Soundness in negotiations
Javier Esparza, Denis Kuperberg, Anca Muscholl, Igor Walukiewicz

To cite this version:
Javier Esparza, Denis Kuperberg, Anca Muscholl, Igor Walukiewicz. Soundness in negotiations. Logical Methods in Computer Science, 2018, 10.4230/LIPIcs. hal-01891179

HAL Id: hal-01891179
https://hal.science/hal-01891179
Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Soundness in negotiations

Javier Esparza¹, Denis Kuperberg¹, Anca Muscholl², and Igor Walukiewicz³

¹ Technical University of Munich
² Technical University of Munich, IAS & CNRS†
³ University of Bordeaux, CNRS, LaBRI

Abstract

Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively, they can be seen as a model of concurrency with synchronized choice as communication primitive. Well-designed negotiations must be sound, meaning that, whatever its current state, the negotiation can still be completed. In a former paper, Esparza and Desel have shown that deciding soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is deterministic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic negotiations, but left the complexity of the soundness problem open.

In the first part of this paper we study two further analysis problems for sound acyclic deterministic negotiations, called the race and the omission problem, and give polynomial algorithms. We use these results to provide the first polynomial algorithm for some analysis problems of workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova.

In the second part we solve the open question of Esparza and Desel’s paper. We show that soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking soundness is already NP-complete for slightly more general classes.

1998 ACM Subject Classification D.1.3, D.3.2, D.2.2, F.2.0, H.4.1

Keywords and phrases Negotiations, workflows, soundness, verification, concurrency.

Digital Object Identifier 10.4230/LIPIcs...
of the almost 2000 workflow nets from the suite of industrial models studied in [17, 7, 6] are free-choice).

The most prominent analysis problem for the negotiation model is soundness. Loosely speaking, a negotiation is sound if for every reachable configuration there is an execution leading to proper termination of the negotiation. In [3] it is shown that the soundness problem is \textsc{Pspace}-complete for non-deterministic negotiations and \textsc{coNP}-complete for acyclic non-deterministic negotiations\(^1\). For this reason, and in search of a tractable class, [3] introduces the class of deterministic negotiations. In deterministic negotiations all agents are deterministic, meaning that they are never ready to engage in more than one atomic negotiation per outcome (in the same way that in a deterministic automaton, for each action the automaton is only ready to move to one state). The main results of [3] are a polynomial time reduction algorithm for checking soundness of acyclic deterministic negotiations, and an extension of the algorithm to the more expressive class of acyclic, weakly deterministic\(^2\) negotiations. The runtime of this second algorithm was however left open, as well as the more general question of determining the complexity of checking soundness for other classes of acyclic negotiations. In [4] the polynomial result for acyclic deterministic negotiations is extended to the cyclic case.

While unsound negotiations are clearly faulty, sound negotiations are not automatically correct, they must satisfy other properties. In the first contribution of this paper, we study two other analysis problems for sound acyclic deterministic negotiations: the race problem and the omission problem. The race problem is to determine if there is an execution in which two given atomic negotiations are concurrently enabled. The omission problem asks for given sets of atomic negotiations \(P\) and \(B\) if there exists a run that visits all elements of \(P\) and omits all of \(B\). We show that for sound negotiations the race problem is polynomial, as well as the omission problem for \(P\) of bounded size. We then apply these polynomial algorithms to analysis problems for negotiations with global data studied in [14, 12] in the context of workflow Petri nets. In this model atomic negotiations can manipulate global variables, so classical analysis questions are raised, for instance whether every value written into a variable is guaranteed to be read, or whether a variable can be allocated and deallocated by two atomic negotiations taking place in parallel. While the algorithms of [14, 12] are exponential, our solutions for acyclic sound deterministic negotiations take polynomial time.

Our second contribution is the study of the complexity of soundness for classes beyond deterministic negotiations. We propose to analyze this problem through properties of the graph of a negotiation. The first indication of the usefulness of this approach is a short argument giving an \textsc{Nlogspace} algorithm for deciding soundness of acyclic deterministic negotiations. Next, we settle the question left open in [3], and prove that the soundness problem can be solved in polynomial time for acyclic, weakly non-deterministic negotiations, a class even more general than the one defined in [3]. We then show that if we leave out one of the two assumptions, acyclicity or weak non-determinism, then the problem becomes \textsc{coNP}-complete\(^3\). These results set a limit to the class of negotiations with a polynomial soundness problems, but also admit a positive interpretation. Indeed, if all processes are allowed to be cyclic and non-deterministic, then the soundness problem is \textsc{Pspace}-complete, while for the class above it belongs to \textsc{coNP}.

\(^1\) In [3] the notion of soundness has one more requirement, which makes the soundness problem for acyclic negotiations \textsc{coNP}-hard and in \textsc{DP}.

\(^2\) The class considered [3] was called “weakly deterministic”. In this paper we refer to it as “very weakly non-deterministic”.

\(^3\) We show that \textsc{coNP}-hardness holds even for a very mild relaxation of acyclicity.
Related formalisms and related work. The connection between negotiations and Petri nets is studied in detail in [1]. Every negotiation can be transformed into an exponentially larger 1-safe workflow Petri net with an isomorphic reachability graph. Every deterministic negotiation is equivalent to a 1-safe workflow free-choice net with a linear blow-up. Conversely, every sound workflow free-choice net can be transformed into a sound deterministic negotiation with a linear blow-up. Recent papers on free-choice workflow Petri nets are [8, 6]. In [8] soundness is characterized in terms of anti-patterns, which can be used to explain why a given workflow net is unsound. Our work provides an anti-pattern characterization for acyclic weakly non-deterministic negotiations, which goes beyond the free-choice case. In [6] a polynomial reduction algorithm for free-choice workflow Petri nets is presented. Our results show that soundness is also polynomial for workflow Petri nets coming from acyclic weakly deterministic negotiations.

As a process-based concurrent model, negotiations can be compared with another well-studied model for distributed computation, namely Zielonka automata [18, 2, 11]. Such an automaton is a parallel composition of finite transition systems with synchronization on common actions. The important point is that a synchronization involves exchange of information between states of agents: the result of the synchronization depends on the states of all the components taking part in it. Zielonka automata have the same expressive power as arbitrary, possibly nondeterministic negotiations. Deterministic negotiations correspond to a subclass that does not seem to have been studied yet, and for which verification becomes considerably easier. For example, the question whether some local state occurs in some execution is PSPACE-complete for “sound” Zielonka automata, while it can be answered in polynomial time for sound deterministic negotiations.

A somewhat similar graphical formalism are message sequence charts/graphs, used to describe asynchronous communication. Questions like non-emptiness of intersection are in general undecidable for this model, even assuming that communication buffers are bounded. Subclasses of message sequence graphs with decidable model-checking problem were proposed, but the complexity is PSPACE-complete [9].

Overview. Section 2 introduces definitions and notations, then Section 3 reconsiders soundness for acyclic, deterministic negotiations. In Section 4 we provide an NLOGSPACE algorithm for the race problem. Section 5 solves the omitting problem, that is used in Section 6 for analyzing properties of workflows described by acyclic, deterministic negotiations, and later in Section 7 to decide soundness for acyclic weakly non-deterministic negotiations in PTIME. Finally, Section 8 establishes the coNP complexity bounds.

2 Negotiations

A negotiation N is a tuple $\langle \text{Proc}, N, \text{dom}, R, \delta \rangle$, where Proc is a finite set of processes (or agents) that can participate in negotiations, and N is a finite set of nodes (or atomic negotiations) where the processes can synchronize. The function $\text{dom} : N \rightarrow \mathcal{P}(\text{Proc})$ associates to every atomic negotiation $n \in N$ the (non-empty) set $\text{dom}(n)$ of processes participating in it. Nodes are denoted as m or n, and processes as p or q: possibly with indices.

The set of possible outcomes of atomic negotiations is denoted R, and we use a, b, \ldots to range over its elements. The control flow in a negotiation is determined by a partial transition function $\delta : N \times R \times \text{Proc} \rightarrow \mathcal{P}(N)$, telling that after the outcome a of an atomic negotiation n, process $p \in \text{dom}(n)$ is ready to participate in any of the negotiations from the set $\delta(n, a, p)$. So for every $n' \in \delta(n, a, p)$ we have $p \in \text{dom}(n') \cap \text{dom}(n)$. Every atomic negotiation $n \in N$ has its set of possible outcomes $\text{out}(n)$, and for every n, $a \in \text{out}(n)$ and
$p \in \text{dom}(n)$ the result $\delta(n, a, p)$ has to be defined. So all processes involved in an atomic negotiation should be ready for all its possible outcomes. Observe that atomic negotiations may have one single participant process, and/or have one single outcome.

A configuration of a negotiation is a function $C : \text{Proc} \rightarrow \mathcal{P}(N)$ mapping each process p to the set of atomic negotiations in which p is ready to engage. An atomic negotiation n is enabled in a configuration C if $n \in C(p)$ for every $p \in \text{dom}(n)$, that is, if all processes that participate in n are ready to proceed with it. A configuration is a deadlock if no atomic negotiation is enabled in it. If an atomic negotiation n is enabled in C, and a is an outcome of n, then we say that (n, a) can be executed, and its execution produces a new configuration C' given by $C'(p) = \delta(n, a, p)$ for $p \in \text{dom}(n)$ and $C'(p) = C(p)$ for $p \notin \text{dom}(n)$. We denote this by $C \xrightarrow{(n, a)} C'$. For example, in Figure 1 we have $C \xrightarrow{(n_1, a)} C'$ for $C(p) = \{n_1\} = C(q)$ and $C'(p) = \{n_2\}, C(q) = \{n_3\}$.

A run of a negotiation \mathcal{N} from a configuration C_1 is a finite or infinite sequence $w = (n_1, a_1)(n_2, a_2)\ldots$ such that there are configurations C_2, C_3, \ldots with

$$C_1 \xrightarrow{(n_1, a_1)} C_2 \xrightarrow{(n_2, a_2)} C_3 \ldots$$

We denote this by $C_1 \xrightarrow{w} C_k$, or $C_1 \xrightarrow{w} C_k$ if the sequence is finite and finishes with C_k. In the latter case we say that C_k is reachable from C_1 on w. We simply call it reachable if w is irrelevant, and write $C_1 \xrightarrow{*} C_k$.

