV

+ ‖N
(
b2(ε)t, tΣ2

2

)
∗M2

t (ε)−N
(
b2(ε)t, tΣ2

2

)
∗ N

(
0, tσ2

2(ε)
)
‖TV

+ ‖N
(
b1(ε)t, tΣ2

1

)
∗ N

(
0, tσ2

1(ε)
)
−N

(
b2(ε)t, tΣ2

2

)
∗ N

(
0, tσ2

2(ε)
)
‖TV

≤
2∑
i=1

‖N
(
bi(ε)t, tΣ

2
i

)
∗M i

t (ε)−N
(
bi(ε)t, t(σ

2
i (ε) + Σ2

i )
)
‖TV

+

√
t

2π

∣∣b1(ε)− b2(ε)
∣∣+
∣∣∣√Σ2

1 + σ2
1(ε)−

√
Σ2

2 + σ2
2(ε)

∣∣∣√
Σ2

1 + σ2
1(ε) ∨

√
Σ2

2 + σ2
2(ε)

.

The terms ‖N
(
bi(ε)t, tΣ

2
i

)
∗M i

t (ε)−N
(
bi(ε)t, t(Σ

2
i +σ2

i (ε)
)
‖TV , i = 1, 2 can be bounded by means of

Theorem 2 whereas for ‖Z1
t (ε)− Z2

t (ε)‖TV we can use Lemma 22 taking n = 1:

‖Z1
t (ε)− Z2

t (ε)‖TV ≤ t
∣∣Λ1(ε)− Λ2(ε)

∣∣+ t
(
Λ1(ε) ∧ Λ2(ε)

)∥∥∥ νε1
Λ1(ε)

− νε2
Λ2(ε)

∥∥∥
TV
,

with νεj = νj(· ∩ (R \ (−ε, ε))) and Λj(ε) = νεj (R). Applying Lemma 21 for n = 1, we thus obtain the
following upper bounds for the total variation distance between marginals of Lévy processes:

∥∥X1
t −X2

t

∥∥
TV
≤

√
t

2π

∣∣b1(ε)− b2(ε)
∣∣+
∣∣∣√Σ2

1 + σ2
1(ε)−

√
Σ2

2 + σ2
2(ε)

∣∣∣√
Σ2

1 + σ2
1(ε) ∨

√
Σ2

2 + σ2
2(ε)

+ C

2∑
i=1

√
µ2

4,i(ε)

t2(σ2
i (ε) + Σ2

i )
4

+
µ2

3,i(ε)

t(Σ2
i + σ2

i (ε))3
+ 2C

+ t
∣∣Λ1(ε)− Λ2(ε)

∣∣+ t
(
Λ1(ε) ∧ Λ2(ε)

)∥∥∥ νε1
Λ1(ε)

− νε2
Λ2(ε)

∥∥∥
TV
.

Extending these arguments to the case of discrete observations of Lévy processes we obtain the
following result.

Theorem 6. Let Xi ∼ (bi,Σ
2
i , νi) be any Lévy process with bi ∈ R, Σi ≥ 0 and νi Lévy measures

i = 1, 2. For all ∆ > 0, ε > 0 and n ≥ 1 and under the Assumptions of Theorem 2, there exists a
positive constant C such that

‖(X1
k∆ −X1

(k−1)∆)nk=1 − (X2
k∆ −X2

(k−1)∆)nk=1‖TV ≤
√
n∆√
2π

|b1(ε)− b2(ε)|
max(

√
Σ2

1 + σ2
1(ε),

√
Σ2

2 + σ2
2(ε))

+ 1−
(

min(
√

Σ2
1 + σ2

1(ε),
√

Σ2
2 + σ2

2(ε))

max(
√

Σ2
1 + σ2

1(ε),
√

Σ2
2 + σ2

2(ε))

)n

+ C

2∑
i=1

√
nµ2

4,i(ε)

∆2(σ2
i (ε) + Σ2

i )
4

+
nµ2

3,i(ε)

∆(σ2
i (ε) + Σ2

i )
3

+
2C

n

+ 1− exp
(
− n∆

∣∣Λ1(ε)− Λ2(ε)
∣∣)+ n∆

(
Λ1(ε) ∧ Λ2(ε)

)∥∥∥ νε1
Λ1(ε)

− νε2
Λ2(ε)

∥∥∥
TV
.

Proof. It directly follows from the Lévy-Itô decomposition together with Lemmas 23, 21, 22 and
Theorem 2.
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4 Proofs

4.1 Proof of Theorem 2

4.1.1 Assumptions and notations

Assume here that n ≥ 3 - but note that the bound on the total variation distance for n = 3 is also
a bound on the total variation distance for n = 1 or n = 2. First, we introduce some notations
and reformulate the assumptions of Theorem 2. Denote by s2 := Σ2 + σ2(ε), where Σ2 ≥ 0, by
I the integration interval I := [−csup

√
log(n), csup

√
log(n)], csup ≥ 2. For a function g, we write

gI := g1{I}.
In what follows, we write µ for a measure that is the sum of the Lebesgue measure and of the

sum of (countably) many Dirac masses, which dominates the measure associated to X̃∆(ε) := (X∆ −
b∆)/

√
∆(σ2(ε) + Σ2). Let f be the density, with respect to the measure µ of the rescaled increment

X̃∆(ε) and ϕ be the density with respect to the measure µ of the centered Gaussian random variable
with unit variance. Whenever we write an integral involving f or ϕ the sequel, it is with respect to µ
(or a corresponding product measure).

Recall that

Ψ(t) : = Ψε(t) = E[eitX̃∆(ε)]− e(−λ0,εn∆)1{Σ=0}

= exp
(
− Σ2

s2

t2

2
+ ∆

∫ (
exp

( iut

s
√

∆

)
− iut

s
√

∆
− 1
)
dν(u)

)
− e(−λ0,εn∆)1{Σ=0}.

We establish the result under the following assumptions which are implied by the assumptions of
Theorem 2.

• Set K := c2int log(n), where cint > 2csup, it holds for some constant c > 0 that∫ +∞

clog(n)

|Ψ(k)|2 ≤ C ′2kk!n−2, ∀ 0 ≤ k ≤ K, (HΨ)

where C ′ is a universal constant.

• For some constant 1/8 > cp > 0, it holds

Pf (Ic) ≤ cp/n. (H0)

• For some small enough universal constant 1 ≥ c̃ > 0, such that c̃c ≤
√

log n/4, it holds

ε ≤ c̃
√

(σ(ε)2 + Σ2)∆/ log(n) := c̃s
√

∆/
√

log(n) := c̃ns
√

∆. (Hε)

Note that this assumption permits to simply derive (H0) from the following lemma.

Lemma 2. Assume that ν is a Lévy measure (potentially infinite) such that λ0,ε ≥ 24 log(n)/∆.
Then, whenever csup ≥ 10 and c̃n ≤ 1 and (Hε) holds, we get Pf (Ic) ≤ 3/n3.

Lemma 2 implies that under the assumptions of Theorem 2, (H0) is satisfied with cp = 3/n2.

Remark 3. For the proof of Theorem 2 Assumption (Hε) can be weakened in ε ≤ c̃
√

(σ(ε)2 + Σ2)∆,
the extra log is used to establish Lemma 2 related to (H0).

• For some constant 1/2 ≥ cm > 0, it holds

M := c̃−4
n

[ |µ3(ε)|√
∆s3

+
µ4(ε)

∆s4

]
≤ cm/

√
n. (HM )

Remark 4. This Assumption will be used in the proof, it is not limiting as if (HM ) is not
satisfied, the upper bound of Theorem 2 is not small and is therefore irrelevant.

In the sequel, C stands for a universal constant, whose value may change from line to line.
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4.1.2 Proof of Theorem 2.

If Σ = 0, introduce the event ξM ensuring that there is at least one jump in each interval [(i−1)∆, i∆]

ξM = {Σ = 0, ∀i ≤ n, lim
η→0

(
Ni∆(η, ε)−N(i−1)∆(η, ε)

)
≥ 1} ∪ {Σ > 0},

where N(η, ε) is the compound Poisson process associated to the jumps of M(ε) that are larger than
η. Define also the event, in dimension 1,

ξ̃M = {Σ = 0, lim
η→0

N∆(η, ε) ≥ 1} ∪ {Σ > 0}.

Note that, if Σ > 0 or if ν is infinite, then ξM and ξ̃M are the whole probability space.

First, a change of variable implies∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (b∆,∆(Σ2 + σ2(ε)))⊗n
∥∥
TV

= ‖f⊗n − ϕ⊗n‖TV ,

where we set

‖f⊗n − ϕ⊗n‖TV :=
∥∥(N (0,

Σ2

Σ2 + σ2(ε)
) ∗ M̃∆(ε))⊗n −N (0, 1)⊗n

∥∥
TV
,

where M̃∆(ε) = M∆(ε)√
∆(Σ2+σ2(ε))

.

To bound the total variation distance we consider separately the sets I and its complementary and
ξM and its complementary set (recall that the integrals are with respect to µ⊗n)

‖f⊗n − ϕ⊗n‖TV =
∥∥(f⊗nI − ϕ⊗nI )1{ξM}

∥∥
TV

+

∫
(In)c

|f⊗n − ϕ⊗n|1{ξM} +

∫
|f⊗n − ϕ⊗n|1{ξcM}. (13)

Under (H0) and using that Pϕ⊗n(In)c ≤ n
(
Pϕ(Ic)

)
≤ n exp(−c2sup log(n)/2) ≤ 1/n for csup ≥ 2 the

second term is bounded by cp+ 1/n. From now on, we focus on the first term. The third term is equal
to Pf⊗n(ξM ) = exp(−λ0,εn∆), which is smaller by 1/n using that λ0,ε ≥ 24 log(n)/∆.

Introduce a positive function h > 0 such that∫
hI1{ξM} < +∞,

∫
f2
I
hI

1{ξM} < +∞,
∫
ϕ2
I
hI

1{ξM} < +∞. (14)

It follows from the Cauchy Schwarz inequality that∥∥(f⊗nI − ϕ⊗nI )1{ξM}
∥∥2

TV

(
∫
hI1{ξM})

n
≤
∫

(f⊗nI − ϕ⊗nI )2

h⊗nI
1{ξM} =

∫
(f⊗nI )2 − 2f⊗nI ϕ⊗nI + (ϕ⊗nI )2

h⊗nI
1{ξM}

=
[ ∫

ξ̃M

(fI − ϕI)2 + 2ϕI(fI − ϕI) + ϕ2
I

hI

]n
− 2
[ ∫

ξ̃M

(fI − ϕI)ϕI + ϕ2
I

hI

]n
+
[ ∫

ξ̃M

ϕ2
I
hI

]n
.

For K = c2int log(n), take

h−1
I (x) =

√
2π1{I}

∑
k≤K

x2k

2kk!
,

and consider the quantities

A2 :=

∫
ξ̃M

ϕ2
I
hI
, D2 :=

∫
ξ̃M

(fI − ϕI)2

hI
and E :=

∫
ξ̃M

ϕI
hI

(fI − ϕI).
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It holds∥∥(f⊗nI − ϕ⊗nI )1{ξ̃M}‖
2
TV

(
∫
ξ̃M

hI)n
≤
[
D2 + 2E +A2

]n
− 2
[
E +A2

]n
+A2n

≤
∑

2≤k≤n

(
n

k

)[
D2 + 2E

]k
A2(n−k) + nD2A2(n−1) − 2

∑
2≤k≤n

(
n

k

)
EkA2(n−k)

≤
∑

2≤k≤n

(
n

k

)
2kD2kA2(n−k) +

∑
2≤k≤n

(
n

k

)
2k[2|E|]kA2(n−k) + nD2A2(n−1)

+ 2
∑

2≤k≤n

(
n

k

)
|E|kA2(n−k). (15)

To bound this last term, consider the following Lemma.

Lemma 3. Assume (H0) and that cint ≥ 2csup ∨ 1. It holds for ch > 0 a universal constant that

0 ≤ A2 ≤ 1 + ch/n
2 and

∫
ξ̃M

hI ≤ 1 + ch/n
2 and |E| ≤ cp/n+ n−c

2
sup/2 + 2ch/n

2,

where the constant cp is defined in (H0).

Using Lemma 3 and
(
n
k

)
≤ nk to bound (15) lead to∥∥(f⊗nI − ϕ⊗nI )1{ξM}

∥∥2

TV

(
∫
ξ̃M

hI)n
≤ exp(ch)

[ ∑
2≤k≤n

2k(nD2)k +
∑

2≤k≤n

2k[2n|E|]k + nD2 + 2
∑

2≤k≤n

(n|E|)k
]

≤ nD2 exp(ch)

[ ∑
2≤k≤n

2k(nD2)k−1 + 1

]
+ 3 exp(ch)

∑
2≤k≤n

2k[2n|E|]k.

Moreover, we have thanks to Lemma 3 if csup ≥ 2 and cp <
1
8∑

2≤k≤n

2k[2n|E|]k ≤
∑

2≤k≤n

4k
(
cp +

2ch + 1

n

)k ≤ (4
(
cp +

2ch + 1

n

))2 1

1− 4
(
cp + 2ch+1

n

) ≤ Cc2p,
where C is a universal constant.

To complete the proof, we need to control the order of D2, indeed using Lemma 3 to bound
∫
hI

we derive, for csup ≥ 2 and cp <
1
8 ,

∥∥(f⊗nI − ϕ⊗nI )1{ξM}
∥∥2

TV
≤ nD2 exp(ch)

[ ∑
2≤k≤n

2k(nD2)k−1 + 1

]
+ C exp(ch)c2p. (16)

To control the order of nD2 in (16), introduce G(x) = (f(x)− ϕ(x))1{ξ̃M}, we have

D2 =

∫
ξ̃M

(fI − ϕI)2

hI
=

∫
1{I}

G2

h
.

