Qm 1 φm 1 (xT 1 , S2), •

Maintenance optimization

In order to optimize some criterion minimize a cost: functioning, maintenance, . . . maximize a reward: availability, . . .

Our approach

propose a general model for the evolution of the equipment state based on PDMPs formalize the maintenance problem as an impulse control problem for PDMPs derive a numerical scheme to approximate the value function (with error bounds) compute the approximate optimal maintenance cost Piecewise deterministic Markov processes [Davis 93] General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Hybrid process X t = (m t , x t ) discrete mode m t ∈ {1, 2, . . . , p} Euclidean state variable x t ∈ R n 

1 = S 1 X t = m, φ m (x , t) , P (m,x ) (S 1 > t) = e -t 0 λm φm(x ,s) ds Em x T1
Q m φ m (x , T 1 ), • E m1 Em x T1 Q m φ m (x, T 1 ), • xT 1 XIV Colloque Franco-Roumain de Mathématiques Appliquées Bordeaux August 2018 6/31
Dynamics X t follows the flow until the next jump time

T 2 = T 1 + S 2 X T 1 +t = m 1 , φ m 1 (x T 1 , t) , t < S 2 Em 1 E m x T 1 Qm φm(x, T1), • x T1

S2
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Dynamics

Post-jump location (m 2 , x T 2 ) selected by Markov kernel

Q m 1 φ m 1 (x T 1 , S 2 ), • . . . Em 1 E m x T 1 Q m φ m (x, T 1 ), • x T1 S 2
Embedded Markov chain Mathematical definition

Strategy S = (τ n , R n ) n≥1 τ n intervention times R n new positions after intervention
Value function Value function Dynamic programming Costa, Davis, 1988 For any function g ≥ cost of the no-impulse strategy

J S (x ) = E S x ∞ 0 e -αs f (Y s )ds + ∞ i=1 e -ατ i c(Y τ i , Y τ + i ) V(x ) = inf S∈S J S (x ) f , c cost functions, α discount factor Y t controlled
J S (x ) = E S x ∞ 0 e -αs f (Y s )ds + ∞ i=1 e -ατ i c(Y τ i , Y τ + i ) V(x ) = inf S∈S J S (x )
v 0 = g v n = L(v n-1 ) v n (x ) ---→ n→∞ V(x )
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Dynamic programming operator Example: N (0, I 2 ): Example: N (0, I 2 ):

L(w )(x ) = L(Mw , w )(x ) = inf t≤t * (x ) E x F (x , t) + e -αS 1 w (Z 1 )1 {S 1 <t∧t * (x )} +e -αt∧t * (x ) Mw (φ(x , t ∧ t * (x ))1 {S 1 ≥t∧t * (x )} ∧E x F (x , t * (x )) + e -αS 1 w (Z 1 ) with F (x , t) = t∧t * (x ) 0 e -αs-Λ(x ,s) f φ(x , s) ds Mw (x ) = inf y ∈U c(x , y ) + w (y )
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 XIV Colloque Franco-
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Horizon and control set

finite set U of new starting points select horizon N such that v N (x ) -V(x ) small enough -→ numerical approximation of v N (x )

Main idea

Replace the dynamic programming iteration of functions by an iteration of random variables Backward dynamic programming

Change of notation

For a well chosen function g and large enough N

v N = g v n = L(v n+1 ) v 0 (x ) V(x )
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Dynamic programming

Markov property Recursion on random variables

v n (Z n ) = L(Mv n+1 , v n+1 )(Z n ) = inf t≤t * (Zn) E F (Z n , t) + e -αS n+1 v n+1 (Z n+1 )1 {S n+1 <t∧t * (Zn)} +e -αt∧t * (Zn) Mv n+1 φ(Z n , t ∧ t * (Z n )) 1 {S n+1 ≥t∧t * (Zn)} | Z n ∧E F (Z n , t * (Z n )) + e -αS n+1 v n+1 (Z n+1 ) | Z n with F (x , t) = t∧t * (x ) 0 e -αs-Λ(x ,s) f φ(x , s) ds Mv n+1 (x ) = inf y ∈U c(x , y ) + v n+1 (y )
v n (Z n ) expression of v n+1 (Z n+1 ), Z n , S n+1 + v n+1 (y ) for all y in U Numerical scheme first compute recursively v n (y ) approximation of v n (y ) for all y in U then compute recursively v n ( Z n ) approximation of v n (Z n )

Discretization

In the expression of operator L replace inf by min over a discretized grid Step 1: Exact simulation of the PDMP Step 4: Calibrating N the number of allowed jumps + interventions

Z n , Z n+1 ,
Horizon N (number of iterations) 

  Local characteristics for each mode m E m open subset of R d Flow φ m : R d × R → R d deterministic motion between jumps, one-parameter group of homeomorphisms Intensity λ m : E m → R + intensity of random jumps Markov kernel Q m on (E m , B(E m )) selects the post-jump location Dynamics X t follows the deterministic flow until the first jump time T

f

  unavailability cost proportional to time spend in failed state c fixed cost for going to the workshop + repair < change costs α = 0 (finite horizon)

  S n+1 by their quantized approximation starting fromZ 0 ∈ U n (Z n ) expression of v n+1 (Z n+1 ), Z n , S n+1 + v n+1 (y ) for all y in U Numerical scheme first compute recursively v n (y ) approximation of v n (y ) for all y in U then compute recursively v n ( Z n ) approximation of v n (Z n )

	Recursion on random variables Properties of the numerical scheme	
	the quantized process has no Markov property → a different approximation of L for each time step and each starting point
	Under Lipschitz regularity assumption, convergence of the	
	scheme with errors bounds depending on	
	XIV Colloque Franco-Roumain de Mathématiques Appliquées Discretization In the expression of operator L replace inf by min over a discretized grid Z n , Z n+1 , S n+1 by their quantized approximation starting Bordeaux August 2018 from Z 0 = x XIV Colloque Franco-Roumain de Mathématiques Appliquées Bordeaux August 2018 the time discretization step inf → min the quantization error (Z XIV Colloque Franco-Roumain de Mathématiques Appliquées Bordeaux August 2018	23/31 23/31 24/31

v n , S n ) → ( Z n , S n )

Dynamics

Starting point

Step 2 : Discretisation of the control st U Step 5: Approximation of the value function