Negotiations come equipped with two distinguished initial and final atomic negotiations n_{init} and n_{fin} in which all processes in Proc participate. The initial and final configurations $C_{\text{init}}, C_{\text{fin}}$ are given by $C_{\text{init}}(p) = \{n_{\text{init}}\}$ and $C_{\text{fin}}(p) = \{n_{\text{fin}}\}$ for all $p \in \text{Proc}$. A run is successful if it starts in C_{init} and ends in C_{fin}. We assume that every atomic negotiation (except possibly for n_{fin}) has at least one outcome. In Figure 1, $n_{\text{init}} = n_0$ and $n_{\text{fin}} = n_7$.

2.1 Main definitions

A negotiation \mathcal{N} is sound if every partial run starting at C_{init} can be completed to a successful run. If a negotiation has no infinite runs, then it is sound iff it has no reachable deadlock configuration.

Process p is deterministic in a negotiation \mathcal{N} if for every $n \in N$, and $a \in R$, the set of possible next negotiations, $\delta(n, a, p)$, is a singleton or the empty set. A negotiation is

![Figure 1](image-url) A negotiation. Atomic negotiation n_1 involves processes p, q, and has two possible outcomes a and b. The arrows show next negotiations in which respective processes are willing to engage.
deterministic if every process \(p \in \text{Proc} \) is deterministic. The negotiation of Figure 1 is deterministic.

A negotiation is *weakly non-deterministic* if for every \(n \in N \) at least one of the processes in \(\text{dom}(n) \) is deterministic. A negotiation is *very weakly non-deterministic*\(^4\) if for every \(n \in N, a \in R, \) and \(p \in \text{Proc}, \) there is a deterministic process \(q \) such that \(q \in \text{dom}(n') \) for all \(n' \in \delta(n, a, p) \).

Examples of weakly non-deterministic negotiations can be found in [3]. In particular, weakly non-deterministic negotiations allow to model deterministic negotiations with global resources (see Section 6). The resource (say, a piece of data) can be modeled as an additional process, which participates in the atomic negotiations that use the resource. The outcome of a negotiation can change the state of the resource (say, from “confidential” to “public”), and at each state the resource may be ready to engage in a different set of atomic negotiations.

The graph of a negotiation has atomic negotiations, \(N \), as set of nodes; the edges are \(n \xrightarrow{p,a} n' \) if \(n' \in \delta(n, a, p) \). Observe that \(p \in \text{dom}(n) \cap \text{dom}(n') \).

A negotiation is acyclic if its graph is so. Acyclic negotiations cannot have infinite runs, so as mentioned above, soundness is equivalent to deadlock-freedom. For an acyclic negotiation \(N \) we fix a linear order \(\preceq_N \) on its nodes that is a topological order on the graph of \(N \). This means that if there is an edge from \(m \) to \(n \) in the graph of \(N \) then \(m \preceq_N n \).

The restriction of a negotiation \(N \) to a subset of its processes \(\text{Proc}' \) is the negotiation \((\text{Proc}', N', \text{dom}', R, \delta') \) where \(N' \) is the set of those \(n \in N \) for which \(\text{dom}(n) \cap \text{Proc}' \neq \emptyset \), \(\text{dom}'(n) = \text{dom}(n) \cap \text{Proc}' \), and \(\delta'(n, r, p) = \delta(n, r, p) \cap N' \). The restriction of \(N \) to deterministic processes is denoted as \(N_D \) throughout the paper.

A negotiation \(N \) is det-acyclic if \(N_D \) is acyclic. It follows easily from the definitions that a weakly non-deterministic, det-acyclic negotiation does not have any infinite run.

3 Soundness of acyclic deterministic negotiations

The main objective of this section is to provide some tools that we will use later. We show how some properties of negotiations can be determined by patterns in their graphs. As an example of an application of our techniques we revisit the soundness problem for acyclic, deterministic negotiations. We provide an alternative polynomial-time algorithm that is actually in \(\text{NLogspace} \), in contrast with the algorithm of [3] that is based on rewriting.

Fix a negotiation \(N \). A *local path* is a path \(n_0 \xrightarrow{p_0,a_0} n_1 \xrightarrow{p_1,a_1} \ldots \xrightarrow{p_{k-1},a_{k-1}} n_k \) in the graph of \(N \). The path is *realizable* from some configuration \(C \), if there is a run \(C \xrightarrow{w} C' \) with \(w \) of the form \((n_0, a_0)w_1(n_1, a_1) \cdots w_{k-1}(n_{k-1}, a_{k-1}) \), such that \(p_i \notin \text{dom}(w_{i+1}) \), for all \(i \). Here we use \(\text{dom}(v) \) to denote the set of all processes involved in some atomic negotiation appearing in sequence \(v: \text{dom}(v) = \bigcup \{ \text{dom}(n) : \text{for some } a, (n, a) \text{ appears in } v \} \).

For what follows Lemma 1 is particularly useful as it gives a simple criterion when an atomic negotiation is a part of some successful run.

Lemma 1. Let \(n_0 \xrightarrow{p_0,a_0} n_1 \xrightarrow{p_1,a_1} \ldots \xrightarrow{p_{k-1},a_{k-1}} n_k \) be a local path in the graph of a sound deterministic negotiation \(N \). If \(C \) is a reachable configuration of \(N \) and \(n_0 \) is enabled in \(C \) then the path is realizable from \(C \).

Proof. Let \(C \) be such that \(C(p) = n_0 \) for every \(p \in \text{dom}(n_0) \). By induction on \(i \) we show that there is a run \(C \xrightarrow{w} C_i \) realizing \(n_0 \xrightarrow{p_0,a_0} n_1 \xrightarrow{p_1,a_1} \ldots \xrightarrow{p_{i-1},a_{i-1}} n_i \) and such that \(n_i \) is enabled in \(C_i \).

\(^4\) This class was called *weakly deterministic* in [3].
For $i = 0$, we simply take $C_i = C$. For the induction step we assume the existence of C_i in which n_i is enabled. Let C_{i+1}' be the result of executing (n_i, a_i) from C_i. Observe that $C_{i+1}'(p_i) = n_{i+1}$ (recall that \mathcal{N} is deterministic). Since \mathcal{N} is sound, and C_{i+1}' is reachable, there is a run from C_{i+1}' to C_{fn}. We set then C_{i+1} to be the first configuration on this run when n_{i+1} is enabled.

Lemma 1 says that there is a run containing the atomic negotiation m iff there is a local path from n_{init} to m. If $dom(m) \cap dom(n) \neq \emptyset$ then the lemma also provides an easy test for knowing whether there is a run containing both m, n: it suffices to check the existence of a local path $n_{init} \to m \to n$, or with m, n interchanged. The next lemma takes care of the opposite situation.

Lemma 2. Let m, n be two atomic negotiations in a sound deterministic negotiation \mathcal{N}, and assume that $dom(m) \cap dom(n) = \emptyset$.

There exists some run of \mathcal{N} containing both m, n iff there is an atomic negotiation m' such that

- there is a local path from n_{init} to m',
- $\delta(m', p, a) = n_0$, $\delta(m', q, a) = n_0$ for some $p, q \in dom(m')$, $a \in out(m')$,
- there are two disjoint local paths in \mathcal{N}, one from m_0 to m, the other from n_0 to n.

Proof.
Right-to-left implication: the proof is similar to the one of Lemma 1, but we need to consider three paths instead of a single one. First we realize using Lemma 1 the path from n_{init} to m'. Suppose that the partial run from C_{init} to the current configuration C contains neither m nor n yet (otherwise another application of Lemma 1 suffices) and that m' is enabled in C. Let $C' = (m', a) C_1$. We show now by induction on the sum of the lengths of the two local paths how to construct a run containing both m, n. Let

$$m_0 \overset{p_0, a_0}{\cdots} \overset{p_k, a_k}{\cdots} \overset{p_{k-1}, a_{k-1}}{m_k} = m \quad \text{and} \quad n_0 \overset{q_0, b_0}{\cdots} \overset{q_{l-1}, b_{l-1}}{\cdots} n_l = n.$$

Since $C_1(p) = m_0$, $C_1(q) = n_0$ and \mathcal{N} is sound, both m_0 and n_0 must be executed at some point. Suppose by symmetry that m_0 is executed first, then $C_1 \overset{m_0, a_0}{\to} C_2 \overset{(m_0, a_0)}{\to} C_3$ for some C_2, C_3 such that $C_3(p_0) = m_1$ (since \mathcal{N} is deterministic) and $C_3(q) = n_0$. We can now apply the inductive assumption to the local paths $m_1 \overset{m_1}{\to} m$, $n_0 \overset{n_0}{\to} n$, and we are done.

Left-to-right implication: consider a run from n_{init} of the form $w = w_1(m, b) w_2(n, c)$, and choose some $p \in dom(m), q \in dom(n)$. Let (m', a) be the rightmost atom in w_1 such that $\{p, q\} \subseteq dom(m')$, and let $m_0 = \delta(m', a, p)$, $n_0 = \delta(m', a, q)$. Then we can take a path of process p from m_0 to m in w_1, and another path of process q from n_0 to n in $w_1 w_2$. By the choice of m' these paths are disjoint.

Soundness can be characterized by excluding a special variant of the pattern from the above lemma. Consider two processes $p \neq q$ of an acyclic negotiation \mathcal{N}. A (p, q)-pair is a pair of *disjoint* local paths of \mathcal{N}:

$$m_0 \overset{p_0, a_0}{\cdots} \overset{p_{k-1}, a_{k-1}}{\cdots} m_k \quad \text{and} \quad n_0 \overset{q_0, b_0}{\cdots} \overset{q_{l-1}, b_{l-1}}{\cdots} n_l$$

such that $m_k \not\succeqN n_l$ and $q \in dom(m_k)$.

Lemma 3. Let \mathcal{N} be an acyclic deterministic negotiation. Then \mathcal{N} is not sound if and only if there exist an atomic negotiation m' and two processes p, q such that:

- there is a local path from n_{init} to m',
- $\delta(m', p, a) = n_0$, $\delta(m', q, a) = n_0$ for some $a \in out(m')$,

where $n_0 \not\succeqN m_k$.

there is a \((p, q)\)-pair as above.