Denote by Pk(x) = xk, the Plancherel formula leads to

D2 =
√

2π

∫
1{I}G

2(x)
∑
k≤K

x2k

2kk!
dx ≤

√
2π
∑
k≤K

1

2kk!
‖PkG‖22 =

1√
2π

∑
k≤K

1

2kk!
‖Ĝ(k)‖22, (17)
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using that P̂kG = ikĜ(k)/
√

2π. The quantity Ĝ appearing in the preceding formula is given by

Ĝ(t) = exp
(
− t2

2
− iµ3(ε)t3

6
√

∆s3
+
∑
m≥4

∆µm(ε)
(ti)m

(∆s2)m/2m!

)
− exp(−λ0,εn∆)1{Σ=0} − exp(−t2/2)

= exp(−t2/2)
[

exp
(
− it3µ3(ε)

6
√

∆s3
+
∑
m≥4

∆µm(ε)
(ti)m

(∆s2)m/2m!

)
− 1
]
− exp(−λ0,εn∆)1{Σ=0}.

Assumption (Hε), ε ≤ c̃ns
√

∆, implies that |µm(ε)| ≤ (c̃n)m−4µ4(ε)sm−4∆m/2−2 for any m > 4.
Therefore,

Ĝ(t) = exp(−t2/2)
[

exp
(
− it3 µ3(ε)

6
√

∆s3
+
µ4(ε)

∆s4

∑
m≥4

am
(ti)m

m!

)
− 1
]
− exp(−λ0,εn∆)1{Σ=0},

where am = ∆µm(ε)
(∆s2)m/2

∆s4

µ4(ε) is such that am ≤ (c̃n)m−4.

We intend to bound D2 by M2, then following (17) it suffices to bound ‖Ĝ(k)‖22 by a quantity

much smaller in k than 2kk!M2 for any k ≤ K = c2int log(n) and where M := c̃−4
n

[
|µ3(ε)|√

∆s3
+ µ4(ε)

∆s4

]
. For

illustration, consider first the term k = 0, it holds

|Ĝ(t)| ≤ exp(−t2/2)
[

exp
(
Me|t|c̃n

)
− 1
]

+ exp(−λ0,εn∆)1{Σ=0}. (18)

Then, for any c > 0∫ c log(n)

−c log(n)

|Ĝ(t)|2dt ≤ 4

∫ c log(n)

0

exp(−t2)
[

exp
(
Me|t|c̃n

)
− 1
]2
dt+ 4c log(n) exp(−2λ0,εn∆)1{Σ=0}.

Assumption (HM ) ensures that for a small enough universal constant cm ≥ 0 we have M ≤ cm/
√
n.

In this case, we use a Taylor expansion between [0, c log(n)] and get if cc̃n ≤ 1/2, and since λ0,ε ≥
24 log(n)/∆∫ c log(n)

−c log(n)

|Ĝ(t)|2dt ≤ C ′
∫ c log(n)

0

exp(−t2)
[
Metc̃n

]2
dt+ 4c/n2 ≤ C ′′M2 + 2/n2,

where C ′, C ′′ are two universal constants. This together with (HΨ(ε)) permits to bound ‖Ĝ‖22 by M2.

The derivatives kth derivatives of Ĝ are treated similarly, though the procedure is more cumbersome.

Write Ĝ+ exp(−λ0,εn∆)1{Σ=0} = φV, where V = exp(g)− 1,

g(t) = −it3 µ3(ε)

6
√

∆s3
+
µ4(ε)

∆s4

∑
m≥4

am
(ti)m

m!

and φ(t) = exp(−t2/2). We have the following result.

Corollary 3. Suppose (Hε) with c̃n ≤ 1, c̃nc ≤ 1/4 and (HM ) with cm ≤ 1/2. There exists a constant
Ccint that depends on cint only such that we have for any t ∈ I,

|Ĝ(k)(t)|2 ≤ Ccint

[
k2M2 sup

d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d|φ(d)(t)|2
]]

∨

[
k4(c̃nM)2e2c̃n|t||Hk−1(t)φ(t)|2

]]
∨ |Hk(t)Ĝ(t)|2,

where Hk is the Hermite polynomial of degree k.
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We now provide the following two technical lemmas. The first one leads to a bound on the integral
of the squared first term in Corollary 3 and the second one to bound the integral of the squared last
two terms in Corollary 3.

Lemma 4. For any k ≤ K it holds that∫ c log(n)

−c log(n)

[
k2M2 sup

d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d|φ(d)(t)|2
]]
dt ≤ 2k2k!M2

[[
C2k(1−c/16)

]
∨ 1

]
,

where C, c > 0 are strictly positive constants.

Lemma 5. For any k ≤ K it holds that∫
|t|≤c logn

exp(−t2)e2|t|c̃n |Hk(t)|2dt ≤ 4ec̃
2
n

√
2π
k(k!)(1 + c̃2n)k.

To complete the proof, we bound all the terms appearing in Corollary 3 which will lead to a bound
on D2 through (17) and (HΨ(ε)), and finally to a bound on the total variation through (16) and (13).
First, whenever |t| ≤ c log(n) we have using (18)

|Hk(t)Ĝ(t)| ≤ C|Hk(t)| exp(−t2/2)Mec̃n|t|.

Lemma 5 implies that∫
|t|≤c logn

[
k4(c̃nM)2e2c̃n|t||Hk−1(t)|2 exp(−t2)

]]
∨ |Hk(t)Ĝ(t)|2dt ≤ CM2k5(k!)(1 + c̃2n)k, (19)

where C is an absolute constant. Combining Lemma 4 with Equation (19) and Corollary 3, we have
that for any k ≤ K ∫ c log(n)

−c log(n)

|Ĝ(k)(t)|2dt ≤ C ′cintk
5k!M22k−c

′
,

where c > 0 is a universal constant strictly positive and C ′cint > 0 depends only on Cint. Injecting this
together with the tail Assumption (HΨ(ε)) in (17), we get

D2 ≤M2C
′
cint√
2π

∑
k≤K

k5

2c
′k
≤ C ′′cintM

2,

together with Equation (16), we finally obtain using (HM ) and the definitions of M and s that,

∥∥f⊗n − ϕ⊗n∥∥
TV
≤

√√√√nD2 exp(ch)

[ ∑
2≤k≤n

2k(nD2)k−1 + 1

]
+ C exp(ch)c2p + cp +

3 + 2c

n

≤ C
√
n

[
|µ3(ε)|√

∆(Σ2 + σ2(ε))3
+

µ4(ε)

∆(Σ2 + σ2(ε))2

]
+

4(c+ 1)

n
,

where C depends on c̃n, cm, csup and cint and where we used Lemma 2 ensuring that under (Hε),
Assumption (H0) holds with cp = 1/n2 . The proof of Theorem 2 is now complete.
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4.2 Proof of Theorem 3

Fix 0 < u ≤ ε, it holds M(ε) = M(u) + M(u, ε) where M(u, ε) is a compound Poisson process with
intensity λu,ε independent of M(u). Decomposing on the values of the Poisson process induced by
M(u, ε) at time n∆ and using that the total variation distance is bounded by 1, we have∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (b∆,∆(Σ2 + σ2(u)))⊗n

∥∥
TV

≤ exp(−λu,εn∆)
∥∥(N (b∆,∆Σ2) ∗M∆(u))⊗n −N (b∆,∆(Σ2 + σ2(u)))⊗n

∥∥
TV

+
[
1− exp(−λu,ε∆n)

]
≤ C exp(−λu,εn∆)

[√
nµ2

4(ε)

∆2(Σ2 + σ2(ε))4
+

nµ2
3(ε)

∆(Σ2 + σ2(ε))3
+

1

n

]
+
[
1− exp(−λu,ε∆n)

]
, (20)

applying Theorem 2 to get the last inequality. Finally, the result is obtained using that ∀ 0 < u ≤ ε

min
B∈R,S2≥0

∥∥(N (b∆,∆Σ2)∗M∆(ε))⊗n −N (B∆,∆S2)⊗n
∥∥
TV
≤∥∥(N (b∆,∆Σ2) ∗M∆(ε))⊗n −N (b∆,∆(Σ2 + σ2(u)))⊗n

∥∥
TV

and taking u = ũ∗ in (20).

4.3 Proof of Theorem 5

4.3.1 Preliminary: Four statistical tests

Let X ∼ (b,Σ2, νε), in particular the increments Xi∆ −X(i−1)∆ are i.i.d. realizations of

X∆ = ∆b+ ΣW∆ +M∆(ε), where W∆ ∼ N (0,∆).

For any n ∈ N, set ñ = bn/2c and define

Zi := |(X2i∆ −X(2i−1)∆)− (X(2i−1)∆ −X(2i−2)∆))|, i = 1, ..., ñ = bn/2c

Sn =
1

ñ

ñ−2 log(n)∑
i=1

Z(i), and Z(ñ) = max{Zi, 1 ≤ i ≤ ñ},

where for any sequence a., the sequence a(.) is a reordering of a by increasing order.

For any 0 < u ≤ ε, we write X as X = X(u) +M(u, ε), where

X(u)t = bt+ ΣWt +Mt(u)

is a Lévy process whose jumps are smaller (or equal) than u and M(u, ε) = Mt(ε) −Mt(u) is a pure
jumps Lévy process with jumps of size between u and ε. We write N(u) for the number of jumps
larger than u, that is, for any t > 0, Nt(u) is a Poisson random variable with mean tλu,ε.

Furthermore, in order to present the test needed to prove Theorem 5, we introduce the following
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notations:

X∆,n :=
1

n− bn/2c

n∑
i=bn/2c+1

(Xi∆ −X(i−1)∆)

Y n,3 :=
1

bn/2c

bn/2c∑
i=1

(
(Xi∆ −X(i−1)∆)−X∆,n

)3)

Y n,2 :=
1

bn/4c

bn/4c∑
i=1

Z2
i , Y

′
n,2 :=

1

bn/4c

bn/2c∑
i=bn/4c+1

Z2
i

Y n,4 :=
1

bn/2c

bn/2c∑
i=1

Z4
i , Y n,6 :=

1

bn/2c

bn/2c∑
i=1

Z6
i

T (3)
n :=

1

1− (n− bn/2c)−2
Y n,3, T (4)

n := 4−1
(
Y n,4 − 3Y n,2Y

′
n,2

)
.

By definition, X∆,n is the empirical version of E[X∆] computed on the second half of the sample only
and Y n,3 (resp. Y n,6) is an estimator of E[(X∆ −∆b)3] (resp. of 8E[(X∆ −∆b)6]) computed on the
first half of the sample. Moreover, since E[(X∆ − b∆)3] = ∆µ3(ε), using Corollary 6 joined with the

independence of X∆ and X∆,n, we have that T
(3)
n is an unbiased estimator of ∆µ3(ε). Instead Y n,4 is

an estimator of 4E[(X∆−∆b)4] while Y n,2 and Y
′
n,2 are two independent estimators of 2E[(X∆−∆b)2]

(see also Corollary 6). Using that E[Z4
1 ] − 3(E[Z2

1 ])2 = 4∆µ4(ε), it is easy to prove that T
(4)
n is an

unbiased estimator of ∆µ4(ε) (see, e.g. [7]).
Finally, let C > 0 be the absolute constant introduced in Lemma 8 below and consider the following

events:

• If νε = 0, set

ξn :=
{
∀i, Zi ≤ 4

√
∆Σ2 log(n)

}
, (21)

ξ′n :=

{√
∆Σ2

√
π
≤ Sn

}
, (22)

ξ′′n := {C(
√

∆Σ2)6 ≥ Y n,6}. (23)

• If νε 6= 0, set

ξn := {1 ≤ Nn∆(u+) ≤ 2 log(n)} ∩ {∀i ≤ n,Ni∆(u+)−N(i−2)∆(u+) ≤ 1}
∩ {∀i s.t. Ni∆(u+)−N(i−2)∆(u+) 6= 0,

|Xi∆(u∗)−X(i−1)∆(u∗)− (X(i−1)∆(u∗)−X(i−2)∆(u∗))| ≤ 2
√

(Σ2 + σ2(u∗))∆ log(n)}, (24)

ξ′n := {Sn ≤ 2
√

2∆(Σ2 + σ2(u+))}, (25)

ξ′′n :=
{
Y n,6 ≥

∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3

2

}
.

Lemma 6. There exists a universal sequence αn → 0 such that P(ξn) ≥ 1− αn.

Lemma 7. There exists a universal sequence αn → 0 such that P(ξ′n) ≥ 1− αn.

Lemma 8. There exist a universal sequence αn → 0 and a universal constant C > 0 such that the
following holds.
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Whenever νε = 0, with probability larger than 1− αn we have

C(
√

∆Σ2)6 ≥ Y n,6.

In any case, with probability larger than 1− αn and conditional on Nn∆(u∗) = 0, it holds

Y n,6 ≥
∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3

2
.

Observe that Lemmas 6, 7 and Lemma 8 joined with Equation (26), imply the existence of two
absolute sequences αn → 0 and βn → 0 such that

P(ξn ∩ ξ′n) ≥ 1− αn, (26)

P(ξn ∩ ξ′n ∩ ξ′′n) ≥ 1− βn.

We are finally ready to introduce the four tests we use to establish Theorem 5:

Φ(max)
n = 1

{
Z(ñ) ≥ log(n)3/2Sn

}
, Φ(6)

n,c = 1
{
Y n,6 ≥ cS6

n

}
,

Φ(3)
n,c,α = 1

{
|T (3)
n | ≥

c√
α

√
S6
n

n

}
, Φ(4)

n,c,α = 1
{
|T (4)
n | ≥

c√
α
S4
n

√
1

n

}
.

Their properties are investigated in Propositions 3, 4, 5 and 6 below.

Proposition 3. Under H0, for any n > e4
√
π, it holds that ξn ∩ ξ′n ⊂ {Φ

(max)
n = 0}. Moreover, for

any n > e2, it holds ξn ∩ ξ′n ∩ {Nn∆(u∗) ≥ 1} ⊂ {Nn∆(u∗) ≥ 1} ∩ {Φ(max)
n = 1}.

Proposition 4. There exist c > 0 a universal constant and Cc depending only on c such that the

following holds, for n larger than a constant. Under H0, it holds that ξ′n ∩ ξ′′n ⊂ {Φ
(6)
n,c = 0}. Moreover

if ∆µ6(u∗) ≥ Cc∆3(Σ2 + σ2(u∗))3, then ξ′n ∩ ξ′′n ∩ {Nn∆(u∗) = 0} ⊂ {Nn∆(u∗) = 0} ∩ {Φ(6)
n,c = 1}.

Proposition 5. Let α > 2 log(n)−1. Let c > 0 and c′ > 0 be large enough absolute constant and let
Cc,c′ > 0 be a large enough absolute constant depending only on c and c′. Then, the following holds.

Under H0, Φ
(3)
n,c,α = 0 with probability larger than 1− α− P(ξ′n

c
).

Under the hypothesis H
(3)

1,ρ
(3)
n

: µ3(u∗) > ρ
(3)
n and conditional to the event Nn∆(u∗) = 0, if

u∗ > u+, ∆µ6(u∗) ≤ c′∆3(Σ2 + σ2(u∗))3, ρ(3)
n ≥

Cc,c′√
α

{√∆(Σ2 + σ2(u∗))3

√
n

}
, (27)

it holds that Φ
(3)
n,c,α = 1 with probability larger than 1− α− P(ξ′n

c
).

Proposition 6. Let α > 2 log(n)−1. Let c > 0 and c′ > 0 be large enough absolute constant and let
Cc,c′ > 0 be a large enough absolute constant depending only on c and c′. Then, the following holds.

Under H0, it holds that Φ
(4)
n,c,α = 0 with probability larger than 1− α− P(ξ′n

c
).

Under the hypothesis H
(4)

1,ρ
(4)
n

: µ4(u∗) > ρ
(4)
n and conditional to the event Nn∆(u∗) = 0, if

u∗ > u+, ρ(4)
n ≥

Cc√
α

{∆(Σ2 + σ2(u∗))2

√
n

}
,

it holds that Φ
(4)
n,c,α = 1 with probability larger than 1− α− P(ξ′n

c
).
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4.3.2 Completion on the proof of Theorem 5

Let (̃b, Σ̃, ν̃ε) be a Lévy triplet where ν̃ε is a Lévy measure with support in [−ε, ε]. Assume that we
want to test

H0 : νε = 0, against H1 : (b,Σ, νε) = (̃b, Σ̃, ν̃ε).

We write µ̃., λ̃.,. and ũ∗ for all the quantities related to (̃b, Σ̃, ν̃ε).
We can choose c(3), c(4), c(6) > 0 large enough universal constants and C(3), C(4), C(6) > 0 large

enough depending only on c(3), c(4), c(6), and an absolute sequence αn that converges to 0 such that
Propositions 3, 4, 5 and 6 hold. Set

α =
{( C(3)

µ̃3(ũ∗)

√
∆(Σ2 + σ2(ũ∗))3

√
n

)2

∧
( C(4)

µ̃4(u∗)

∆(Σ2 + σ2(ũ∗))2

√
n

)2}
∨ αn.

Write i = 3 if
(

C(3)

µ̃3(ũ∗)

√
∆(Σ2+σ2(ũ∗))3

√
n

)2

≤
(

C(4)

µ̃4(u∗)
∆(Σ2+σ2(ũ∗))2

√
n

)2

and i = 4 otherwise. In the remain-

ing of the proof αn denotes a vanishing sequence whose value may change from line to line.

Case 1 : 1− exp(−λ̃u∗,εn∆) ≥ 1− α. In this case, consider the test Φn = Φ
(max)
n . If X ∼ (b,Σ2, νε)

is in H0 (i.e. νε = 0), an application of Proposition 3 and Lemmas 6 and 7 yields P(Φn = 0) ≥ 1−αn.
If, instead, X is such that (b,Σ, νε) = (̃b, Σ̃, ν̃ε), by means of Proposition 3 and Lemmas 6, 7 we get

P(Φn = 1) ≥ P({Nn∆(ũ∗) 6= 0} ∩ ξn ∩ ξ′n) ≥ 1− exp(−λ̃ũ∗,εn∆)− αn.

So by Lemma 1 it follows that the total variation between the observations of n increments of X at
the sampling rate ∆ and the closest Gaussian random variable is larger than 1− exp(−λ̃ũ∗,εn∆)−αn.

Case 2 : 1− exp(−λ̃ũ∗,εn∆) ≤ 1− α. In this case consider the test

Φn,c(i),c(6),α = Φ(max)
n ∨ Φ

(i)

n,c(i),α
∨ Φ

(6)

n,c(6) .

If X is in H0 (i.e. νε = 0), by Propositions 3, 4, 5 and 6 we have that

P(Φn,c(i),c(6),α = 0) ≥ 1− α− αn.

If X is such that (b,Σ, νε) = (̃b, Σ̃, ν̃ε), we distinguish two cases.

• If ∆µ6(u∗) ≥ C(6)(∆(Σ2 + σ2(u∗)))3: Propositions 3, 4 yield

P(Φ
n,c

(i)
α ,c(6),α

= 1) ≥ P({Nn∆(ũ∗) 6= 0} ∩ ξn ∩ ξ′n) + P({Nn∆(ũ∗) = 0})(1− αn).

• If ∆µ6(u∗) < C(6)(∆(Σ2 + σ2(u∗)))3: Propositions 3, 5, 6 joined with {u∗ > u+} yield

P(Φ
n,c

(i)
α ,c(6),α

= 1) ≥ P({Nn∆(ũ∗) 6= 0} ∩ ξn ∩ ξ′n) + P({Nn∆(ũ∗) = 0})(1− α− αn).

In both cases we conclude that,

P(Φn,c(i),c(6),α = 1) ≥ P({Nn∆(ũ∗) 6= 0}) + P({Nn∆(ũ∗) = 0})(1− α)− αn
≥ 1− α exp(−λ̃ũ∗,εn∆)− αn.

By Lemma 1 we deduce that the total variation distance between the observations of n increments of
X at the sampling rate ∆ and the closest Gaussian random variable is larger than 1− 2α− αn.
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[17] K.-i. Sato. Lévy processes and infinitely divisible distributions, volume 68 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1999. Translated from the 1990 Japanese original, Revised by the author.

[18] M. Trabs. On infinitely divisible distributions with polynomially decaying characteristic functions.
Statistics & Probability Letters, 94:56–62, 2014.

[19] A. B. Tsybakov. Introduction to nonparametric estimation. revised and extended from the 2004
french original. translated by vladimir zaiats, 2009.

A Technical results

A.1 Proofs of the auxiliary Lemmas used in the proof of Theorem 2

A.1.1 Proof of Lemma 2

We consider a compound Poisson approximation of the increment X̃∆(ε) to apply the Berstein in-
equality and first focus on its jump part. Let 0 < η < ε, and define

M̃∆(η, ε) =

∑N∆(λ,ε)
i=0 Yi −∆

∫
η≤|x|≤ε xdν√

∆s2

=

∑N∆(λ,ε)
i=0 (Yi − λ−1

η,ε

∫
η≤|x|≤ε xdν) +N∆(λ, ε)λ−1

η,ε

∫
η≤|x|≤ε xdν −∆

∫
η≤|x|≤ε xdν√

∆s2

= M∆(η, ε) +
N∆(λ, ε)λ−1

η,ε

∫
η≤|x|≤ε xdν −∆

∫
η≤|x|≤ε xdν√

∆s2
, (28)

where

M∆(η, ε) =

∑N∆(λ,ε)
i=0

(
Yi − λ−1

η,ε

∫
η≤|x|≤ε xdν

)
√

∆s2
,

N∆(λ, ε) is a Poisson random variable of intensity ∆
∫
η≤|x|≤ε dν := ∆λη,ε, and the Yi are i.i.d. bounded

random variables with density 1
λη,ε

ν(dx)
dx 1η≤|x|≤ε. Note that for any N , E[M∆(η, ε)|N∆(λ, ε) = N ] = 0,

and if |N∆(λ, ε)−∆λη,ε| ≤ ∆λη,ε/2 we have λη,εV(Yi) =
∫
η≤|x|≤ε x

2dν ≤ σ2(ε) ≤ s2 and

V[M∆(η, ε)|N∆(λ, ε) = N ] ≤ 2.

Finally, the random variables |Yi| are bounded by ε. For any N such that |N −∆λη,ε| ≤ ∆λη,ε/2, the
Bernstein’s inequality, conditional on N∆(λ, ε) = N , leads to

P
(
|M∆(η, ε)| > csup

√
log(n)/2

∣∣N∆(λ, ε) = N
)
≤ 2 exp

(
− 1

2

c2sup log n/4

2 + 1
3

ε√
∆s2

csup
√

log(n)/2

)

≤ 2 exp

(
− 1

8

c2sup log n

2 + 1
6 c̃ncsup

)
,
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where we used (Hε). Therefore, it holds for any N such that |N −∆λη,ε| ≤ ∆λη,ε/2, that

P
(
|M∆(η, ε)| > csup

√
log(n)/2

∣∣N∆(λ, ε) = N
)
≤ n−3,

if csup ≥ 10. Now by assumption on λ0,ε, there exists η := ηδ > 0 such that for any η ≤ η, we have

∆λη,ε ≥ 1 and 24 log(n)
∆ ≤ λη,ε. Moreover, for η ≤ η, since N∆(λ, ε) is a Poisson random variable of

parameter ∆λη,ε ≥ 1, we have for any 0 ≤ x ≤
√

∆λη,ε

P(|N∆(λ, ε)−∆λη,ε| ≥
√

∆λη,εx/2) ≤ exp(−x2/8).

This implies that for x :=
√

24 log(n) ≤
√

∆λη,ε,

P(|N∆(λ, ε)−∆λη,ε| ≥
√

6∆λη,ε log(n)) ≤ n−3.

Removing the conditioning on N∆(λ, ε) (noting that
√

6∆λη,ε log(n) ≤ ∆λη,ε/2) we get

P
(∣∣∣M∆(η, ε) +

N∆(λ, ε)√
∆s2

λ−1
η,ε

∫
η≤|x|≤ε

xdν(x)− ∆√
∆s2

∫
η≤|x|≤ε

xdν(x)
∣∣∣ > csup

√
log(n)

)
≤ 2n−3,

using that csup ≥ 10 and that by the Cauchy-Schwartz inequality |
∫
η≤|x|≤ε xdν(x)| ≤

√
λη,εσ(ε).

Taking the limit in η → 0 leads to

P
(
|M̃∆(0, ε)| > csup

√
log(n)

)
≤ 2n−3. (29)

Adding the Gaussian part and the drift, by Gaussian concentration we get that

P
(
|X̃∆| > csup

√
log(n)

)
≤ 3n−3.

This implies the result whenever csup ≥ 10.

A.1.2 Proof of Lemma 3

In this proof, we assume that all integrals are computed on ξ̃M only,for sake of readability we do not
write the indicator everywhere.

Recall that Stirling’s approximation gives for n ≥ 1, n! ≥ (n/e)n. For any x ∈ I, using that√
K ≥ 2csup

√
log(n) (since cint ≥ 2csup), we derive that

|
√

2π exp(x2/2)− h−1
I (x)| =

√
2π1{I}

+∞∑
k=K+1

x2k

22kk!
≤
√

2π1{I}

+∞∑
k=K+1

(
√
K/2)2kek

22kkk
≤ 1

1− e
4

1

2K
,

since
∑
k≥K+1

(Ke)k

22kkk
≤
∑
k≥0

(
e
4

)k
= 1

1−e/4 .

It follows that for cint ≥ 1 and x ∈ I, that we have

|ϕ−1(x)− h−1(x)| = |
√

2π exp(x2/2)− h−1
I (x)| ≤ 1

1− e/4
1

n2
. (30)

Equation (30) implies that

A =

∫
ξ̃M

ϕ2
I
hI

=

∫
ξ̃M

[
ϕI + ϕ2

I [h−1
I − ϕ

−1
I ]
]
≤ 1 +

1

1− e/4
1

n2
,

and

|
∫
hI −

∫
ϕI | = |

∫
I
hϕ(ϕ−1 − h−1)| ≤

∫
I
h(x)ϕ(x)|

√
2π exp(x2/2)− h−1(x)| ≤ 1

1− e/4
1

n2
,
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since, by definition, hI ≤ 1/
√

2π. This together with Pϕ(Ic) ≤ n−c
2
sup/2, the second inequality follows.

Finally, using (30) we get

|E| = |
∫
ξ̃M

ϕIh
−1
I (fI − ϕI)−

∫
ξ̃M

(fI − ϕI)| = |
∫
ξ̃M

ϕI(h−1
I − ϕ

−1
I )(fI − ϕI)| ≤ 2

1

1− e/4
1

n2
.

By (H0) and Pϕ(Ic) ≤ n−c
2
sup/2 we have

|
∫
ξ̃M

(fI − ϕI)| = |Pf (Ic)− Pϕ(Ic)| ≤ n−c
2
sup/2 + cp/n,

and the bound on |E| is established.

A.1.3 Proof of Corollary 3

We start with two preliminary Lemmas.

Lemma 9. Suppose (Hε) with c̃n ≤ 1, it holds that

|Ĝ(k)(t)|2 ≤

[
k2e2Me|t|c̃n sup

d≤k−1

[(
k

d

)2

|φ(d)(t)|2
[
22(k−d) max

1≤u≤k−d
u2(k−d−u)(c̃nM)2ue2c̃n|t|u

]]]
∨
[
|φ(k)|2V 2

]
.