Proof. For the right-to-left direction, suppose that we have \(m'\) and the \((p, q)\)-pair as above. Suppose for a contradiction that \(\mathcal{N}\) is sound. By Lemma 1 we can consider a run \(C_{\text{init}} \to C \xrightarrow{(m', a)} C_1 \in \mathcal{N}\), and a successful run from \(C_1\). On this run \(m_0\) and \(n_0\) must be executed. Say \(m_0\) is executed first, and take \(C_2\), the configuration reached after executing \(m_0\). Since \(\mathcal{N}\) is deterministic, we have that \(C_2(p) = m_1\); also, \(C_2(q) = n_0\) since \(m_0 \neq n_0\). The case when \(n_0\) is executed first is analogous. Continuing like this we will reach a configuration \(C'\) with \(C'(p) = m_k\) and \(C'(q) = n_i\) for some \(i < l\). Observe that it cannot be the case that \(n_i\) is executed before \(m_k\) as \(q \in \text{dom}(m_k)\) and \(q\) appears all along the path to \(n_i\). Once again, by soundness from \(C'\) there is a run executing \(n_i\), and as we have noted this should happen before executing \(m_k\). Repeating this reasoning we get to a configuration \(C''\) with \(C''(p) = m_k\) and \(C''(q) = n_l\). But from this configuration \(m_k\) can never be executed since \(m_k \not\preceq_{\mathcal{N}} n_l\) and \(q \in \text{dom}(m_k)\). So from \(C''\) it is no possible to reach the final configuration, contradiction with the soundness of \(\mathcal{N}\).

For the left-to-right direction, since \(\mathcal{N}\) is acyclic and not sound, there is a reachable deadlock configuration \(C_d\). Take the smallest atom \(m\) appearing in \(C_d\) with respect to \(\preceq_{\mathcal{N}}\) ordering: \(C_d(p) = m\) for some process \(p\), and \(m \not\preceq_{\mathcal{N}} C_d(q)\) for all processes \(q\). Since \(C_d\) is a deadlock there is \(q \in \text{dom}(m)\) such that \(C_d(q) = n \neq m\). We create a pattern as required in the lemma out of this situation. Consider a run of \(\mathcal{N}\) till \(C_d\). Let \(C'\) be the last configuration on this run such that \(C'(p) = C(q)\), and let \(C''\) be its successor, that is \(C \xrightarrow{(m', a)} C'\) for some \((m', a)\). We have \(C'(p) = m_0 = \delta(m', a, p)\), and \(C''(q) = n_0 = \delta(m', a, q)\). We construct a \((p, q)\)-pair by looking at the run from \(C'\) to \(D\) and taking all the actions of \(p\) on the one side, and all the actions of \(q\) on the other. The two paths will end in \(m_k = m\) and \(n_l = n\) respectively. So \(m_k \not\preceq_{\mathcal{N}} n_l\) and \(q \in \text{dom}(m_k)\). \(\blacktriangleleft\)

Theorem 4. Soundness of acyclic deterministic negotiations is NLOGSPACE-complete.

Proof. Clearly the problem is NLOGSPACE-hard since graph reachability is a special instance of it. The NLOGSPACE algorithm for deciding soundness establishes the existence of the pattern from the previous lemma. Note that the topological order \(\preceq_{\mathcal{N}}\) we use is arbitrary, so we can simply replace the condition \(m_k \preceq_{\mathcal{N}} n_l\) by asking that there is no path from \(n_l\) to \(m_k\).

\(\blacktriangleleft\)

4 Races

For a given pair of atomic negotiations \(m, n \in N\) of a deterministic negotiation \(\mathcal{N} = \langle \text{Proc}, N, \text{dom}, R, \delta \rangle\), we want to determine if there is a reachable configuration at which \(m, n\) are concurrently enabled. In other words, we are asking whether a race between \(m\) and \(n\) is possible. This is a standard question for concurrent systems, that is difficult to answer when working with linearizations. In this section we show a simple linear time algorithm answering the above question for acyclic, sound negotiations. Our algorithm reduces it to graph reachability questions, and can be implemented in logarithmic space. In the long version of our paper we also give a polynomial-time algorithm for possibly cyclic (and sound) negotiations.

We will write \(m \parallel n\) when there is a reachable configuration \(C\) of \(\mathcal{N}\) where both \(m\) and \(n\) are enabled. Our goal is to decide if \(m \parallel n\) holds for given \(m, n\).
We say below that a run \(w \in (N \times R)^* \) can be reordered into another run \(w' \) if \(w' \) can be obtained from \(w \) by repeatedly exchanging adjacent \((m,a)(n,b)\) into \((n,b)(m,a)\) whenever \(\text{dom}(m) \cap \text{dom}(n) = \emptyset \).

\[\text{Lemma 5.} \text{ Let } \mathcal{N} \text{ be an acyclic, deterministic, sound negotiation, and let } m, n \text{ be two atomic negotiations in } \mathcal{N}. \text{ Then } m \parallel n \iff \text{ every run } w \text{ from } n_{\text{init}} \text{ containing both } m \text{ and } n \text{ can be reordered into a run } w' \text{ such that } w' = C_{\text{init}} \rightarrow C \rightarrow C' \text{ for some configuration } C \text{ where both } m \text{ and } n \text{ are enabled.} \]

\[\text{Proof.} \text{ It suffices to show the implication from left to right. So assume that there exists some reachable configuration } C \text{ where both } m \text{ and } n \text{ are enabled. In particular, } \text{dom}(m) \cap \text{dom}(n) = \emptyset. \text{ By way of contradiction, let us suppose that there exists some run containing both } m \text{ and } n, \text{ but this run cannot be reordered as claimed. We claim that there must be some local path from } m \text{ to } n \text{ in } \mathcal{N}. \text{ To see this, assume the contrary and consider a run of the form } w = w_1(m,a)w_2(n,b)w_3. \text{ The run } w \text{ defines a partial order (actually a Mazurkiewicz trace) } tr(w) \text{ with nodes corresponding to positions in } w, \text{ and edges from } (m',c) \text{ to } (n',d) \text{ if } \text{dom}(m') \cap \text{dom}(n') \neq \emptyset \text{ and } (m',c) \text{ precedes } (n',d) \text{ in } w. \text{ Since there is no path from } m \text{ to } n \text{ in } \mathcal{N}, \text{ nodes } (m,a) \text{ and } (n,b) \text{ are unordered in } tr(w). \text{ So we can choose a topological order } w' \text{ of } tr(w) \text{ of the form } w' = w'_1(m,a)(n,b)w'_2. \text{ This shows the claim.} \]

So let \(\pi \) be a path in \(\mathcal{N} \) from \(m, n_1, \ldots, n_k, n \). Let \(p \) be some process such that \(n_k \xrightarrow{p,a'} n \) for some outcome \(a' \).

Let us go back to \(C \). Since both \(m \) and \(n \) are enabled in \(C \), we have a transition \(C \xrightarrow{n,b} C_1 \), for some \(b \in \text{out}(n) \). Note that \(m \) is still enabled in \(C_1 \), since \(\text{dom}(m) \cap \text{dom}(n) = \emptyset \). So we can apply Lemma 1 to \(C_1 \) and \(\pi \) (because \(\mathcal{N} \) is sound), obtaining a configuration \(C_2 \) where \(C_2(p) = n \). But since \(n \) was executed before \(C_1 \), this violates the acyclicity of \(\mathcal{N} \).

The next step is to convert the condition from Lemma 5 to a condition on the graph of a negotiation.

\[\text{Proposition 6.} \text{ Let } \mathcal{N} \text{ be an acyclic, deterministic, sound negotiation, and let } m, n \text{ be two atomic negotiations in } \mathcal{N}. \text{ Then } m \parallel n \iff \text{ there exists a run containing both } m \text{ and } n \text{, and there is neither a local path from } m \text{ to } n \text{ nor a local path from } n \text{ to } m. \]

\[\text{Proof.} \text{ For the left-to-right implication, assume by contradiction that there is some local path } \pi \text{ from } m \text{ to } n. \text{ Consider some configuration } C \text{ such that } C \models m. \text{ By Lemma 1 we find a run } C \rightarrow C' \text{ such that } C' \models n. \text{ But note that the run } C_{\text{init}} \rightarrow C \rightarrow C' \text{ cannot be reordered as stated in Lemma 5, a contradiction.} \]

For the converse, consider some run \(w \) containing both \(m, n \). Since there are no local paths in \(\mathcal{N} \) between \(m, n \), we can reorder, as in the proof of Lemma 5, the run \(w \) into some \(w' \) such that we find a configuration \(C \) of \(w' \) with \(C \models m \) and \(C \models n \).

\[\text{Observe that } \text{dom}(m) \cap \text{dom}(n) = \emptyset \text{ is a necessary condition for } m \parallel n. \text{ Thus, from Proposition 6 and Lemma 2 we immediately obtain:} \]

\[\text{Theorem 7.} \text{ For any acyclic, deterministic, sound negotiation } \mathcal{N} \text{ we can decide in linear time whether two atomic negotiations } m, n \text{ of } \mathcal{N} \text{ satisfy } m \parallel n. \text{ The above problem is } \text{NLOGSPACE-complete.} \]

We now show a cubic algorithm for computing the relation \(\parallel \) for arbitrary deterministic negotiations. The algorithm is inspired by [10], and we give a simpler correctness proof adapted to negotiations.
4.1 Computing \(\parallel \) for sound, deterministic negotiations

For technical reasons we will also consider pairs \((p,m) \in \text{Proc} \times N\). We say that \(x \in N \cup (\text{Proc} \times N)\) holds in a configuration \(C\), written \(C \models x\), if either: (i) \(x = m\) is a atomic negotiation and \(m\) is enabled in \(C\), or (ii) \(x = (p,m)\) and \(C(p) = m\). We extend the notation \(\parallel\) to \(x \parallel y\) for \(x, y \in N \cup (N \times \text{Proc})\), if there is a reachable configuration \(C\) with \(C \models x\) and \(C \not\models y\). In this section we show how to compute the extended relation \(\parallel\) in polynomial time for a given deterministic negotiation \(N = (\text{Proc}, N, \text{dom}, R, \delta)\).