Proof of Lemma 9. By the binomial formula we bound

|Ĝ(k)| ≤ k sup
d≤k

Cdk |φ(d)||V (k−d)|. (31)

Moreover V (m) = (exp(g)− 1)(m), Lemma 10 below (with (Hε) and c̃n ≤ 1,) leads to

|V (m)| = |(exp(g)− 1)(m)| ≤ 2meMe|t|c̃n max
1≤u≤m

um−u(c̃nM)uec̃n|t|u.

Injecting this upper bound in (31) leads to the desired result.

Lemma 10. Suppose (Hε) with c̃n ≤ 1, it holds for m ≥ 1

|V (m)| = |(exp(g)− 1)(m)| ≤ 2meMe|t|c̃n max
1≤u≤m

um−u(c̃nM)uec̃n|t|u.

Proof of Lemma 10. First, note that for any j ≥ 1, we have

g(j)(t) = −i(t3)(j) µ3(ε)

6
√

∆s3
+
µ4(ε)

∆s4

∑
m≥(j∧4)

am
imtm−j

(m− j)!
,

and

|g(j)(t)| ≤
[ |µ3(ε)|√

∆s3
+
µ4(ε)

∆s4

] ∑
m≥(j∧3)

|am|
|t|m−j

(m− j)!
,

where a3 = 1. And since for any m ≥ 4 we have am ≤ c̃m−4
n , this implies since c̃n ≤ 1

|g(j)(t)| ≤
[ |µ3(ε)|√

∆s3
+
µ4(ε)

∆s4

] ∑
m≥(j∧3)

c̃m−4
n

|t|m−j

(m− j)!
≤ c̃nMe|t|c̃n . (32)

Write

Rm =
(exp(g))(m)

exp(g)
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and note that Rm+1 = R
(1)
m + g(1)Rm. So we have for any d ≥ 0

|R(d)
m+1| = |R(d+1)

m + (g(1)Rm)(d)| ≤ |R(d+1)
m |+

∑
j≤d

Cjd|g
(d−j+1)||R(j)

m |, (33)

by the Leibniz formula. Write for m ≥ 1 the induction assumption:

H(m) : ∀d ∈ N, |R(d)
m | ≤ 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum−uud.

Assumption H(1) hold since R1 = g(1) and by (32) we obtain |g(j)| ≤ Mc̃ne
c̃n|t| for j larger than 1.

Assume for some m ≥ 1 that H(m) holds. We have by (33)

|R(d)
m+1| ≤ 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum−uud+1 +

[
Mc̃n exp(c̃n|t|)

]∑
j≤d

Cjd

[
2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum−uuj

]
,

by H(m) and (32). It follows that

|R(d)
m+1| ≤ 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum+1−uud +

∑
j≤d

Cjd

[
2m max

u∈{1,...,m}
(c̃nM)u+1ec̃n|t|(u+1)um−uuj

]
= 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum+1−uud +

[
2m max

u∈{1,...,m}
(c̃nM)u+1ec̃n|t|(u+1)um−u(1 + u)d

]
≤ 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum+1−uud +

[
2m max

u∈{1,...,m}
(c̃nM)u+1ec̃n|t|(u+1)(u+ 1)m−u+d

]
,

where we used the binomial formula for the second equation. Finally,

|R(d)
m+1| ≤ 2m max

u∈{1,...,m}
(c̃nM)uec̃n|t|uum+1−uud +

[
2m max

u∈{2,...,m+1}
(c̃nM)uec̃n|t|uum+1−u+d

]
≤ 2m+1 max

u∈{1,...,m+1}
(c̃nM)uec̃n|t|uum+1−u.

Therefore, H(m+ 1) holds and the induction is proven. In particular

|Rm| ≤ 2m max
u∈{1,...,m}

um−u(c̃nM)uec̃n|t|u,

and for any m ≥ 1 we obtain

|V (m)| = |(exp(g)− 1)(m)| ≤ |Rm|| exp(g)| ≤ 2meMe|t|c̃n max
1≤u≤m

um−u(c̃nM)uec̃n|t|u.

Proof of Corollary 3. By Lemma 9 we have since c̃n ≤ 1

|Ĝ(k)(t)|2 ≤

[
k2e2Me|t|c̃n sup

d≤k−1

[(
k

d

)2

|φ(d)(t)|2
[
22(k−d) max

1≤u≤k−d
u2(k−d−u)(c̃nM)2ue2c̃n|t|u

]]]
∨
[
|φ(k)|2V 2

]
.

The term |φ(k)|2V 2 lead to the last term of the corollary since Hmφ = φ(m) for any integer m and

|V | = |φ−1Ĝ|. Then, the first term for d = k− 1 leads to the second term of the corollary using (HM )

and that |t| ≤ c log(n), e2Mec̃n|t| ≤ e2cmn
c̃nc− 1

2 < e whenever c̃nc ≤ 1
2 , cm ≤

1
2 .

Next, we control the remaining term using the decomposition (c̃nM)2u = ((c̃nM)
(u−1)

2 )2(c̃nM)u−1(c̃nM)2.
First, for for any integer u ≥ 2, t such that |t| ≤ c log(n) if c̃nc ≤ 1

4 and using (HM ) with cm ≤ 1
2 it

holds
Mu−1 exp(2c̃n|t|u) ≤ 1 and e2Me|t|c̃n ≤ 1.
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We are left with the term, for any u ≥ 2,

22(k−d) max
2≤u≤k−d

u2(k−d−u)(c̃nM)2
(u−1)

2

≤
[
M(k − d)k−d

]
∨
[
22(k−d) max

(k−d)1/4≤u≤k−d
e2(k−d) log(u)− 1

4 log(n)(u−1)M
(u−1)

2

]
.

Since k ≤ K = c2int log(n), we know that 2(k − d) log(u) − log(n)(u − 1)/4 is negative whenever
4c2int log(u) ≤ u. Moreover, using (HM ), it follows that for k ≤ c2int log(n) there exists a constant,
Ccint that depends only on cint, such that

22(k−d) max
2≤u≤k−d

u2(k−d−u)(c̃nM)(u−1) ≤ Ccint2−8(k−d)(k − d)k−d.

The proof of the corollary is complete.

A.1.4 Proof of Lemma 4

Recall the Stirling approximation√
πk

2

(k
e

)k
≤ k! ≤ 2

√
πk
(k
e

)k
, ∀k ≥ 1, (34)

we derive that if Z ∼ N (0, ω2) then,

E[Z2m] ≤ 4(2ω2)m
mm

em
≤ 4(2ω2)mm! ∀m ≥ 1 (35)

By Plancherel and (35) used with ω2 = 1/2, it holds for m ≥ 1∫
|φ(m)(t)|2dt = ‖Pmϕ‖22 =

1

2π

∫
x2m exp(−x2)dx ≤ 4√

2π

mm

em
. (36)

Equation (36) and (34) imply∫ c log(n)

−c log(n)

k2M2 sup
d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d|φ(d)(t)|2
]
dt

≤ k2M2 sup
d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d
2dd

ed

]
≤ 2k2M2 sup

d≤k−2

[
2−8(k−d)ek−dk!

(
k

d

)]
≤ 2k2k!M2 sup

d≤k−2

[
2−4(k−d)

(
k

d

)]
= 2k2k!M2 sup

d≤k−2

[
2−4d

(
k

d

)]
,

we used that 2−4e ≤ 1. Therefore,∫ c log(n)

−c log(n)

k2M2 sup
d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d|φ(d)(t)|2
]
dt

≤ 2k2k!M2

[
sup
d≤k/4

[
2−4d

(
k

d

)]
∨ sup
k/4+1≤d≤k−2

[
2−4d

(
k

d

)]]

≤ 2k2k!M2

[
sup
d≤k/4

[
2−4dC2ke−c(|d−k/2|/

√
k)2
]
∨ 1

]
,

30



using the sub-Gaussian concentration of the Binomial distribution; there exists C, c > 0 universal

constant such that
Cdk
2k
≤ Ce−c(|d−k/2|/

√
k)2

. Finally, we get∫ c log(n)

−c log(n)

[
k2M2 sup

d≤k−2

[
2−8(k−d)

(
k

d

)2

(k − d)k−d|φ(d)(t)|2
]]
dt

≤ 2k2k!M2

[
sup
d≤k/4

[
C2k−4de−ck/16

]
∨ 1

]
≤ 2k2k!M2

[[
C2k(1−c/16)

]
∨ 1

]
,

where C is a universal strictly positive constants.

A.1.5 Proof of Lemma 5

First, it holds that∫
|t|≤c logn

exp(−t2)e2|t|c̃n |Hk(t)|2dt = 2

∫
0≤t≤c logn

exp(−t2)e2tc̃n |Hk(t)|2dt

= 2ec̃
2
n

∫
0≤t≤c logn

exp(−(t− c̃n)2)|Hk(t)|2dt

= 2ec̃
2
n

∫
−c̃n≤t≤c logn−c̃n

exp(−t2)|Hk(t+ c̃n)|2dt

≤ 2ec̃
2
n

∫
R

exp(−t2)|Hk(t+ c̃n)|2dt.

Using the following property of Hermite polynomial we get

Hk(t+ c̃n) =

k∑
u=0

(
k

u

)
Hu(t)c̃k−un .

and the Cauchy Schwarz inequality leads to

Hk(t+ c̃n)2 ≤ k
k∑
u=0

(
k

u

)2

c̃2k−2u
n |Hu(t)|2.

Equation (36) and the definition of Hermite polynomials imply that∫
R

exp(−t2)|Hk(t+ c̃n)|2dt ≤ 2ec̃
2
nk

k∑
u=0

(
k

u

)2

c̃2k−2u
n

∫
R

exp(−t2)|Hu(t)|2dt

≤ 4ec̃
2
n

√
2π
k

k∑
u=0

(
k

u

)2

c̃2k−2u
n u! =

4ec̃
2
n

√
2π
k(k!)

k∑
u=0

k!

u!((k − u)!)2
c̃2k−2u
n

≤ 4ec̃
2
n

√
2π
k(k!)(1 + c̃2n)k,

which completes the proof.

A.2 Proofs of the Propositions involved in the proof of Theorem 5

Notations. In the sequel, we exploit the approximation of M∆(ε) by a sequence of compound Poisson
processes. For any 0 < η < ε define M(η, ε), the centered compound Poisson process that approximates
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M(ε) as η ↓ 0, by

Mt(η, ε) =
∑
s≤t

∆Xs1η<|∆Xs|≤ε − t
∫
η<|x|≤ε

xν(dx) =

Nt∑
i=1

Yi − t
∫
η<|x|≤ε

xν(dx)

where N is a Poisson process with intensity λη,ε =
∫
η<|x|≤ε ν(dx) and the (Yi)i≥1 are i.i.d. with jump

measure

P(Y1 ∈ B) =
1

λη,ε

∫
B∩{η<|x|≤ε}

ν(dx) ∀B ∈ B(R).

Since it will be used several times in the rest of the paper, we write BCI for the Bienaymé-Chebyshev
inequality which states that, if Z is a random variable with finite variance, then with probability larger
than 1-α, it holds

E[Z]−
√
V(Z)/α ≤ Z ≤ E[Z] +

√
V(Z)/α.

Finally, in several occasions we will use that σ(u+) ≤ σ(u∗).

A.2.1 Proof of Proposition 3

Under H0 : By means of Equations (21) and (22) we have that

max
i
Zi ≤ 4

√
∆Σ2 log(n), on ξn and Sn ≥

√
∆Σ2

π
, on ξ′n.

Therefore, for n strictly larger than e4
√
π, on the event ξn ∩ ξ′n we have that Z(ñ) < log(n)3/2Sn, and

thus Φ
(max)
n = 0 as desired.

If a jump larger than u∗ occurs : If u∗ = ε, then Proposition 3 is satisfied as λε,ε = 0, i.e.
no jumps larger than ε happen. Assume from now on that u∗ < ε. By definition of u∗, and since
σ(u) increases with u, we have that u∗ ≥

√
(Σ2 + σ2(u∗))∆ log(n)2. Furthermore, let us assume that

Nn∆(u∗) ≥ 1, i.e. from now on we always condition by this event. This assumption, combined with
(24), implies that on ξn there exists i such that Ni∆(u∗)−N(i−2)∆(u∗) = 1, and therefore

|Mi∆(u∗, ε)−M(i−1)∆(u∗, ε)− (M(i−1)∆(u∗, ε)−M(i−2)∆(u∗, ε))| ≥ u∗.

In addition, by means of Equation (24), we also know that on ξn

|Xi∆(u∗)−X(i−1)∆(u∗)− (X(i−1)∆(u∗)−X(i−2)∆(u∗))| ≤ 2
√

(Σ2 + σ2(u∗))∆ log(n).

Recalling the definition of u∗ and taking n > e2 we can conclude that, on ξn, it holds that Zi ≥ u∗/2.
Furthermore, by Equation (25) we know that on ξ′n

Sn ≤ 2
√

2∆(Σ2 + σ2(u+)) ≤ 2
√

2∆(Σ2 + σ2(u∗)),

which allows to conclude that, for n > e2, on ξn ∩ ξ′n, it holds

Zi ≥
Sn log(n)2

2
√

2
> Sn log(n)3/2,

that is Φ
(max)
n = 1, as desired.
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A.2.2 Proof of Proposition 4

Under H0 : By means of Equations (22) and (23), for any ω′ ∈ ξ′n and ω′′ ∈ ξ′′n, we have

Sn(ω′) ≥
√

∆Σ2

√
π

and Y n,6(ω′′) ≤ C(
√

∆Σ2)6.

Therefore, on ξ′′n ∩ ξ′n, we have Y n,6 < Cπ3S6
n, and thus Φ

(6)
n,c = 0, as desired.

If ∆µ6(u∗) is large and no large jump occurs: On the one hand, by Equation (23) we know
that, on ξ′′n ∩ {Nn∆(u∗) = 0}, it holds

Y n,6 ≥
1

2

[
2∆µ6(u∗) + (∆(Σ2 + σ2(u∗))3

]
.

On the other hand, on ξ′n, by means of Equation (25), we have that Sn ≤ 2
√

2∆(Σ2 + σ2(u∗)). Thus,
denoting by Cc an absolute constant depending only on c, whenever

∆µ6(u∗) ≥ Cc∆3(Σ2 + σ2(u∗))3,

it holds that Y n,6 > cS6
n, on ξ′′n ∩ ξ′n ∩ {Nn∆(u∗) = 0}, for n larger than an absolute constant. We

therefore conclude that Φ
(6)
n,c = 1, as desired.

A.2.3 Proof of Proposition 5

We begin with some preliminary results.

Lemma 11. For n larger than an universal constant, ε > 0 and any log(n)−1 < α ≤ 1 there exists an
event ξ′′′n of probability larger than 1− α and two universal constants c, C > 0 such that the following
holds:

|E[T (3)
n |ξ′′′n ]−∆µ3(ε)| ≤ c∆3/2(Σ2 + σ2(ε))3/2

√
nα

,

and V(T (3)
n |ξ′′′n ) ≤ C

n
[∆µ6(ε) + ∆2(Σ2 + σ2(ε))3].

Corollary 4. For any ε > 0 and for any log(n)−1 < α ≤ 1, there exists an event ξ′′′n of probability
larger than 1− α and two universal constants c, C > 0 such that the following holds:

|E[T (3)
n |ξ′′′n , Nn∆(u∗) = 0]−∆µ3(u∗)| ≤ c∆3/2(Σ2 + σ2(u∗))3/2

√
nα

,

and V(T (3)
n |ξ′′′n , Nn∆(u∗) = 0) ≤ C

n
[∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3].

Proof of Proposition 5. For some given α, let ξ′′′n be an event as in Corollary 4. If 3 ≤ k ≤ 6, thanks
to the hypothesis (27) on ∆µ6(u∗), there exists an universal constant C > 0 such that

V(T (3)
n |Nn∆(u∗) = 0, ξ′′′n ) ≤ C

n
[∆(Σ2 + σ2(u∗))]3.

Therefore, using BCI, we have

P
(∣∣∣∣ T

(3)
n −∆µ3(u∗)√

C
n [∆(Σ2 + σ2(u∗))]3

∣∣∣∣ > c/C + 1√
α
|Nn∆(u∗) = 0

)
≤ 2α. (37)
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Under H0 : µ3(u∗) and σ2(u∗) are zero and thus

P
(∣∣∣∣ T

(3)
n√

C
n∆3Σ6

∣∣∣∣ > 1√
α

)
≤ α.

Therefore, recalling the definition of ξ′n (see Equation (22)), we have that for c > 0 a large enough
absolute constant, with probability larger than 1− α− P(ξ′n

c
) it holds

|T (3)
n | ≤

c√
αn

S3
n,

which means that the test is accepted with probability larger than 1− 2α.

Under H
(3)
1,ρ and conditional to N∆n(u∗) = 0 : Assume that for some Cc > 0 large enough absolute

constant depending only on c > 0 we have by definition of u∗ (since u∗ > u+)

∆|µ3(u∗)| ≥ ρ ≥ Cc√
nα

√
[∆(Σ2 + σ2(u∗))]3.

This implies by Equation (37) and for Cc large enough depending only on c that with probability larger
than 1− α

|T (3)
n | ≥

Cc
2
√
α

{√∆3(Σ2 + σ2(u∗))3

√
n

}
.

Therefore, for Cc large enough depending only on c, we have by definition of ξ′n in Equation (22) that
with probability larger than 1− α− P(ξ′n

c
)

|T (3)
n | ≥

c√
αn

S3
n.

The test is thus rejected with probability larger than 1− α− P(ξ′n
c
).

A.2.4 Proof of Proposition 6

Proposition 6 can be proved with arguments very similar to those used in the proof of Proposition 5.

Lemma 12. For any ε > 0 it holds E[T
(4)
n ] = ∆µ4(ε). For n larger than an absolute constant and for

some universal constant C > 0, it holds

V(T (4)
n ) ≤ C

n

[
∆µ8(ε) + [∆(Σ2 + σ2(ε))]4

]
.

Corollary 5. For any ε ∈ (0, 1], it holds E[T
(4)
n |Nn∆(u∗) = 0] = ∆µ4(u∗). Moreover, there exists a

universal constant C > 0 such that

V(T (4)
n |Nn∆(u∗) = 0) ≤ C

n

[
∆µ8(u∗) + [∆(Σ2 + σ2(u∗))]4

]
. (38)

Proof of Proposition 6. The proof follows the same scheme as the one in Lemma 5. Here we only
remark that Equation (38) implies

V(T (4)
n |Nn∆(u∗) = 0) ≤ C

n

[
∆µ8(u∗) + [∆(Σ2 + σ2(u∗))]4

]
≤ C

n

[
(u∗)4∆µ4(u∗) + [∆(Σ2 + σ2(u∗))]4

]
,
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since ∆µ8(u∗) ≤ (u∗)4∆µ4(u∗). By means of BCI we thus deduce that

P
(∣∣∣ T

(4)
n −∆µ4(u∗)√

C
n

[
(u∗)4∆µ4(u∗) + [∆(Σ2 + σ2(u∗))]4

]∣∣∣ > 1√
α
|Nn∆(u∗) = 0

)
≤ α,

which, using that α ≥ log(n)−1 and the definition of u∗, implies

P
(

T
(4)
n − 1

2∆µ4(u∗)√
C′

n [∆(Σ2 + σ2(u∗))]4
<

1√
α
|Nn∆(u∗) = 0

)
≤ α,

for some universal constant C ′ and for n larger than a universal constant.

A.3 Proofs of the Lemmas involved in the proof of Theorem 5

A.3.1 Proof of Lemma 1

Let Φ be such a test for H0 : P against H1 : Q. The conditions on Φ lead to

‖P⊗n −Q⊗n‖TV ≥ |PH0
(Φ = 0)− PH1

(Φ = 0)| ≥ 1− α1 − α0.

A.3.2 Proof of Lemma 6

If νε = 0 : Under H0 we know that all Zi are i.i.d. realizations of the absolute values of centered Gaus-
sian random variables with variance 2∆Σ2. By Gaussian concentration we have that with probability
larger than 1− 1/n, maxi≤ñ Zi ≤ 4

√
∆Σ2 log(n), since ñ = bn/2c ≤ n.

If νε 6= 0 : By BCI, with probability larger than 1− α, it holds

|Nn∆(u+)−∆nλu+,ε| ≤
√

∆nλu+,ε/α,

i.e. for α = 4 log(n)−1 we have that with probability larger than 1− 4 log(n)−1

log(n)/2 ≤ Nn∆(u+) ≤ 2 log(n).

Furthermore, we observe that

P(Ni∆(u+)−N(i−2)∆(u+) ≤ 1) = exp(−2∆λu+,ε) + 2∆λu+,ε exp(−2∆λu+,ε)

= exp(−2 log(n)/n) + 2
log(n)

n
exp(−2 log(n)/n).

It thus follows

P
(
{∀i ≤ n,Ni∆(u+)−N(i−2)∆(u+) ≤ 1}

)
=
(

exp(−2 log(n)/n) + 2
log(n)

n
exp(−2 log(n)/n)

)n
= exp(−2 log(n))(1 + 2 log(n)/n)n → 1,

at a rate which does not depend on ν, ε, b,Σ.
Finally, by BCI, with probability larger than 1− α, we have

|Xi∆(u∗)−X(i−1)∆(u∗)− b∆| ≤
√

(Σ2 + σ2(u∗))∆α−1.
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So, conditional on {1 ≤ Nn∆(u+) ≤ 2 log(n)}, with probability larger than 1− log(n)−1, we have that
∀i s.t. Ni∆(u+)−N(i−1)∆(u+) 6= 0

|Xi∆(u∗)−X(i−1)∆(u∗)− b∆| ≤
√

(Σ2 + σ2(u∗))∆ log(n).

We conclude observing that, conditional on {1 ≤ Nn∆(u+) ≤ 2 log(n)}, with probability larger than
1− log(n)−1, we have ∀i s.t. Ni∆(u+)−N(i−2)∆(u+) 6= 0

|Xi∆(u∗)−X(i−1)∆(u∗)− (X(i−1)∆(u∗)−X(i−2)∆(u∗))| ≤ 2
√

(Σ2 + σ2(u∗))∆ log(n).

A.3.3 Proof of Lemma 7

Preliminary. Denote by Z̃i = |(Xi∆(u+)−X(i−1)∆(u+))−(X(i−1)∆(u+)−X(i−2)∆(u+))| and assume
that ξn holds. We begin by observing that, for any ω ∈ ξn, we have:

1

ñ

ñ−4 log(n)∑
i=1

Z̃(i)(ω) ≤ Sn(ω) ≤ 1

ñ

ñ∑
i=1

Z̃i(ω). (39)

To show (39), let I := {i : Z̃i = Zi}, that is the set where no jumps of size larger than u+ occur

between (i− 2)∆ and i∆. By means of the positivity of the variables Z̃i and Zi, we get

1

ñ

∑
1≤i≤ñ−2 log(n),i∈I

Z(i) ≤ Sn =
1

ñ

ñ−2 log(n)∑
i=1

Z(i).

Moreover, since #Ic ≤ 2 log(n) on ξn, we have

1

ñ

∑
1≤i≤ñ−2 log(n),i∈I

Z(i) ≤ Sn ≤
1

ñ

∑
i∈I

Zi.

Using again that P{#Ic ≤ 2 log(n) ∩ ξn} = 1, the definition of I and the fact that Z̃i, Zi are positive,
we obtain (39).

Control when ξ′n is given by (25). Note that EZ̃2
i = 2∆(Σ2 +σ2(u+)), so by the Cauchy-Schwartz

inequality EZ̃i ≤
√

2∆(Σ2 + σ2(u+)). It follows by BCI, that with probability larger than 1− 1/n

1

ñ

ñ∑
i=1

Z̃i ≤ 2
√

2∆(Σ2 + σ2(u+)).

Then, on ξn, by Equation (39), with probability larger than 1−1/n it holds Sn ≤ 2
√

2∆(Σ2 + σ2(u+)).

Control when ξ′n is given by (22). In this case νε = 0, then Zi = Z̃i which are i.i.d. and
distributed like the absolute value of a centered Gaussian random variable with variance 2∆Σ2. By
Gaussian concentration it then follows that with probability larger than 1− α

max
i
|Zi| ≤ 2

√
2∆Σ2 log(2/α).

Using that EV∼N (0,1)|V | =
√

2
π and BCI, we conclude that with probability larger than 1− α

1

ñ

ñ−4 log(n)∑
i=1

Z̃(i)≥
√

2

π

√
2∆Σ2 −

√
1

nα
2∆Σ2 − 4 log(n)

n

√
2∆Σ2 log(2/α).
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By Equation (39), with probability larger than 1− 29πn−1, it thus holds

Sn ≥
√

∆Σ2

√
π

.

A.3.4 Preliminaries for the proofs of Lemmas 8, 11 and 12

If Y ∼ N (m,Σ2) its moments can be computed through the recursive formula:

E[Y k] = (k − 1)V(Y )E[Y k−2] + E[Y ]E[Y k−1], k ∈ N.

Lemma 13. Let Y ∼ N (m,Σ2), then it holds

E[Y 3] = 3Σ2m+m3, E[Y 4] = 3Σ4 + 6m2Σ2 +m4, E[Y 5] = 15mΣ4 + 10m3Σ2 +m5,

E[Y 6] = 15Σ6 + 45m2Σ4 + 15m4Σ2 +m6, E[Y 7] = 105m4Σ6 + 105m3Σ4 + 21m5Σ2 +m7,

E[Y 8] = 105Σ8 + 420m2Σ6 + 210m4Σ4 + 28m6Σ2 +m8.

Similarly, using the series expansion of the characteristic function, together with the Lévy Kintchine
formula and ε > 0, we get

E[M∆(ε)k] =
dk

duk
exp

(
∆

∫ ε

−ε
(eiux − 1− iux)νε(dx)

)∣∣∣∣
u=0

. (40)

Lemma 14. For ε > 0, set σ2(ε) =
∫ ε
−ε y

2ν(dy) and µk(ε) :=
∫ ε
−ε y

kν(dy), k ≥ 3. We have

E[M∆(ε)] = 0, E[(M∆(ε))2] = ∆σ2(ε), E[(M∆(ε))3] = ∆µ3(ε)

E[(M∆(ε))4] = ∆µ4(ε) + 3∆2σ4(ε), E[(M∆(ε))5] = ∆µ5(ε) + 10∆2σ2(ε)µ3(ε),

E[(M∆(ε))6] = ∆µ6(ε) + ∆2
(
10µ3(ε)2 + 15σ2(ε)µ4(ε)

)
+ 15∆3σ6(ε),

E[(M∆(ε))7] = ∆µ7(ε) + ∆2
(
21σ2(ε)µ5(ε) + 35µ3(ε)µ4(ε)

)
+ 105∆3σ4(ε)µ3(ε),

E[(M∆(ε))8] = ∆µ8(ε) + ∆2
(
35µ4(ε)2 + 56µ3(ε)µ5(ε) + 28σ2(ε)µ6(ε)

)
+ ∆3

(
280σ2(ε)µ3(ε)2 + 210σ4(ε)µ4(ε)

)
+ 105∆4σ8(ε).