In order to compute \(\parallel\) in general, we introduce another relation \(\mathcal{C}\) that will be clearly computable in polynomial time. This relation is already known from [10], who used it to compute \(\parallel\) for free-choice Petri nets.

Relation \(\mathcal{C}\) is the smallest symmetric relation \((N \cup (\text{Proc} \times N))^2\) satisfying the following conditions (we let \(p, q\) range over processes; \(m, n\) over atomic negotiations; \(x\) over \(N \cup (\text{Proc} \times N)\); and \(a\) over outcomes):

1. \((p, n_{\text{init}}) \mathcal{C} (q, n_{\text{init}})\), for all processes \(p, q\).
2. If \(m \mathcal{C} x\) and \(\delta(m, p, a) = n\) then \((p, n) \mathcal{C} x\).
3. If \((p, m) \mathcal{C}\) \(x\) for all \(p \in \text{dom}(m)\) then \(m \mathcal{C} x\).

\[\text{Lemma 8.} \quad \text{For every } x, y \in N \cup (\text{Proc} \times N), \text{ if } x \parallel y \text{ then } x \mathcal{C} y.\]

Proof. We show that if \(C \models x\) and \(C \not\models y\) then \(x \mathcal{C} y\). The proof is by induction on the length of the shortest computation reaching \(C\).

Consider the case when \(x = m\) and \(y = n\) are atomic negotiations. Let \(C' (n', a) \mapsto C\). If \(m\) and \(n\) were enabled already in \(C'\) then \(m \mathcal{C} n\) by induction hypothesis. Suppose that \(n\) was not enabled in \(C'\). Then for every \(p \in \text{dom}(n)\) with \(C'(p) \neq n\) we have \(C'(p) = n'\) and \(\delta(p, n', a) = n\). By induction we have \(m \mathcal{C} (p, n')\) for all such \(p\). From the second item of the definition of \(\mathcal{C}\) we also obtain that \(m \mathcal{C} (p, n)\) for all these \(p\). By induction hypothesis again, \(m \mathcal{C} (p, n)\) for all \(p\) with \(C'(p) = n\). Finally, the third item of the definition of \(\mathcal{C}\) yields \(m \mathcal{C} n\).

The proof for the remaining cases, where \(x\) or \(y\) are in \(\text{Proc} \times N\) is similar, except that it uses also the first item of the definition of \(\mathcal{C}\) in the base case.

\[\text{Proposition 9.} \quad \text{Suppose } N \text{ is a sound, acyclic and deterministic negotiation. For every } x, y \in N \cup (\text{Proc} \times N), \text{ if } x \mathcal{C} y \text{ then } x \parallel y.\]

Proof. Clearly, relation \(\parallel\) satisfies conditions (1) and (2) above. We show that it also satisfies condition (3).

Assume that \(m, n \in N\) are such that \(m \parallel (p, n)\) for all \(p \in \text{dom}(n)\). We will prove that \(m \parallel n\).

Suppose for a contradiction that \(m\) and \(n\) are never simultaneously enabled. Choose some \(p \in \text{dom}(n)\). Since \(m \parallel (p, n)\), there is some reachable configuration \(C\) where \(m\) is enabled and \(C(p) = n\). From \(C\) we repeatedly execute enabled atomic negotiations, except for \(m\). Since the negotiation is acyclic this process must stop. Let \(C_1\) be the current configuration. Observe that \(m\) is the unique enabled atomic negotiation in \(C_1\), and that \(C_1(p) = n\). Since \(n\) is not enabled in \(C_1\), there is some process \(q \in \text{dom}(n)\) with \(C_1(q) = n' \neq n\). As the negotiation is sound, there is an execution from \(C_1\) reaching a configuration where \(n'\) is enabled (as \(q\) should eventually reach \(n\)). Note that \(n' \preceq_N n\) in the linear ordering of atomic negotiations. Moreover, there must be some processes \(p_1 \in \text{dom}(m), p_2 \in \text{dom}(n')\), and some local path \((p_1, m) \xrightarrow{\rho} (p_2, n')\) that starts with \((m, a)\).

Now we use the fact that \(m \parallel (q, n)\). This gives us a configuration \(C_2\) where \(m\) is enabled and \(C_2(q) = n\). From \(C_2\) we can realize the local path \((p_1, m) \xrightarrow{\rho} (p_2, n')\) (cf. Lemma 1),
reaching a configuration C_3 where $C_3(p_2) = n'$ and $C_3(q) = n$. But $q \in \text{dom}(n')$, so n' can never be executed since $n' \nless \mathcal{N} n$ and q cannot go back to n'. A contradiction with the soundness assumption.

Next we state some general properties of sound negotiations with cycles. They say that every loop in a sound negotiation goes through some node that contains all processes occurring in that loop. For a sequence $w \in (N \times R)^*$, or $x \in (\text{Proc} \times R)^*$, we write $\text{dom}(w)$ and $\text{dom}(x)$, respectively, for the set of all the processes occurring in (negotiations of) w and x, respectively.

\begin{lemma}
If \mathcal{N} is a sound and deterministic negotiation then the following holds:
\begin{enumerate}
\item On every execution loop $C \xrightarrow{m} C$ of \mathcal{N} there is an atomic negotiation m appearing in w such that $\text{dom}(m) = \text{dom}(w)$.
\item On every local cycle $n \rightarrow n$ in \mathcal{N} there is an atomic negotiation appearing in x such that $\text{dom}(m) = \text{dom}(x)$.
\end{enumerate}
\end{lemma}

\begin{proof}
Part (1) follows from [4]. Part (2) is a consequence of (1), together with Lemma 1. Assume that we have a cycle $n \rightarrow n$ as above. We know by Lemma 1 that it is realizable, so we can have an execution $C_1 \rightarrow C_2$ that realizes it. By iterating the cycle further, we obtain executions $C_1 \rightarrow C_2 \rightarrow \ldots$ such that $C_i \rightarrow C_{i+1}$ all realize $n \rightarrow n$. Assume that $C_i \rightarrow C_j$ is a loop. By part (1) we find some m with $\text{dom}(m)$ containing all processes occurring in this loop. Note that m must also occur on the cycle $n \rightarrow n$, by the definition of realizability.

\end{proof}

\begin{proposition}
Suppose \mathcal{N} is a sound, deterministic, not necessary acyclic, negotiation. For every $x, y \in N \cup (\text{Proc} \times N)$, if $x \parallel y$ then $x \parallel y$.
\end{proposition}

\begin{proof}
The proof is a variation on the argument for the acyclic case but instead of a straightforward contradiction due to acyclicity we use Lemma 10.

Assume that $m, n \in \mathcal{N}$ are such that $m \parallel (p, n)$ for all $p \in \text{dom}(n)$. We will prove that $m \parallel n$. Suppose for a contradiction that there is no reachable configuration where m and n are simultaneously enabled. Choose some $p \in \text{dom}(n)$. Since $m \parallel (p, n)$, there is a reachable configuration C where m is enabled and $C(p) = n$. Since \mathcal{N} is sound there is some run $\rho = (m_1, a_1) \ldots (m_k, a_k)$ from C where finally n is executed, i.e. $m_k = n$. Clearly $m = m_j$ for some $j = 1, \ldots, k$, because otherwise $m \parallel n$. Suppose that from C we try to execute ρ but omitting m_j. In other words, we execute $(m_1, a_1) \ldots (m_{j-1}, a_{j-1})$, and then we execute all (m_ℓ, a_ℓ) with $\ell > j$ such that there is no local path from (m_j, a_j) to (m_ℓ, a_ℓ). Let C_1 be the configuration from which we cannot continue. We have that m is enabled in C_1 and $C_1(p) = n$. Since n is not enabled in C_1, there is some $q \in \text{dom}(n)$ with $C_1(q) = n' \neq n$.

Let us then execute m from C_1, and the rest of the run ρ above. At some moment of this run the atomic negotiation n' should occur. So there are some processes $p_1 \in \text{dom}(m)$, $p_2 \in \text{dom}(n')$ and a local path $(p_1, m) \rightarrow (p_2, n')$. Moreover σ does not involve process q. The run gives also a local path $\pi = (q, n'_1) \ldots (q, n'_k)$ of process q, from node $n'_1 = n'$ to node $n'_k = n$. Observe that p does not occur in π, since $C(p) = n$ and n is not executed on p.

Now we use the hypothesis that $m \parallel (q, n)$. We take a reachable configuration C_2 where m is enabled and $C_2(q) = n$. From this configuration we play the local path $(p_1, m) \rightarrow (p_2, n')$. In other words we have a run from C_2 to C_3 where $C_3(p_2) = n'$ and $C_3(q) = n$ (since σ does not involve process q). Since $q \in \text{dom}(n')$, from C_3 there should be a way to execute n'. This gives a local path $(q, n) \rightarrow (q, n')$. Observe that p_2 does not occur in π'.\end{proof}
We have constructed a local path that is a loop \((q,n') \xrightarrow{π} (q,n) \xrightarrow{π'} (q,n')\). By Lemma 10 there should be an atomic negotiation on this loop that involves all the processes, and in particular \(p\) and \(p_2\). But \(p \notin \text{dom}(π)\), and \(p_2 \notin \text{dom}(π')\). A contradiction. ▶

▶ Theorem 12. There is a polynomial time algorithm that computes the concurrent enabled relation \(\parallel\) of deterministic, sound negotiations.

Proof. Relation \(\co\) can be calculated in PTIME by a simple fixpoint computation. Lemma 8 and Proposition 11 say that this is the same relation as \(\parallel\).

5 Omitting problem

In this section we will be interested in determining the existence of some special successful runs of a deterministic negotiation \(N\). Let \(B \subseteq N\) be a set of nodes of a negotiation \(N\). We say that a run \((n_1,a_1)(n_2,a_2)\ldots\) omits \(B\) if it does not contain any nodes from \(B\), that is, \(n_i \notin B\) for all \(i\). Let \(P \subseteq N \times R\) be a set of positive requirements. We say that a run as above includes \(P\) and omits \(B\) if it omits \(B\) and contains all the pairs from \(P\).

We are interested in deciding if for a given \(N\) together with \(P\) and \(B\) there is a successful run of \(N\) including \(P\) and omitting \(B\). We will consider only \(N\) that are sound, acyclic, and deterministic.

As a first step we define a game \(G(N,B)\) that is intended to produce runs that omit \(B\) (see e.g. [13] for an introduction to games):
- the positions of Eve are \(N \setminus B\),
- the positions of Adam are \(N \times R\),
- from \(n\), Eve can go to any \((n,a)\) with \(a \in \text{out}(n)\),
- from \((n,a)\), Adam can choose any process \(p \in \text{Proc}\) and go to \(n' = δ(n,a,p)\),
- the initial position is \(n_{\text{init}}\),
- Adam wins if the play reaches a node in \(B\), Eve wins if the play reaches \(n_{\text{fin}}\).

Observe that since \(N\) is acyclic, the winning condition for Eve is actually a safety condition: every maximal play avoiding \(B\) is winning for Eve. So if Eve can win then she wins with a positional strategy. A deterministic positional strategy for Eve is a function \(σ : N \rightarrow R\), it indicates that at position \(n\) Eve should go to position \((n,σ(n))\). Since \(G(N,B)\) is a safety game for Eve, there is a biggest non-deterministic winning strategy for Eve, i.e., a strategy of type \(σ_{\text{max}} : N \rightarrow \mathcal{P}(R)\). The strategy \(σ_{\text{max}}\) is obtained by computing the set \(W_E\) of all winning positions for Eve in \(G(N,B)\), and then setting for every \(n \in N\):

\[σ_{\text{max}}(n) = \{a \in \text{out}(n) : \forall p \in \text{dom}(n). δ(n,a,p) \in W_E\}\]

▶ Lemma 13. If \(N\) has a run omitting \(B\) then Eve has a winning strategy in \(G(N,B)\).

Proof. Define \(σ(n) = a\) iff \((n,a)\) appears in the run. For other nodes define the strategy arbitrary. To check that this strategy is winning, it is enough to verify that every play respecting the strategy stays in the nodes appearing in the run. ▶

▶ Lemma 14. Suppose \(N\) is sound. Let \(σ : N \rightarrow R\) be a winning strategy for Eve in \(G(N,B)\). Consider the set \(S\) of nodes that are reachable on a play from \(n_{\text{init}}\) respecting \(σ\). There is a successful run of \(N\) containing precisely the nodes \(S\).

Proof. Consider an enumeration \(n_1,n_2,\ldots,n_k\) of the nodes in \(S \subseteq (N \setminus B)\) according to the topological order \(π_N\). Let \(w_i = (n_1,σ(n_1))\ldots(n_i,σ(n_i))\). By induction on \(i \in \{1,\ldots,k\}\)
we prove that there is a configuration C_i such that $C_{init} \xrightarrow{w_i} C_i$ is a run of N. This will show that w_k is a successful run containing precisely the nodes of S.

For $i = 1$, $n_1 = n_{init}$, in C_{init} all processes are ready to do n_1, so C_1 is the result of performing $(n_1, \sigma(n_1))$.

For the inductive step, we assume that we have a run $C_{init} \xrightarrow{w_i} C_i$, and we want to extend it by $C_i \xrightarrow{(n_{i+1}, \sigma(n_{i+1}))} C_{i+1}$. Consider a play respecting σ and reaching n_{i+1}. The last step in this play is $(n_j, \sigma(n_j)) \rightarrow n_{i+1}$, for some $j \leq i$ and $n_j \in S$. This means that $\delta(n_j, \sigma(n_j), p) = n_{i+1}$ for some process p. Since $j \leq i$ and $(n_j, \sigma(n_j))$ occurred in w_i (but not n_{i+1}), we have $C_i(p) = n_{i+1}$. If we show that $C_i(q) = \{n_{i+1}\}$ for all $q \in \text{dom}(n_{i+1})$ then we obtain that n_{i+1} is enabled in C_i and we get the required C_{i+1}. Suppose by contradiction that $C_i(q) = \{n_l\}$ for some $l \neq i + 1$. We must have $l > i + 1$, since otherwise n_l already occurred in w_i. By definition of our indexing $n_{i+1} \prec_N n_l$. But then no execution from C_i can bring process q to a state where it is ready to participate in negotiation n_{i+1}, and p will stay forever in n_{i+1}. This contradicts the fact that the negotiation is sound. ▶

Corollary 15. For a sound negotiation N: Eve wins in $G(N, B)$ iff N has a successful run omitting B.

Theorem 16. Let K be a constant. It can be decided in Ptime if for a given deterministic, acyclic, and sound negotiation N and two sets $B \subseteq N$, and $P \subseteq N \times R$, with the size of P at most K, there is a successful run of N containing P and omitting B.

Proof. If for some atomic negotiation m, we have $(m, a) \in P$ and $(m, b) \in P$ for $a \neq b$ then the answer is negative as N is acyclic. So let us suppose that it is not the case. By Lemmas 13 and 14 our problem is equivalent to determining the existence of a deterministic strategy σ for Eve in the game $G(N, B)$ such that $\sigma(m) = a$ for all $(m, a) \in P$, and all these (m, a) are reachable on a play respecting σ.

To decide this we calculate σ_{max}, the biggest non-deterministic winning strategy for Eve in $G(N, B)$. This can be done in Ptime as the size of $G(N, B)$ is proportional to the size of the negotiation. Strategy σ_{max} defines a graph $G(\sigma_{max})$ whose nodes are atomic negotiations, and edges are (m, a, m') if $(m, a) \in \sigma_{max}$ and $m' = \delta(m, a, p)$ for some process p. The size of this graph is proportional to the size of the negotiation. In this graph we look for a subgraph H such that:

= for every node m in H there is at most one a such that (m, a, m') is an edge of H for some m';

= for every $(m, a) \in P$ there is an edge (m, a, m') in H for some m', and moreover m is reachable from n_{init} in H.

We show that such a graph H exists iff there is a strategy σ with the required properties.

Suppose there is a deterministic winning strategy σ such that $\sigma(m) = a$ for all $(m, a) \in P$, and all these (m, a) are reachable on a play respecting σ. We now define H by putting an edge (m, a, m') in H if $\sigma(m) = a$ and and $m' = \delta(m, a, p)$ for some process p. As σ is deterministic and winning, this definition guarantees that H satisfies the first item above. The second item is guaranteed by the reachability property that σ satisfies.

For the other direction, given such a graph H we define a deterministic strategy σ_H. We put $\sigma_H(m) = a$ if (m, a, m') is an edge of H. If m is not a node in H, or has no outgoing edges in H then we put $\sigma_H(m) = b$ for some arbitrary $b \in \sigma_{max}(m)$. It should be clear that σ_H is winning since every play respecting σ_H stays in winning nodes for Eve. By definition $\sigma_H(m) = a$ for all $(m, a) \in P$, and all these (m, a) are reachable on a play respecting σ_H.

So we have reduced the problem stated in the theorem to finding a subgraph H of $G(\sigma_{max})$ as described above. If there is such a subgraph H then there is one in form of a
tree, where the edges leading to leaves are of the form \((m, a, m')\) with \((m, a) \in P\). Moreover, there is such a tree with at most \(|P|\) nodes with more than one child. So finding such a tree can be done by guessing the \(|P|\) branching nodes and solving \(|P| + 1\) reachability problems in \(G(\sigma_{\text{max}})\). This can be done in \(\text{Ptime}\) since the size of \(P\) is bounded by \(K\).

\[\]

6 Workflows and deterministic negotiations with data

We show how our algorithms from the previous sections can be used to check functional properties of deterministic negotiations, like those studied for workflow systems with data [16]. We take some of the functional properties of [16], and give polynomial algorithms for verifying them over deterministic, acyclic, sound negotiations.

In this section we consider acyclic, deterministic negotiations with shared variables over a finite domain, that can be updated by the outcomes of the negotiation. More precisely, each outcome \((n, a) \in N \times R\) comes with a set \(\Sigma\) of operations on these shared variables. In our examples this set \(\Sigma\) is composed of \(\text{alloc}(x), \text{read}(x), \text{write}(x)\), and \(\text{dealloc}(x)\).

Formally, a negotiation with data is a negotiation with one additional component: \(N = \langle \text{Proc}, N, \text{dom}, R, \delta, \ell \rangle\) where \(\ell: (N \times R) \to \mathcal{P}(\Sigma \times X)\) maps every outcome to a (possibly empty) set of data operations on variables from \(X\). We assume that for each \((n, a) \in N \times R\) and for each variable \(x \in X\) the label \(\ell(n, a)\) contains at most one operation on \(x\), that is, at most one element of \(\Sigma \times \{x\}\).

As an example, we enrich the negotiation of Figure 1 with data, as shown in Table 1. (This example is taken from [14]). The variables are \(X = \{x_1, \ldots, x_{10}\}\). The table gives for each outcome and for each operation the set of (indices of the) variables to which the outcome applies this operation.

<table>
<thead>
<tr>
<th>atom. neg.</th>
<th>outcome</th>
<th>(n_0)</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(n_4)</th>
<th>(n_5)</th>
<th>(n_6)</th>
<th>(n_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>read</td>
<td>1</td>
<td>1</td>
<td>1, 8</td>
<td>5</td>
<td>2, 7, 9</td>
<td>6, 8, 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>write</td>
<td>3, 5, 6</td>
<td>3</td>
<td>1, 4, 8</td>
<td>9, 10</td>
<td>2, 7, 10</td>
<td>7</td>
<td>9</td>
<td>6, 8</td>
<td></td>
</tr>
<tr>
<td>dealloc</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5, 6, 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
atom. neg. & outcome & \(n_0\) & \(n_1\) & \(n_2\) & \(n_3\) & \(n_4\) & \(n_5\) & \(n_6\) & \(n_7\) \\
\hline
 alloc & a & a & b & a & a & a & b & a & a \\
 read & 1 & 1 & 1, 8 & 5 & 2, 7, 9 & 6, 8, 9 \\
 write & 3, 5, 6 & 3 & 1, 4, 8 & 9, 10 & 2, 7, 10 & 7 & 9 & 6, 8 \\
 dealloc & 4 & & 2 & & & & 5, 6, 7 \\
\hline
\end{tabular}
\caption{Data for the negotiation of Figure 1 (adapted from [14]).}
\end{table}

In [14] some examples of data specifications for workflows are considered. They are presented in the form of anti-patterns, that is, patterns that the negotiation should avoid.