More generally if νε is a Lévy measure such that
∫ ε
−ε ν(dx) > ∆−1, then for any k ≥ 2 even integer it

holds that
E[M∆(ε)k] ≤ C̃k

(
∆µk(ε) + (∆σ2(ε))k/2

)
,

where Ck > 0 is a constant that depends only on k.

Proof of Lemma 14. The explicit first 8 moments are computed using Equation (40). We prove now
the last part of the Lemma. Denote M(η, ε) the Lévy process with jump measure νε1[−η,η]c , N(η, ε)

the corresponding Poisson process and let L(η, ε) be the law of the jumps given by
νε1[−η,η]c

λη,ε
.

By Rosenthal’s inequality there exists a constant C̃k, depending on k only, such that for any k ≥ 2,
k even

E[|M∆(η, ε)|k|N∆(η, ε) = N ] ≤ C̃k max
[
NEX∼L(η,ε)[X

k], [NEX∼L(η,ε)[X
2]]k/2

]
.

Averaging over N∆(η, ε) ∼ P(∆λη,ε), we have that

E[|M∆(η, ε)|k] ≤ C̃k max
[
∆λη,εEX∼L(η,ε)[X

k],E[N∆(η, ε)k/2][EX∼L(η,ε)X
2]k/2

]
≤ C̃ ′k max

[
∆λη,εEX∼L(η,ε)[X

k], [1 + ∆λη,ε]
k/2[EX∼L(η,ε)X

2]k/2
]
,
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where we used that for a Poisson random variable it holds for any k′ ≥ 1 that EN∼P(λ)X
k ≤ ck(1+λ)k

′

where ck is a constant that depends on k only. Setting µk(η, ε) =
∫
η≤|x|≤ε y

kν(dy) we have for η small

enough such that ∆λη,ε ≥ 1 (which always exists by assumption)

E[|M∆(η, ε)|k] ≤ C̃ ′′k max
[
∆µk(η, ε), [∆λη,ε]

k/2[EX∼P(η,ε)X
2]k/2

]
≤ C̃ ′′k max

[
∆µk(η, ε), [∆µ2(η, ε)]k/2

]
.

where C̃ ′′k is some constant that only depends on k. Making η converge to 0 gives the result.

Corollary 6. For ε > 0, set σ2(ε) =
∫ ε
−ε y

2ν(dy) and µk(ε) :=
∫ ε
−ε y

kν(dy), k ≥ 2. It holds that

E(X∆ − b∆) = 0, E(X∆ − b∆)3 = ∆µ3(ε), E(X∆ −X∆,n) = 0,

E(X∆ −X∆,n)3 =
(

1− 1

(n− bn/2c)2

)
∆µ3(ε), EZ2

1 = 2∆(Σ2 + σ2(ε))

EZ4
1 = 4∆µ4(ε) + 12(∆(Σ2 + σ2(ε)))2, EZ6

1 ≥ 2∆µ6(ε) + (∆(Σ2 + σ2(ε)))3.

Proof. The result is obtained combining Lemmas 13 and 14 with the independence between (X2∆−X∆)
and X∆.

Corollary 7. For ε > 0, set σ2(ε) =
∫ ε
−ε y

2ν(dy) and µk(ε) :=
∫ ε
−ε y

kν(dy), k ≥ 2. It holds for any
k ≥ 2, k even integer that

E(X∆(ε)− b∆)k ≤ Ck(∆µk(ε) + (∆(Σ2 + σ2(ε)))k/2),

E(Zk1 ) ≤ Ck(∆µk(ε) + (∆(Σ2 + σ2(ε)))k/2),

where Ck is a constant that depends only on k.

Proof of Corollary 7.

E(X∆(ε)− b∆)k = E(M∆(ε) + ΣW∆)k ≤ 2k+1(EM∆(ε))k + ΣkEW k
∆

≤ Ck(∆k/2Σk + ∆µk(ε) + (∆σ2(ε))k/2),

where Ck is a constant that depends on k only.

A.3.5 Proof of Lemma 8

If νε = 0. By Corollary 7, there exist universal constants C6 and C12 such that E[Z6
i ] ≤ C6∆3Σ6

and E[Z12
i ] ≤ C12∆6Σ12. Using that Zi are i.i.d. we get

E[Y n,6] ≤ C6∆3Σ6, V(Y n,6) ≤ C12

n− bn/2c
∆6Σ12.

Therefore, by means of BCI, with probability larger than 1− log(n)−1 conditional to Nn∆(u∗) = 0 we
have

Y n,6 ≤ C6∆3Σ6 +

√
C12 log(n)

(n− bn/2c)
(∆Σ2)6,

which allows to deduce that for n larger than a universal constant, with probability larger than 1 −
log(n)−1, we have Y n,6 ≤ 2C6∆3Σ6.
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If νε 6= 0. By Corollaries 6 and 7, conditional to Nn∆(u∗) = 0, for any i it holds

E[Z6
i |Nn∆(u∗) = 0] ≥ ∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3

E[Z12
i |Nn∆(u∗) = 0] ≤ C12(∆µ12(u∗) + (∆(Σ2 + σ2(u∗)))6),

where C12 is the universal constant from Corollary 7. Using that the Zi are i.i.d. we obtain

E[Y n,6|Nn∆(u∗) = 0] ≥ ∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))6

V(Y n,6|Nn∆(u∗) = 0) ≤ C12

n− bn/2c
(∆µ12(u∗) + (∆(Σ2 + σ2(u∗)))6).

It follows by BCI that with probability larger than 1− log(n)−1, conditional to Nn∆(u∗) = 0, we have

Y n,6 ≥ ∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3 −

√
C12 log(n)

(n− bn/2c)
(∆µ12(u∗) + (∆(Σ2 + σ2(u∗)))6).

Since µ12(u∗) ≤ (u∗)6µ6(u∗), with probability larger than 1−log(n)−1 and conditional to Nn∆(u∗) = 0,
we have

Y n,6 ≥ ∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3 −

√
C12 log(n)

(n− bn/2c)
((u∗)6∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))6).

Finally, by means of the definition of u∗ and for n larger than a universal constant, with probability
larger than 1− log(n)−1 conditional to Nn∆(u∗) = 0, it holds

Y n,6 ≥
∆µ6(u∗) + (∆(Σ2 + σ2(u∗)))3

2
.

A.3.6 Proof of Lemma 11

Note that E[X∆,n] = b∆ and that V(X∆,n) = (n− bn/2c)−1∆(Σ2 + σ2(ε)). Write

ξ′′′n = {|X∆,n − b∆| ≤ rn} where rn := rn(α) =

√
∆(Σ2 + σ2(ε))

α(n− bn/2c)−1
.

By BCI we have for any 0 < α ≤ 1

P(ξ′′′n ) ≥ 1− α. (41)

Conditional on ξ′′′n we have by Corollary 6 and the definition of rn

|E[Y n,3|ξ′′′n ]−∆µ3(ε)| ≤ r3
n + 3∆(Σ2 + σ2(ε))rn ≤ 100

(
∆(Σ2 + σ2(ε))

)3/2
√
nα

,

for α ≥ log(n)−1.

Now we compute V(T
(3)
n ). Since X∆,n and X

j

∆,n are independent, as they are computed on two
independent samples, the elements of the sum are independent of each other conditional on the second
half of the sample. Then, conditional on the second half of the sample

V(T (3)
n |ξ′′′n ) ≤

(
1− 1

(n− bn/2c)2

)2 1

bn/2c2

bn/2c∑
i=1

E
[[

(Xi∆ −X(i−1)∆ −X∆,n)3
]2|ξ′′n]

≤ 16

n
E
[[
Xi∆ −X(i−1)∆ −∆b

]6
+
[
X∆,n −∆b

]6|ξ′′n]
≤ 16

n

[
C6

(
∆µ6(ε) +

[
∆(Σ2 + σ2(ε))

]3)
+ r6

n

]
,
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where C6 is the constant from Corollary 7. Hence, by Equation (41), there exists a universal constant
C such that

V(T (3)
n |ξ′′′n ) ≤ C

n

[
∆µ6(ε) +

[
∆(Σ2 + σ2(ε))

]3]
.

A.3.7 Proof of Lemma 12

The main ingredient of the proof consists in establishing expansions of V(T
(4)
n ). Computations are

cumbersome but not difficult, we only give the main tools here but we do not provide all computations.

By Corollary 6 and since Y n,2 and Y
′
n,2 are independent, we have

E[Y n,2] = 2∆(Σ2 + σ2(ε)), E[Y n,2Y
′
n,2] = 4∆2(Σ2 + σ2(ε))2,

E[Y n,4] = 3× 4∆2(Σ2 + σ2(ε))2 + 4∆µ4(ε).

In particular, E[T
(4)
n ] = ∆µ4(ε). Next, we have V[T

(4)
n ] ≤ 9V[Y n,2Y

′
n,2] + V[Y n,4]. We analyse these

two terms separately.
Since the Zi in the sum composing Y n,4 are i.i.d. we have

V(Y n,4) ≤ 1

bn/2c2

bn/2c∑
i=1

E(Z8
i ) ≤ 1

bn/2c
29C8

(
∆µ8(ε) +

[
∆(Σ2 + σ2(ε))

]4)
≤ C

n

(
∆µ8(ε) +

[
∆(Σ2 + σ2(ε))

]4)
,

where C8 is the constant from Corollary 7, and where C is a universal constant.

Similarly, as the Zi in the sums composing Y n,2 and Y
′
n,2 are i.i.d. we have

V(Y n,2Y
′
n,2) ≤ 4E[Y

2

n,2]V(Y
′
n,2) ≤ 4

C4

bn/4c

(
∆µ4(ε) +

[
∆(Σ2 + σ2(ε))

]2)
×
[ C4

bn/4c

(
∆µ4(ε) +

[
∆(Σ2 + σ2(ε))

]2)
+ 4∆2(Σ2 + σ2(ε))2

]
≤ C ′

n

[[
∆(Σ2 + σ2(ε))

]4
+

∆2µ4(ε)2

n

]
,

where C4 is the constant from Corollary 7, and where C ′ is a universal constant. Combining this with
the last displayed equation, completes the proof.

A.4 Proof of Proposition 2

Let β ∈ (0, 2) and consider a Lévy measure ν that has a density with respect to the Lebesgue measure
such that there exist two positive constants c+ > c− > 0 with

c−
|x|β+1

dx ≤ dν(x) ≤ c+
|x|β+1

dx.

The characteristic function of the increment of this Lévy process with Brownian part of variance Σ2

is Ψ̃ = exp(ψ̃), with

ψ̃(t) = −∆t2Σ2/2 + ∆

∫ ε

−ε
(eitu − 1− itu)dν(u).

The rescaled increment has characteristic function Ψ = exp(ψ), with

ψ(t) = −t2 Σ2

2(Σ2 + σ2(ε))
+ ∆

∫ ε

−ε
(eitu/

√
∆s2 − 1− itu/

√
∆s2)dν(u),
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where σ2(ε) =
∫ ε
−ε u

2dν(u) ∈ [ 2c−
2−β ε

2−β , 2c+
2−β ε

2−β ]. From now on, write s2 = Σ2 + σ2(ε). We have

ψ(t) = −t2 Σ2

2s2
+ ∆

∫ ε

−ε
(eitu/

√
∆s2 − 1− itu/

√
∆s2)dν(u).

Note that the cumulants of X̃∆ are such that µ1(ε) = 0, µ2(ε) = 1 and for all k ≥ 3

|µk(ε)| ∈
[ 2c−
k − β

εk−β

(
√

∆s)k
,

2c+
k − β

εk−β

(
√

∆s)k

]
.

In the sequel we show that Assumption (HΨ(ε)) holds, for that we use the assumption

s2∆/ε2 ≥ C log(n), (42)

where C = c̃−1 > 0 is a large enough constant, i.e. a := ε
s
√

∆
≤ c̃√

log(n)
.

A.4.1 Preliminary technical Lemmas

Lemma 15. There exists cβ > 0 a constant that depends only on β, c+, c− such that the following
holds

Re(ψ(t)) ≤ −cβt21{tε≤√∆s2} − cβ
∆tβ
√

∆s2
β

1{tε>
√

∆s2} −
Σ2

2s2
t21{tε>

√
∆s2}, t > 0.

where Re(y) is the real part of y.

Proof of Lemma 15. It holds

ψ(t) = −t2 Σ2

2s2
+ ∆

∫ ε

−ε
(eitu/

√
∆s2 − 1− itu/

√
∆s2)dν(u) = −t2 Σ2

2s2
+ I.

We now focus on the study of I. Doing the change of variable v = tu/
√

∆s2 we get

I = ∆
√

∆s2

∫ tε/
√

∆s2

−tε/
√

∆s2
(eiv − 1− iv)

dν(v
√

∆s2/t)

t
.

If tε ≤
√

∆s2, for 0 ≤ v ≤ 1, there exists an absolute constant c > 0 with Re(eiv−1−iv) = cos(v)−1 ≤
−cv2, then,

Re(I) ≤ 2∆
√

∆s2c−t
β

∫ tε/
√

∆s2

0

−cv2

(v
√

∆s2)β+1
dv

= −2∆cc−
tβ

√
∆s2

β

∫ tε/
√

∆s2

0

v1−βdv = − 2cc−
2− β

t2ε2−β

s2
.

Since σ2(ε) ∈ [2c−
ε2−β

2−β , 2c+
ε2−β

2−β ], whenever tε ≤
√

∆s2 we have

Re(ψ(t)) ≤ −cc−
c+

σ2(ε)

s2
t2 − Σ2

s2
t2 ≤ −

(cc−
c+
∧ 1
)
t2,

using s2 = σ2(ε) + Σ2.
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If tε >
√

∆s2, then Re(eiv − 1− iv) = cos(v)− 1 ≤ 0 for any v ∈ R then,

Re(I) ≤ 2∆c−
tβ

√
∆s2

β

∫ tε/
√

∆s2

0

cos(v)− 1

vβ+1
dv ≤ 2∆c−

tβ
√

∆s2
β

∫ 1

0

cos(v)− 1

|v|β+1
dv

≤ −2∆cc−
tβ

√
∆s2

β

∫ 1

0

v1−βdv = − 2∆cc−

(2− β)
√

∆s2
β
tβ ,

where we used the previous bound on cos(v). It follows that whenever tε ≥
√

∆s2

Re(ψ(t)) ≤ −t2 Σ2

2s2
− 2∆

cc−
2− β

tβ
√

∆s2
β
.

Putting together the cases {tε >
√

∆s2} and {tε ≤
√

∆s2} completes the proof.

Lemma 16. There exists cβ > 0 a constant that depends only on β, c+, c− such that the following
holds for t > 0

|ψ(1)(t)| ≤ cβt1{tε≤√∆s2} + cβ∆
tβ−1

√
∆s2

β
1{tε>

√
∆s2} +

Σ2

s2
t1{tε>

√
∆s2}.

Proof of Lemma 16. First, it holds

Ψ(1)(t) = −Σ2

s2
t+ ∆

∫ ε

−ε

iu√
∆s2

(eiut/
√

∆s2 − 1)dν(u)

Proof is similar as the one of Lemma 15 replacing eitv − 1 − itv with iveitv − iv that is of order tv2

close to 0, leading to

|ψ(1)(t)| ≤ tΣ
2

s2
+
cβtσ

2(ε)

s2
1{tε≤

√
∆s2} + cβ∆

tβ−1

√
∆s2

β
1{tε>1}.

Lemma 17. For any integer d ≥ 2 we have

|ψ(d)(t)| ≤ cβ
( ε√

∆s2

)d−2

+
Σ2

s2
1{d=2} ≤ cβ

( ε√
∆s2

)d−2

:= cβa
d−2,

where cβ > 0 is a constant that depends only on β, c+, c−.

Proof of Lemma 17. The proof follows since for any m ≥ 2

ψ(m)(t) =
∆

√
∆s2

m

∫ ε

−ε
eitu/

√
∆s2(ui)mdν(u).

We use the change of variable setting v = tu/
√

∆s2, we upper bound |eitu| by 1 and use that β < 2.

We remind that a := ε√
∆s2

. Then, Ka2 = c2int log n ε√
∆s2
≤ c2intc̃2 =

c2int
C

2 ≤ 1 by Equation (42) and

for C ≥ cint.
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Lemma 18. Assume that C ≥ cint (which implies Ka2 ≤ 1), there exists Cβ > 0 that depends only
on β, c+, c− such that the following holds. For all m ≤ K∣∣∣ (exp(ψ))(m)

exp(ψ)

∣∣∣ ≤ Cmβ fm,
where

f(t) = (cβ ∨ 1)
√

∆s2ε−11{tε/
√

∆s2≤1} + (cβ ∨ 1)∆
tβ−1

√
∆s2

β
1{tε>

√
∆s2} +

Σ2

s2
t1{tε>

√
∆s2},

where cβ is defined in Lemma 16.

Proof of Lemma 18. The proof is similar to the proof of Lemma 10 considering instead the induction

hypothesis H(m) : ∀d ∈ N, |R(d)
m | ≤

(
4(cβ ∨ 1)

)m
fm(1 +ma)d. Assumption H(1) holds since R1 = ψ(1)

and Lemma 17 gives |ψ(d)| ≤ cβa
d−2 for d larger than 2, to prove the induction we use Lemma 17,

0 ≤ f−1 ≤ a and ma2 ≤ 1.

Set tmin = c log(n).

Lemma 19. Assume that 1 ≤ c2int ≤ c (which implies K < tmin). For any m ≤ K, and any
t ∈ [tmin ∧ a−1, a−1] there exists a constant Cβ > 0, depending only on β, c+, c−, such that∣∣∣ (exp(ψ))(m)

exp(ψ)

∣∣∣ ≤ Cmβ f̃m,
where f̃(t) = (cβ ∨ 1)t, where cβ is defined in Lemma 16.

Proof of Lemma 19. The proof is similar to the proof of Lemma 10 considering instead the induction

hypothesis, for Cβ ≥ 4 and t ∈ [tmin ∧ a−1, a−1], H(m) : ∀d ∈ N, |R(d)
m | ≤ Cmβ f̃m(1 +m)d. The results

holds since for all m ≤ K, we have by assumption that (1 +m) ≤ 1 +K ≤ 2tmin.

A.4.2 Proof Proposition 2

First part of the integral ta > 1. First, on the interval t ∈ [ 1
a ,∞), by Lemma 18 there exists a

constant cβ that depends only on β, c+, c− such that

f(t) ≤ cβ
[
∆

tβ−1

√
∆s2

β
+
tΣ2

s2

]
.

There exists by Lemma 15 a constant c′β > 0 that also depends only on β, c+, c− such that

| exp(ψ(t))| ≤ exp
(
− 2c′β

( t2Σ2

s2

)
∨
( ∆tβ
√

∆s2
β

))
, ta > 1,

and also such that
| exp(ψ(t))| ≤ exp(−2c′β/a

2), ta > 1.

Indeed, the bound on Re(ψ) given in this lemma is (up to a multiplicative constant) decreasing with
t, and at the junction point t = a−1 between the two parts of the upper bound it holds

∆
a−β
√

∆s2
β

= ∆ε−β =
ε2−β

s2
a−2 ≥ 2c−

2− β
σ2

s2
a−2.

43



Therefore, by Equation (42)

| exp(ψ(t))| ≤ n−C
2
c′β := n−κ(C), ta > 1. (43)

Using the previous inequalities, it follows from Lemma 18 that there exists Cβ > 0 depending only on
β, c+, c− such that∫ +∞

(1/a)∨(c log(n))

|Ψ(m)(t)|2dt ≤ exp(−c′β/a2)

∫ +∞

1/a

C2m
β c2mβ

[ ∆tβ−1

√
∆s2

β
+
tΣ2

s2

]2m
exp

(
− c′β

( ∆tβ
√

∆s2
β

+
t2Σ2

s2

))
dt

≤ exp(−c′β/a2)(Cβcβ)2m

∫ +∞

1/a

[ ∆tβ−1

√
∆s2

β

]2m
exp

(
− c′β

( t2Σ2

s2

)
∨
( ∆tβ
√

∆s2
β

))
dt

+ exp(−c′β/a2)(Cβcβ)2m

∫ +∞

1/a

[ tΣ2

s2

]2m
exp

(
− c′β

( t2Σ2

s2

)
∨
( ∆tβ
√

∆s2
β

))
dt

: = A1 +A2.

We first consider the term A1. By definition of A1, we immediately get

A1 ≤ exp(−c′β/a2)(Cβcβ)2m

∫ +∞

1/a

[ ∆tβ
√

∆s2
β
× tβ−2

]m
exp

(
− c′β

∆tβ
√

∆s2
β

)
dt

using β < 2 and (42) which implies 1/a ≥
√
C log(n) > 1 we obtain

A1 ≤ exp(−c′β/a2)(Cβcβ)2m

∫ +∞

1/a

[ ∆tβ
√

∆s2
β
× a2−β

]m
exp

(
− c′β

∆tβ
√

∆s2
β

)
dt

≤ exp(−c′β/a2)(Cβcβ)2m

∫ +∞

1/a

[ ∆tβ
√

∆s2
β

]m
exp

(
− c′β

∆tβ
√

∆s2
β

)
dt.

Consider the change of variable, v = ∆tβ/
√

∆s2
β
, and use the (43) to get

A1 ≤ n−κ(C)(Cβcβ)2m

√
∆s2

β∆1/β

∫ +∞

∆/εβ
vm+1/β−1 exp(−c′βv)dv.

Finally,

A1 ≤ n−κ(C)

√
∆s2

β∆1/β
(Cβcβ)2m(c′β)−m−1/βΓ(m+ 1/β).

It follows that for any m ≤ K = c2int log(n), ∆ncmax ≥ 1 and log(s)/ log(n) ≤ cmax we have if C is
large enough depending only on cint, β, c+, c−, cmax (see (43)) that

A1 ≤ n−4m!.

Now, we turn to the term A2. Note that if Σ = 0 then A2 = 0, in the sequel let Σ 6= 0. It holds

A2 ≤

[
exp(−c′β/a2)(Cβcβ)2m

∫ +∞

s2/Σ2∨1/a

[ tΣ2

s2

]2m
exp

(
−
(
c′β
t2Σ2

s2

))
dt

]

+

[
exp(−c′β/a2)(Cβcβ)2m

∫ s2/Σ2∨1/a

1/a

[ tΣ2

s2

]2m
exp

(
−
(
c′β

∆tβ
√

∆s2
β

))
dt

]
:= A2,1 +A2,2.
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We first consider the term A2,1, using (35), the fact that s2 ≥ Σ2 and a ≥ 1 (from (42))

A2,1 = exp(−c′β/a2)(Cβcβ)2m
[Σ2

s2

]2m ∫ +∞

s2/Σ2

t2m exp(−c′β
t2Σ2

s2
)dt

≤ exp(−c′β/a2)(Cβcβ)2m
[Σ2

s2

]2m
exp(−c′β

s2

Σ2
)

∫ +∞

0

t2m exp(−c′β
t2Σ2

2s2
)dt

≤ exp(−c′β/a2)(Cβcβ)2m
[Σ2

s2

]2m
exp(−c′β

s2

Σ2
)× 2

√
2π2mm!

[ s2

c′βΣ2

]m+ 1
2

≤ exp(−c′β/a2)
[ s2

Σ2

]1/2
exp(−c′β

s2

Σ2
)× 10√

c′β

[2C2
βc

2
β

c′β

]m
m!.

Then, from (43) and for a constant C large enough depending only on β, c+, c−, cint, it holds for any
m ≤ K = c2int log(n) that A2,1 ≤ n−4m!. Now, we consider the second term,

A2,2 = exp(−c′β/a2)(Cβcβ)2m
[Σ2

s2

]2m ∫ s2/Σ2∨1/a

1/a

t2m exp(−c′β
∆tβ
√

∆s2
β

)dt

≤ exp(−c′β/a2)(Cβcβ)2m

∫ s2/Σ2∨1/a

1/a

exp(−c′β
∆tβ
√

∆s2
β

)dt.

We apply the change of variable v = ∆tβ/
√

∆s2
β

A2,2 ≤ exp(−c′β/a2)

√
∆s2

β

β∆1/β
(Cβcβ)2m

∫ +∞

∆/εβ
(

√
∆s2

β

∆
v)1/β−1 exp(−c′βv)dv

≤ exp(−cβ/a2)
1

β
(Cβcβ)2m

√
∆s2

∆1/β
(c′β)−1/β+1Γ(1/β).

So for any m ≤ K = c2int log(n), ncmax∆ ≥ 1 and log s/ log n ≤ cmax we have if C is large enough
depending only on cint, β, c+, c−, cmax (see (43)) that

A2,2 ≤ n−4m!.

Gathering both bounds on A2,1, A2,2, for any m ≤ K = c2int log(n) we have if C large enough
depending only on cint, β, c+, c−, cmax that

A2 = A2,1 +A2,2 ≤ 2n−4m!.

Finally, gathering all terms, we derive that (HΨ(ε)) holds on the set ta ≥ 1∫ +∞

(1/a)∨(c log(n))

|Ψ(m)(t)|2dt ≤ A1 +A2 ≤ 3n−4m!, m ≤ K = c2int log n,

which is the desired result.

Second part of the integral ta ≤ 1. Whenever 1/a ≤ tmin = c log(n), this part of the integral is

0. In what follows, assume that 1/a > tmin = c log(n). We have by definition of f̃ in Lemma 19 that

there exists cβ > 0 depending only on β, c+, c− such that f̃(t) ≤ cβt. Moreover, Lemma 15 implies that
there exists c′β > 0 depending only on β, c+, c− such that | exp(ψ(t))| ≤ exp(−2c′βt

2
min), t ∈ [tmin, 1/a].

Then, by (42)

| exp(ψ(t))| ≤ n−c
2c′β := n−κ(c), t ∈ [tmin, 1/a]. (44)
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This together with Lemma 19 imply that there exists a constant Cβ > 0 that depends only on β, c+, c−
such that ∫ 1/a

c log(n)

|Ψ(m)(t)|2dt ≤ C2m
β exp(−c′βt2min)

∫ 1/a

c log(n)

(
cβt
)2m

exp
(
− c′βt2

)
dt.

Using (35) and (44) we get∫ 1/a

c log(n)

|Ψ(m)(t)|2dt ≤ exp(−cβt2min)C2m
β (2cβ)2m × 2

√
2π2mm!(c′β)−m+1/2

≤ n−κ(c)m!× 10
√
c′β(4Cβcβ/

√
c′β)2m.

We conclude taking c ≥ 0 a large enough constant depending only on β, c+, c−, cint (see (44))∫ 1/a

c log(n)

|Ψ(m)(t)|2dt ≤ n−4m!, m ≤ K = c2int log(n).

Conclusion. Putting both parts of the integral together we have∫ +∞

c log(n)

|Ψ(m)(t)|2dt ≤ 3n−4m!(s+ 1).

This finishes the proof of Proposition 2.

A.5 Proof of Proposition 1

Let ε > 0 and consider a Lévy measure ν. Assume that Σ is such that Σ ≥ cΣσ(ε)
√

log(n) where
cΣ > 0 is an absolute constant. Consider the events for i ≤ n

Ai =
{∣∣∣Mi∆(ε)−M(i−1)∆(ε)√

∆(Σ2 + σ2(ε))

∣∣∣ ≤ csup
cΣ

}
.