1. **Inconsistent data**: an atomic negotiation reads or writes a variable \(x\) while another atomic negotiation is writing, allocating, or deallocating it in parallel.
 In our example there is an execution in which \((n_2, a)\) and \((n_6, a)\) write to \(x_8\) in parallel.

2. **Weakly redundant data**: there is an execution in which a variable is written and never read before it is deallocated or the execution ends.
 In the example, there is an execution in which \(x_{10}\) is written by \((n_4, a)\), and never read again.

3. **Never destroyed**: there is an execution in which a variable is allocated and then never deallocated before the execution ends.
 In the example, the execution taking \((n_5, b)\) never deallocates \(x_2\).

It is easy to give algorithms for these properties that are polynomial in the size of the reachability graph. We give the first algorithms that check these properties in polynomial
time in the size of the negotiation, which can be exponentially smaller than its reachability graph.

For the first property we can directly use the algorithm of the previous section: It suffices to check if the negotiation has two outcomes \((m, a), (n, b) \) such that \(m \) and \(n \) can be concurrently enabled, and there is variable \(x \) such that \(\ell(a) \cap \{ \text{read}(x), \text{write}(x)\} \neq \emptyset \) and \(\ell(b) \cap \{ \text{write}(x), \text{alloc}(x), \text{dealloc}(x)\} \neq \emptyset \).

In the rest of the section we present a polynomial algorithm for the following abstract problem, which has the problems (2) and (3) above as special instances. Given sets \(O_1, O_2, O \subseteq N \times R \) such that \(O_1 \cup O_2 \subseteq O \), we say that the negotiation \(N \) violates the specification \((O_1, O_2, O)\) if there is a run \(w = (n_1, a_1) \cdots (n_k, a_k) \) with indices \(0 \leq i < j \leq k \) such that \((n_i, a_i) \in O_1, (n_j, a_j) \in O_2, \) and \((n_l, a_l) \notin O \) for all \(i < l < j \). In this case we also say that \((O_1, O_2, O)\) violates \((n_i, a_i), (n_j, a_j)\). Otherwise \(N \) complies with \((O_1, O_2, O)\).

Example 17. Observe that variable \(x \) is weakly redundant (specification of type (2)) iff \(N \) violates \((O_1, O_2, O)\), where \(O_1 = \{(n, a) \in N \times R : \text{write}(x) \in \ell(n, a)\}, \) \(O_2 = \{(n, b) \in N \times R : n = \text{nfn} \lor \text{dealloc}(x) \in \ell(n, b)\}, \) and \(O = \{(n, c) : \ell(n, c) \cap (\Sigma \times \{x\}) \neq \emptyset\} \).

Variable \(x \) is never destroyed (specification of type (3)) iff \(N \) violates \((O_1, O_2, O)\), where \(O_1 = \{(n, a) \in N \times R : \text{alloc}(x) \in \ell(n, a)\}, \) \(O_2 = \{\text{nfn}\}, \) and \(O = \{(n, c) : n = \text{nfn} \lor \ell(n, c) \cap \{\text{alloc}(x), \text{dealloc}(x)\} \neq \emptyset\} \).

For the next proposition it is convenient to use the notation \(m \xrightarrow{+} n \), whenever there is a (non-empty) local path in \(N \) from the atomic negotiation \(m \) to the atomic negotiation \(n \).

Proposition 18. Let \(N \) be an acyclic, deterministic, sound negotiation with data, and \((O_1, O_2, O)\) a specification. Let \((m, a) \in O_1, (n, b) \in O_2 \). Then \(N \) violates \((O_1, O_2, O)\) at \((m, a), (n, b)\) iff either \(m \parallel n \), or \(m \xrightarrow{+} n \) and \(N \) has a run from \(n_{\text{init}} \) containing \(P = \{(m, a), (n, b)\} \), and omitting the set \(B = \{m' \in O : m \xrightarrow{+} m' \xrightarrow{+} n\} \).

Proof. For the right to left direction: first, if \(m \parallel n \) then clearly there are runs where \((m, a)\) is immediately followed by \((n, b)\), and such runs violate \((O_1, O_2, O)\). Note that in this case we have \(B = \emptyset \).

So assume that \(N \) has a run \(w \) as claimed, and that \(m \xrightarrow{+} n \). This implies that \(w \) must be of the form \(w = w_1(m, a)w_2(n, b)w_3 \). By reordering the run \(w \) we may suppose that for every \((m', c)\) in \(w_2 \), we have \(m \xrightarrow{+} m' \xrightarrow{+} n \). So, since \(w \) omits \(B \) this means that \((m', c) \notin O, \) so the claim follows.

For the left to right direction: if \(N \) violates \((O_1, O_2, O)\) at \((m, a), (n, b)\) then there is a run \(w = (n_1, a_1) \cdots (n_k, a_k) \) with \((n_1, a_1) = (m, a), (n_j, a_j) = (n, b) \) and such that \((n_l, a_l) \notin O \) for all \(i < l < j \). Since \(\{m' : m \xrightarrow{+} m' \xrightarrow{+} n\} \cap \{n_i : 1 \leq i \leq k\} \subseteq \{n_i : i < l < j\} \), the run \(w \) contains \((m, a), (n, b)\) and omits \(B \).

Putting together Proposition 18 and Theorem 16 we obtain:

Corollary 19. Given an acyclic, deterministic, sound negotiation with data \(N \), and a specification \((O_1, O_2, O)\), it can be checked in polynomial time whether \(N \) complies with \((O_1, O_2, O)\).

7 Soundness of acyclic weakly non-deterministic negotiations is in PTIME

In previous sections we have presented algorithms for analysis of sound negotiations. Here we show that our techniques also allow to find a bigger class of negotiations for which we can
decide soundness in PTIME. The class we consider is that of acyclic, weakly non-deterministic negotiations, c.f. page 5. That is, we allow some processes to be non-deterministic, but every atomic negotiation should involve at least one deterministic process.

Recall that \(N_D \) is the restriction of \(N \) to deterministic processes. Since \(N \) is weakly non-deterministic, every atomic negotiation involves a deterministic process, so \(N_D = N \). Recall also that for an acyclic negotiation \(N \) we fixed some linear order \(\preceq_N \) that is a topological order of the graph of \(N \).

We first show two auxiliary lemmas on the structure of runs in negotiations.

▶ **Lemma 20.** Every run of an acyclic negotiation \(N \) can be reordered according to \(\preceq_N \) order: if \(C_{\text{init}} \xrightarrow{w} C \) is a run of \(N \), and \(u \) is a permutation of \(w \) respecting \(\preceq_N \), then \(C_{\text{init}} \xrightarrow{u} C \).

Proof. The proof is by induction on the number of transpositions needed to obtain \(u \) from \(w \). Suppose we have a run
\[
C_{\text{init}} \xrightarrow{u} C_1 \xrightarrow{(n,b)} C_2 \xrightarrow{(m,a)} C_3 \xrightarrow{v} C
\]
of \(N \), and \(m \preceq_N n \). We have \(m \in C_2(p) \) for all \(p \in \text{dom}(m) \). But then, since \(N \) is acyclic, we have \(\text{dom}(m) \cap \text{dom}(n) = \emptyset \) because processes participating in \(n \) cannot later participate in \(m \). So
\[
C_{\text{init}} \xrightarrow{u} C_1 \xrightarrow{(m,a)} C'_2 \xrightarrow{(n,b)} C_3 \xrightarrow{v} C
\]
is also a run of \(N_D \).

▶ **Lemma 21.** Suppose \(N \) is a sound acyclic weakly non-deterministic negotiation. Let \(C_{\text{init}} \xrightarrow{u} C_D \) be a run of \(N_D \) respecting \(\preceq_N \) order, and such that \(C_D \) is either a deadlock or a final configuration. In this case, for every prefix \(v \) of \(w \), \(N \) has a run \(C_{\text{init}} \xrightarrow{v} C_v \) and moreover \(C_v(d) = C_D(v) \) for every deterministic process \(d \), and \(C_D \) such that \(C_{\text{init}} \xrightarrow{v} C_D \) is a run of \(N_D \).

Proof. The proof is by induction on the length of \(v \). Consider a prefix \(v(m,a) \) of \(w \). We have that \(m \) is the \(\preceq_N \)-smallest atomic negotiation enabled in \(C_D \). Suppose to the contrary that it is not enabled in \(C_v \). Since \(N \) is weakly non-deterministic, all atomic negotiations enabled in \(C_v \) must be enabled in \(C_D \). Since \(N \) is sound, there is a run from \(C_v \) to the final configuration. But by simple induction on its length we can show that this run can involve only atomic negotiations \(\preceq_N \)-bigger than \(m \) (by acyclicity executing a bigger negotiation can never enable a smaller one). A contradiction.

The next lemma gives a necessary condition for the soundness of \(N \) that is easy to check. It is proved by showing that \(N_D \) cannot have much more behaviours than \(N \).

▶ **Lemma 22.** If \(N \) is a sound, acyclic, weakly non-deterministic negotiation then \(N_D \) is sound.

Proof. Suppose to the contrary that \(N_D \) has a run reaching a deadlock configuration \(C_{\text{init}} \xrightarrow{w} C \). By Lemma 20 we can assume that \(w \) respects \(\preceq_N \) ordering. By Lemma 21 we get a run of \(N \) to a deadlock configuration, but this is impossible.

We then first consider the case of a negotiation with only one non-deterministic process. The next lemma reduces (un)soundness of \(N \) to some pattern in \(N_D \).
Lemma 23. Let \(\mathcal{N} \) be an acyclic, weakly non-deterministic negotiation with only one non-deterministic process \(p \). Then \(\mathcal{N} \) is not sound, if and only if, either:

- \(\mathcal{N}_D \) is not sound, or
- \(\mathcal{N}_D \) is sound, and it has two nodes \(m \preceq \mathcal{N} n \) with outcomes \(a \in \text{out}(m), b \in \text{out}(n) \) such that:
 - \(p \in \text{dom}(m) \cap \text{dom}(n), n \notin S_p = \delta(m, a, p) \), and
 - there is a successful run of \(\mathcal{N}_D \) containing \(P = \{ (m, a), (n, b) \} \) and omitting \(B = \{ n' \in S_p : m \preceq \mathcal{N} n' \preceq \mathcal{N} n \} \).