By the equation leading to Equation (29) we immediately get for λ0,ε ≥ 24 log(n)/∆ and since c̃ ≤ 1

P
( n⋂
i=1

∣∣∣Mi∆(ε)−M(i−1)∆(ε)√
∆σ2(ε)

∣∣∣ ≥ csup√log n
)
≤ 2n−2.

Then, it follows from Σ ≥ cΣσ(ε)
√

log(n) that P(
⋂
iAi) ≥ 1−2/n2. Note that the proof of Theorem 2

would hold exactly in the same way if one consider (Ic)n ∩ (
⋂
iAi) instead of (Ic)n. For this reason,

we focus only on the event
⋂
iAi in what follows.

The rescaled increment X̃∆(ε), on the event
⋂
iAi, has characteristic function given by Ψ = Φ1Ψ2,

where Φ1(t) = exp(− t2Σ2

2(Σ2+σ2(ε)) ) and Ψ2 is the characteristic function of the rescaled jump component

M̃∆(ε) on A1. Namely, for dµ being the measure corresponding to the distribution of the rescaled

jump component M̃∆(ε) restricted to A1, it holds

Ψ2(t) =

∫ csup/cΣ

−csup/cΣ
exp(iut)dµ(s

√
∆u),

where s2 = Σ2 + σ2(ε).

Lemma 20. For any d ∈ N, it holds |Ψ(d)
2 (t)| ≤

(
csup/cΣ

)d
.
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Proof. It immediately follows from
∫
dµ(s
√

∆u) = 1 and (eiut)(d) = (ui)deuit.

Using that

Ψ(k)(t) =
∑
j

(
k

j

)
Φ

(j)
1 Ψ

(k−j)
2 ,

and Lemma 20 imply

|Ψ(k)(t)|2 ≤
(

1 +
csup
cΣ

)2k

max
j≤k
|Φ(j)

1 |2,

From Lemmas 19 and 18, with c+ = c− = 0, β = 1, we get

|Φ(j)
1 (t)|2 ≤ exp(−c1t2/2)t2jcj2,

where c1, c2 > 0 depend only on csup, cΣ. Therefore, for any j ∈ N we have proceeding as in the bound
of A2,1 in the proof of Proposition 2 that∫ +∞

c log(n)

|Φ(j)
1 (t)|2dt ≤ j!Cj1 exp(−c3c log(n)2),

where C1, c3 > 0 depend only on csup, cΣ. This concludes the proof, taking c large enough depending
only on csup, cΣ, cint.

B Some bounds in total variation distance

Lemma 21. If µ1, µ2 ∈ R, 0 ≤ Σ2
1 ≤ Σ2

2 and Σ2 ∈ R>0, then

‖N (µ1,Σ
2
1)⊗n −N (µ2,Σ

2
2)⊗n‖TV ≤ 1−

(
Σ1

Σ2

)n
+
√
n
|µ1 − µ2|√

2πΣ2
2

, ∀n ≥ 1.

Proof. Since the Lemma is trivially true if Σ1 = 0 we can assume that Σ1 > 0 without loss of generality.
By triangular inequality, for any n ≥ 1 we have:

‖N (µ1,Σ
2
1)⊗n−N (µ2,Σ

2
2)⊗n‖TV ≤ ‖N (µ1,Σ

2
1)⊗n−N (µ1,Σ

2
2)⊗n‖TV +‖N (µ1,Σ

2
2)⊗n−N (µ2,Σ

2
2)⊗n‖TV .

Denote by ϕn(x1, . . . , xn) = 1
(2π)n/2

e−
x2
1+···+x2

n
2 the density of a standard normal distribution on Rn

and observe that

‖N (µ1,Σ
2
1)⊗n −N (µ1,Σ

2
2)⊗n‖TV = ‖N (0,Σ2

1)⊗n −N (0,Σ2
2)⊗n‖TV

=
1

2

∫
Rn

∣∣∣∣ϕn(z1, . . . , zn)−
(Σ1

Σ2

)n
ϕn

(Σ1

Σ2
z1, . . . ,

Σ1

Σ2
zn

)∣∣∣∣dz1 . . . dzn

≤ 1

2

∫
Rn

∣∣∣1− (Σ1

Σ2

)n∣∣∣ϕn(z1, . . . , zn)dz1 . . . dzn

+
1

2

∫
Rn

(Σ1

Σ2

)n∣∣∣ϕn(z1, . . . , zn)− ϕn
(Σ1

Σ2
z1, . . . ,

Σ1

Σ2
zn

)∣∣∣dz1 . . . dzn

=
1−

(
Σ1

Σ2

)n
2

+
1

2

∫
Rn

(Σ1

Σ2

)n(
ϕn

(Σ1

Σ2
z1, . . . ,

Σ1

Σ2
zn

)
− ϕn(z1, . . . , zn)

)
dz1 . . . dzn

=
1−

(
Σ1

Σ2

)n
2

+
1

2

(Σ1

Σ2

)n((Σ2

Σ1

)n
− 1
)

= 1−
(Σ1

Σ2

)n
.
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Let U be any n× n orthonormal matrix with first column given by
(

1√
n
, . . . , 1√

n

)t
, set α = µ1−µ2

Σ2
and

β = U t(α, . . . , α)t = (
√
nα, 0, . . . , 0)t. Observe that ϕn(Ux) = ϕn(x) for any x ∈ Rn. We have:

‖N (µ1,Σ
2
2)⊗n −N (µ2,Σ

2
2)⊗n‖TV =

1

2Σn2

∫
Rn

∣∣∣∣ϕn(x1 − µ1

Σ2
, . . . ,

xn − µ1

Σ2

)
− ϕn

(x1 − µ2

Σ2
, . . . ,

xn − µ2

Σ2

)∣∣∣∣dx1 . . . dxn

=
1

2

∫
Rn

∣∣∣∣ϕn(z1 − α, . . . , zn − α
)
− ϕn(z1 . . . , zn)

∣∣∣∣dz1 . . . dzn.

Let z = (z1, . . . , zn)t. By the change of variable y = U tz we get∫
Rn

∣∣∣∣ϕn(z1 − α, . . . , zn − α
)
− ϕn(z1 . . . , zn)

∣∣∣∣dz1 . . . dzn

=

∫
Rn
|ϕn
(
Uy − (α, . . . , α)t

)
− ϕn

(
Uy
)
|dy1 . . . dyn

=

∫
Rn
|ϕn(U(y − β))− ϕn(Uy)|dy1 . . . dyn

=

∫
Rn
|ϕn(y1 −

√
nα, y2, . . . , yn)− ϕn(y1, . . . , yn)|dy1 . . . dyn

=

∫
Rn

∣∣∣∣ϕ1(y1 −
√
nα)

n∏
j=2

ϕ1(yj)−
n∏
j=1

ϕ1(yj)

∣∣∣∣dy1 . . . dyn

=

∫
R
|ϕ1(y1 −

√
nα)− ϕ1(y1)|dy1 = 2

∫ √
n|α|
2

−
√
n|α|
2

ϕ1(y)dy ≤ 2
√
n|α|√
2π

.

We deduce that

‖N (µ1,Σ
2
2)⊗n −N (µ2,Σ

2
2)⊗n‖TV ≤

√
n|µ1 − µ2|√

2πΣ2

.

Lemma 22. Let (Xi)i≥1 and (Yi)i≥1 be sequences of i.i.d. random variables a.s. different from zero
and N , N ′ be two Poisson random variables with N (resp. N ′) independent of (Xi)i≥1 (resp. (Yi)i≥1).
Denote by λ (resp. λ′) the mean of N (resp. N ′). Then, for any n ≥ 1∥∥∥∥L( N∑

i=1

Xi

)⊗n
−L

( N ′∑
i=1

Yi

)⊗n∥∥∥∥
TV

≤ n(λ ∧ λ′)‖X1 − Y1‖TV + 1− e−n|λ−λ
′|.

Proof. The proof is a minor extension of the proof of Theorem 13 in [14]. For the ease of the reader
we repeat here the essential steps. Without loss of generality, let us suppose that λ ≥ λ′ and write
λ = α+ λ′, α ≥ 0. By triangle inequality,∥∥∥∥L( N∑

i=1

Xi

)⊗n
−L

( N ′∑
i=1

Yi

)⊗n∥∥∥∥
TV

≤
∥∥∥∥L( N∑

i=1

Xi

)⊗n
−L

( N ′′∑
i=1

Xi

)⊗n∥∥∥∥
TV

+

∥∥∥∥L( N ′′∑
i=1

Xi

)⊗n
−L

( N ′∑
i=1

Yi

)⊗n∥∥∥∥
TV

, (45)

where N ′′ is a random variable independent of (Xi)i≥1 and with the same law as N ′.
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Let P be a Poisson random variable independent of N ′′ and (Xi)i≥1 with mean α. Then,∥∥∥∥L( N∑
i=1

Xi

)⊗n
−L

( N ′′∑
i=1

Xi

)⊗n∥∥∥∥
TV

=

∥∥∥∥L(N ′′+P∑
i=1

Xi

)⊗n
−L

( N ′′∑
i=1

Xi

)⊗n∥∥∥∥
TV

≤
∥∥∥∥δ0 −L

( P∑
i=1

Xi

)⊗n∥∥∥∥
TV

(46)

= P
(( P∑

i=1

Xi

)⊗n
6= (0, . . . , 0)

)
≤ 1− e−nα,

where (46) follows by Lemma 23.
In order to bound the second addendum in (45) we condition on N ′ and use again Lemma 23 joined

with the fact that L (N ′) = L (N ′′). Denoting by N ′1, . . . , N
′
n n independent copies of N ′ and by Xi,j

(resp. Yi,j), j = 1, . . . , n and i ≥ 1, n independent copies of Xi (resp. Yi), we have:∥∥∥∥L( N ′′∑
i=1

Xi

)⊗n
−L

( N ′∑
i=1

Yi

)⊗n∥∥∥∥
TV

=
∑

m1≥0,...,mn≥0

∥∥∥∥L( m1∑
i=1

Xi,1, . . . ,

mn∑
i=1

Xi,n

)
−L

( m1∑
i=1

Yi,1, . . . ,

mn∑
i=1

Yi,n

)∥∥∥∥
TV

P(N ′1 = m1) . . .P(N ′n = mn)

≤
∑

m1≥0,...,mn≥0

(
m1‖X1,1 − Y1,1‖TV + · · ·+mn‖X1,n − Y1,n‖TV

)
P(N ′1 = m1) . . .P(N ′n = mn)

= ‖X1 − Y1‖TV (E[N ′1] + · · ·+ E[N ′n]) = nλ′‖X1 − Y1‖TV .

Lemma 23. Let X, Y and Z be three random variables on RN , N ≥ 1, with Z independent of X and
Y . Then,

‖L (X + Z)−L (Y + Z)‖TV ≤ ‖X − Y ‖TV . (47)

Let (Xi)
m
i=1 and (Yi)

m
i=1 be independent random variables on (RN ,B(RN )), N ≥ 1. Then, for any

m ≥ 1, ∥∥∥∥ m∑
i=1

Xi −
m∑
i=1

Yi

∥∥∥∥
TV

≤
m∑
i=1

‖Xi − Yi‖TV . (48)

Proof. To prove (47) one can use the variational definition of the total variation. Denoting by PA the
law of a random variable A, it holds

2‖L (X + Z)−L (Y + Z)‖TV = sup
‖f‖∞≤1

∫
f(x)

(
PX+Z(dx)− PY+Z(dx)

)
= sup
‖f‖∞≤1

∫
f(x)

(∫
PZ(dx− z)(PX(dz)− PY (dz))

)
= sup
‖f‖∞≤1

∫ ∫
f(x)PZ(dx− z)(PX(dz)− PY (dz)).

Denote by gf (z) =
∫
f(x)PZ(dx− z) and observe that gf is measurable with ‖gf‖∞ ≤ ‖f‖∞. It then

follows that

sup
‖f‖∞≤1

∫
gf (z)(PX(dz)− PY (dz)) ≤ sup

‖g‖∞≤1

∫
g(z)(PX(dz)− PY (dz)) = 2‖X − Y ‖TV .
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Equation (48) is straightforward using (47). Indeed, by induction, it suffices to prove the case n = 2.

Let X̃2 be a random variable equal in law to X2 and independent of Y1 and of X1. By triangle
inequality we deduce that

‖L (X1 +X2)−L (Y1 + Y2)‖TV ≤ ‖L (X1 +X2)−L (Y1 + X̃2)‖TV + ‖L (Y1 + X̃2)−L (Y1 + Y2)‖TV

and by means of (47) we conclude that

‖L (Y1 + X̃2)−L (Y1 + Y2)‖TV ≤ ‖X̃2 − Y2‖TV = ‖X2 − Y2‖TV
‖L (X1 +X2)−L (Y1 + X̃2)‖TV ≤ ‖X1 − Y1‖TV .

Lemma 24. Let P and Q be probability density. For any n ≥ 1 it holds:

‖P⊗n −Q⊗n‖TV ≤
√

2n‖P −Q‖TV .

Proof. Let H(P,Q) denote the Hellinger distance between P and Q, i.e.

H(P,Q) =

√√√√∫ (√dP

dµ
−

√
dQ

dµ

)2

dµ

where µ it is a common dominating measure for P and Q. It is well known (see e.g. Lemma 2.3 and
Property (iv) page 83 in [19]) that

H2(P,Q)

2
≤ ‖P −Q‖TV ≤ H(P,Q), H2(P⊗n, Q⊗n) = 2

(
1−

(
1− H2(P,Q)

2

)n)
.

In particular H2(P⊗n, Q⊗n) ≤ nH2(P,Q) and ‖P⊗n − Q⊗n‖TV ≤
√
nH2(P,Q) ≤

√
2n‖P −Q‖TV ,

as desired.
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