Proof. Consider the right to left direction. If \(\mathcal{N}_D \) is not sound then by Lemma 22, \(\mathcal{N} \) is not sound.

Suppose then that \(\mathcal{N}_D \) satisfies the second item from the statement of the lemma, and take a run \(w \) of \(\mathcal{N}_D \) as it is assumed there. By Lemma 20 we can assume that this run respects \(\preceq_{\mathcal{N}_D} \) order. Towards a contradiction suppose also that \(\mathcal{N} \) is sound. Lemma 21 says that \(w \) is also a run of \(\mathcal{N} \). Let \(C_1 \) be a configuration of this run just after \((m, a) \) was executed. Denoting \(S_p = \delta(m, p, a) \), we have \(C_1(p) = S_p \). Let \(C_2 \) be the first configuration after \(C_1 \) such that \(C(d) = n \) for some process \(d \) (it may be that \(C_2 = C_1 \)). We have \(C_2(p) = S_p \) since the run \(w \) omits \(\{ n' \in S_p : m \preceq \mathcal{N} n' \preceq \mathcal{N} n \} \), so \(p \) cannot move between \(C_1 \) and \(C_2 \). When we continue following \(w \) form \(C_2 \) we see that \(d \) cannot move since \(n \) will never be enabled for \(p \). So this run leads to a deadlock, contradiction with the soundness of \(\mathcal{N} \).

For the left to right direction, assume that \(\mathcal{N}_D \) is sound. We need to show the second item of the lemma. Observe that since \(\mathcal{N} \) is acyclic and not sound then there is a run \(C_{\text{init}} \overset{w}{\rightarrow} C \) where \(C \) is a deadlock. By Lemma 20 we can assume that \(w \) respects \(\preceq_{\mathcal{N}} \). Let \(n \) be the smallest in \(\preceq_{\mathcal{N}} \) ordering atomic negotiation such that \(C(d) = n \) for some deterministic process \(d \). Since \(C \) is not a deadlock with respect to the deterministic processes, \(n \) must be deterministically enabled in \(C \): that is \(C(d') = n \) for \(d' \in \text{dom}(n) \). This implies \(p \in \text{dom}(n) \), and \(n \notin C(p) \).

Let us split \(w \) as \(u(m, a)v \) where \(p \in \text{dom}(m) \) and all atomic negotiations in \(v \) involving \(p \) are \(\preceq_{\mathcal{N}} \)-bigger than \(m \). Let \(C_m \) be the configuration reached after doing \((m, a) \): \(\overset{\text{init}}{C_m \leftarrow u(m, a)} \). Take \(S_p = C_m(p) = \delta(m, a, p) \). Consider \(C_n \) the first configuration after \(C_m \) where \(n \) is deterministically enabled (it may be \(C_m \) itself). We must have that \(C_n(p) = S_p \) since the next move of \(p \) is \(\preceq_{\mathcal{N}} \)-bigger than \(n \) hence it can occur only after \(n \) is deterministically enabled. For the same reason, the run from \(C_n \) to \(C \) does not use actions in \(\{ n' \in S_p : m \preceq \mathcal{N} n' \preceq \mathcal{N} n \} \). By soundness of \(\mathcal{N}_D \), from \(C \) there is a run to the final configuration, and by the choice of \(n \) this run cannot use actions smaller than \(n \). Let \(b \) be the outcome such that \((n, b) \) appears in this run. Putting these pieces together we have a successful run of \(\mathcal{N}_D \) from \(C_{\text{init}} \) containing \(\{ (m, a), (n, b) \} \) and omitting \(\{ n' \in S_p : m \preceq \mathcal{N} n' \preceq \mathcal{N} n \} \). We have already observed that \(p \in \text{dom}(m) \cap \text{dom}(n) \) and \(n \notin S_p = \delta(m, a, p) \). So all the requirements of the lemma are met.

Lemma 24. Soundness of acyclic, weakly non-deterministic negotiation with only one non-deterministic process can be checked in \(\text{Ptime} \).

Proof. For every \(m \leq n, a \) and \(b \) we check the conditions described in Lemma 23. The existence of a run of \(\mathcal{N}_D \) can be checked in \(\text{Ptime} \) thanks to Theorem 16 and the fact that the size of \(P \) is always 2.

The next lemma deals with the case when there is more than one non-deterministic process.
Lemma 25. An acyclic weak non-deterministic negotiation \(\mathcal{N} \) is not sound if and only if:
1. either its restriction \(\mathcal{N}_D \) to deterministic processes is not sound,
2. or, for some non-deterministic process \(p \), its restriction \(\mathcal{N}^p \) to \(p \) and the deterministic processes is not sound.

Proof. For the right-to-left direction the case when \(\mathcal{N}_D \) is unsound follows directly from Lemma 22. It remains to check the case when \(\mathcal{N}^p \) is not sound for some non-deterministic process \(p \). Consider a run \(\mathcal{C}_\text{init} \xrightarrow{w} \mathcal{C} \). By Lemma 20 we can assume that \(w \) is \(\preceq_N \) increasing. Now let us try to make \(\mathcal{N} \) execute the sequence \(w \).

If \(\mathcal{C}_\text{init} \xrightarrow{w} \mathcal{C} \) is a run of \(\mathcal{N} \) then \(\mathcal{C} \) is a deadlock. Indeed if in \(\mathcal{N} \) it would be possible to do \(\mathcal{C} \xrightarrow{(n,a)} \) for some \((n,a) \) then \(\mathcal{C}^p \xrightarrow{(n,a)} \) would be possible in \(\mathcal{N}^p \).

The other case is when in \(\mathcal{N} \) it is not possible to execute all the sequence \(w \). Then we have \(w = v(n,a)v' \), a run \(\mathcal{C}_\text{init} \xrightarrow{v} \mathcal{C}_1 \) and from \(\mathcal{C}_1 \) action \((n,a) \) is not possible. Since \(\mathcal{C}_\text{init} \xrightarrow{v} \mathcal{C}_1 \xrightarrow{(n,a)} \mathcal{C}_2 \) is a run of \(\mathcal{N}^p \), we know that there is a deterministic process \(d \) with \(\mathcal{C}_1(d) = n \), and \(n \preceq_N \mathcal{C}_1(d') \) for all other deterministic processes \(d' \). Thus \(\mathcal{C}_1 \) is a deadlock because by Lemma 20 if there is an action possible from \(\mathcal{C}_1 \) then this must be \(n \).

For the left-to-right direction, suppose that \(\mathcal{N} \) is not sound and take a run \(\mathcal{C}_\text{init} \xrightarrow{w} \mathcal{C} \) with \(\mathcal{C} \) a deadlock configuration. Since \(\mathcal{N} \) is weak deterministic, every atomic negotiation has at least one deterministic process participating in it. Take the smallest atomic negotiation \(n \) in the \(\preceq_N \) ordering such that \(n = \mathcal{C}(d) \) for some deterministic process \(d \). Consider a non-deterministic process \(p \) and a run \(\mathcal{C}_\text{init} \xrightarrow{w} \mathcal{C} \) of \(\mathcal{N}^p \); it is indeed a run since \(\mathcal{N}^p \) is a restriction of \(\mathcal{N} \). As \(\mathcal{N}^p \) is sound, it is possible to extend this run. By Lemma 20, it should be possible to execute \(n \) form \(\mathcal{C} \). Hence for every deterministic process \(d \in \text{dom}(n) \), we have \(\mathcal{C}(d) = \{n\} \). Moreover \(n \in \mathcal{C}(p) \) if \(p \in \text{dom}(n) \). Since the choice of \(p \) was arbitrary, we have \(n \in \mathcal{C}(p) \) for all \(p \in \text{dom}(n) \). Thus it is possible to execute \(n \) from \(\mathcal{C} \), a contradiction.

Theorem 26. Soundness can be decided in PTIME for acyclic, weakly non-deterministic negotiations.

Proof. By Lemma 25 we can restrict to negotiations \(\mathcal{N} \) with one non-deterministic process. For every \(m \preceq_N n \), \(a \) and \(b \) we check the conditions described in Lemma 23. The existence of a run of \(\mathcal{N}_D \) can be checked in PTIME thanks to Theorem 16 and the fact that the size of \(P \) is constant.

Beyond acyclic weakly non-deterministic negotiations

In this section we show that the polynomial-time result for acyclic, weakly non-deterministic negotiations from Section 7 requires both acyclicity and weak non-determinism. We prove that if we remove one of the two assumptions then the problem becomes \(\text{coNP} \)-complete. Indeed, even a very mild extension of acyclicity makes the soundness problem \(\text{coNP} \)-complete.

It is not very surprising that deciding soundness for acyclic, non-deterministic negotiations is \(\text{coNP} \)-complete. The problem is in \(\text{coNP} \) since all runs are of polynomial size, so it suffices to guess a run and check if the reached configuration is a deadlock. The hardness is by a simple reduction of SAT to the complement of the soundness problem. It strongly relies on non-determinism.

Proposition 27. Soundness of acyclic non-deterministic negotiations is \(\text{coNP} \)-complete.
In view of the above proposition, the other possibility is to keep weak non-determinism and relax the notion of acyclicity. We consider a very mild relaxation: deterministic processes still need to be acyclic. This condition implies that all the runs are of polynomial size. We show that even for very weakly non-deterministic negotiations (cf. page 5) the problem is already coNP-complete.

Theorem 28. Non-soundness of det-acyclic, very weakly non-deterministic negotiations is NP-complete.

Proof. We describe a reduction from 3-SAT and fix a 3-CNF formula \(\varphi = c_1 \land \cdots \land c_m \), with clauses \(c_1, \ldots, c_m \), each of length 3, and \(k \) variables \(x_1, \ldots, x_k \). Let \(c_j = \ell_{j,1} \lor \ell_{j,2} \lor \ell_{j,3} \).

We construct a det-acyclic, very weakly non-deterministic negotiation \(N \) such that \(\varphi \) is satisfiable iff \(N \) is not sound.

The atomic negotiations of \(N \) are (apart from \(n_{\text{init}} \) and \(n_{\text{fin}} \)):
- An atomic negotiation \(m_0 \), and for each variable \(x_i \) three atomic negotiations \(n_i^+, n_i^-, m_i \).
- For every pair clause/literal \((j, d)\), \(j = 1, \ldots, m \) and \(d = 1, 2, 3 \), three atomic negotiations \(m_{j,d}, n_{j,d}, r_{j,d} \).
- For every clause \(c_j \), two auxiliary atomic negotiations \(t_j \) and \(t'_j \).

The processes of \(N \) are:
- A deterministic process \(E \).
- For each clause \(c_j \), a deterministic process \(V_j \).
- For every pair clause/literal \((j, d)\), \(j = 1, \ldots, m \) and \(d = 1, 2, 3 \): two deterministic processes \(T_{j,d}, T'_{j,d} \) and a non-deterministic process \(P_{j,d} \).

Now we describe the behaviour of each process \(P \) by means of a graph. The nodes of the graph for \(P \) are the atomic negotiations in which \(P \) participates. The graph has an edge \(n \to n' \) if there is an outcome \(a \) of \(n \) such that \(P \) moves with \(a \) from \(n \) to \(n' \). If \(P \) is nondeterministic, and after \(a \) is ready to engage in a set of atomic negotiations \(\{n_1, \ldots, n_k\} \), then the graph contains a hyperedge leading from \(n \) to \(\{n_1, \ldots, n_k\} \).

The graphs of all processes are shown in Figure 2. Intuitively, process \(E \) is in charge of producing a valuation of \(x_1, \ldots, x_k \): it chooses between \(n_i^+ \) and \(n_i^- \), then between \(n_j^+ \) and \(n_j^- \), etc. Choosing \(n_i^+ \) stands for setting \(x_i \) to true, and choosing \(n_i^- \) for setting \(x_i \) to false.

Observe that in the graph for the non-deterministic process \(P_{j,d} \) we assume \(\ell_{j,d} \in \{x_i, \overline{x_i}\} \). After \(n_{\text{init}} \), the process goes to \(m_i \), and then to \(n_i^+ \) or \(n_i^- \) in a deterministic way, depending on the outcome chosen at \(m_i \). The rest of its behaviour depends on whether \(\ell_{j,d} = x_i \) or \(\ell_{j,d} = \overline{x_i} \). If \(\ell_{j,d} = x_i \), then after \(n_i^+ \) the process goes to \(r_{j,d} \), and then to one of \(\{n_{\text{fin}}, n_{j,d}\} \) (nondeterminism!). For the other case, see Figure 2.

Process \(P_{j,d} \) is designed with the following purpose. If process \(E \) sets literal \(\ell_{j,d} \) to true, then \(P_{j,d} \) guarantees that \(m_{j,d} \) is executed before \(n_{j,d} \); if \(E \) sets literal \(\ell_{j,d} \) to false, then \(m_{j,d} \) and \(n_{j,d} \) can occur in any order. In other words, in every successful run containing \(n_i^+ \): if \(\ell_{j,d} = x_i \) then node \(m_{j,d} \) appears before \(n_{j,d} \); if \(\ell_{j,d} = \overline{x_i} \) then the nodes \(m_{j,d} \) and \(n_{j,d} \) can appear in any order. Similarly for runs containing \(n_i^- \), interchanging \(x_i, \overline{x_i} \).

It is easy to see that \(N \) is very weakly non-deterministic. The only nondeterministic processes are the \(P_{j,d} \) processes. Moreover, the sets \(\{n_{\text{fin}}, r_{j,d}\} \) and \(\{n_{\text{fin}}, n_{j,d}\} \) are the only two sets of atomic negotiations such that (a) there are configurations such that \(P_{j,d} \) is ready to engage in them, and (b) contain more than one element. Since \(n_{\text{fin}} \) contains all processes, the condition for very weak non-determinism is clearly verified.

If the valuation chosen by \(E \) makes all \(c_j \) true, we claim that the partial run corresponding to this valuation cannot be completed to a successful run. Indeed, in this case for each \(c_j \) there is a true literal \(\ell_{j,d} \), and so \(P_{j,d} \) enforces that \(m_{j,d} \) is executed before \(n_{j,d} \). We denote
this by $m_{j,d} < n_{j,d}$. But then, since process $T_{j,d}$ enforces $t_j < m_{j,d}$, process $T'_{j,d}$ enforces $n_{j,d} < t'_j$, and process V_j enforces $t'_j < t_{j+1 \text{mod}(m+1)}$, we get the cycle

$$t_1 < t'_1 < t_2 < \cdots t_m < t'_m < t_1$$

Since, say, t_2 cannot occur before and after t_1, because the deterministic process are acyclic, the partial run cannot be completed.

Otherwise, if the valuation makes at least one c_j false, then no cycle is created and the partial run can be extended to a successful run.

Here is a more formal version of the proof. By construction, $\text{dom}(t_j) = \{V_{j-1}, T_{j,d} \mid d = 1, 2, 3\}$, $\text{dom}(t'_j) = \{V_j, T'_{j,d} \mid d = 1, 2, 3\}$, $\text{dom}(m_{j,d}) = \{T_{j,d}\}$, $\text{dom}(n_{j,d}) = \{T'_{j,d}, P_{j,d}\}$, $\text{dom}(r_{j,d}) = \{T_{j,d}, P_{j,d}\}$.

Let $\nu : \{1, \ldots, n\} \to \{0, 1\}$ be a valuation of the variables x_1, \ldots, x_n. By C_ν we denote the following configuration (note that only the position of processes $P_{j,d}$ depends on the valuation):

- $C_\nu(E) = n_{\text{fin}}$
- If the literal $\ell_{j,d}$ is true under ν then $C_\nu(P_{j,d}) = r_{j,d}$, and otherwise $C_\nu(P_{j,d}) = n_{j,d}$.

- Figure 2 Graphs of the processes of N.

\[\begin{array}{c}
E: & n_{\text{init}} \rightarrow m_0 \rightarrow m_1 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow n_{\text{fin}} \\
& 0 \hspace{1cm} n_1^- \hspace{1cm} 1 \hspace{1cm} n_1^+ \\
& n_{\text{init}} \rightarrow m_0 \rightarrow m_1 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow n_{\text{fin}} \\
& 0 \hspace{1cm} n_k^- \hspace{1cm} 1 \hspace{1cm} n_k^+ \\
V_j: & n_{\text{init}} \rightarrow t'_j \rightarrow t_{j+1} \rightarrow n_{\text{fin}} \\
T_{j,d}: & n_{\text{init}} \rightarrow t_j \rightarrow m_{j,d} \rightarrow r_{j,d} \rightarrow n_{\text{fin}} \\
T'_{j,d}: & n_{\text{init}} \rightarrow n_{j,d} \rightarrow t'_j \rightarrow n_{\text{fin}} \\
P_{j,d} (\text{with } l_{j,d} = x_i): & n_{\text{init}} \rightarrow m_i \rightarrow n_{\text{fin}} \\
P_{j,d} (\text{with } l_{j,d} = \overline{x_i}): & n_{\text{init}} \rightarrow m_i \rightarrow n_{\text{fin}}
\end{array}\]
Also by construction, can reach a configuration with \(n_{j,d} \) before \(t_{j+1} \) is executable, and \(V_j \) moves to node \(t_{j+1} \). Notice that \(t_{j+1} \) is now executable, so we can reach a configuration with \(P_{j+1,d} \) in \(r_{j+1,d} \) in \(t_j' \). Now \(t_j' \) is executable, and \(V_j \) moves to node \(t_{j+1} \). In the first case by Fact 1, nodes \(r_{j+1,d} \) can be executed (in this order), in the second case \(P_{j+1,d} \) can be executed (in this order). In either case we can get to a configuration where processes \(r_{j+1,d} \) and \(P_{j+1,d} \) are in \(n_{j,d} \) and processes \(T_{j+1,d} \) are in \(t_j' \). Therefore, \(t_j' \) is also executable. By iterating this argument we obtain a successful run executing \(t_j', t_{j+1}, t_{j+1}', \ldots, t_1, t_1', \ldots, t_j \) in this order.

Fact 3. If \(\nu \) does satisfy the formula then there is no successful run from \(C_\nu \).

Suppose by contradiction that there is a successful run \(\sigma \) from \(C_\nu \). By assumption, for each \(j \) there is some \(d = 1, 2, 3 \) such that \(C_\nu(T_{j,d}) = r_{j,d} \). Therefore \(m_{j,d} \) is necessarily executed before \(n_{j,d} \) in \(\sigma \). By construction this implies that \(t_j \) is executed before \(t_j' \) in \(\sigma \). Also by construction, \(t_j' \) must be executed before \(t_{(j+1) \mod (m+1)} \), for every \(j \). This means that \(t_1 \) should be executed before \(t_m' \), and \(t_m' \) before \(t_1 \), a contradiction.

\[\square \]

9 Conclusions

Analysis of concurrent systems is very often \textsc{PSPACE}-hard because of the state explosion problem. One way to address this problem is to look for restricted classes of concurrent systems which are non-trivial, and yet are algorithmically easier to analyze. We argue in this paper that negotiations are well adapted for this task. Processes in a negotiation are stateless, at every moment their state is the set of negotiations they are willing to engage. When processes are non-deterministic this mechanism can simulate states, so that the interesting cases occur when non-determinism is limited. These limitations are still relevant as show examples from workflow nets. In short, the negotiation model offers a simple way to formulate restrictions that are sufficiently expressive and algorithmically relevant.

We have shown that a number of verification problems for sound deterministic acyclic negotiations can be solved in \textsc{Ptime} or even in \textsc{Nlogspace}. In our application to workflow Petri nets, acyclicity and determinism (equivalent to free-choiceness) are quite common: about 70\% of the industrial workflow nets of [17, 7, 6] are free-choice, and about 60\% are both acyclic and free-choice (see e.g. the table at the end of [6]).

Open problems. It would be interesting to have a better understanding what verification problems for deterministic, acyclic, sound negotiations can be solved in \textsc{Ptime}. The \textsc{coNP} result for weakly-deterministic negotiations shows that one should proceed carefully here: allowing arbitrary products with finite automata would not work.
References