
HAL Id: hal-01891179
https://hal.science/hal-01891179

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soundness in negotiations
Javier Esparza, Denis Kuperberg, Anca Muscholl, Igor Walukiewicz

To cite this version:
Javier Esparza, Denis Kuperberg, Anca Muscholl, Igor Walukiewicz. Soundness in negotiations. Log-
ical Methods in Computer Science, 2018, �10.4230/LIPIcs�. �hal-01891179�

https://hal.science/hal-01891179
https://hal.archives-ouvertes.fr

Soundness in negotiations∗

Javier Esparza1, Denis Kuperberg1, Anca Muscholl2, and Igor
Walukiewicz3

1 Technical University of Munich
2 Technical University of Munich, IAS & CNRS†

3 University of Bordeaux, CNRS, LaBRI

Abstract
Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively,
they can be seen as a model of concurrency with synchronized choice as communication primitive.
Well-designed negotiations must be sound, meaning that, whatever its current state, the nego-
tiation can still be completed. In a former paper, Esparza and Desel have shown that deciding
soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is determinis-
tic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic
negotiations, but left the complexity of the soundness problem open.

In the first part of this paper we study two further analysis problems for sound acyclic deter-
ministic negotiations, called the race and the omission problem, and give polynomial algorithms.
We use these results to provide the first polynomial algorithm for some analysis problems of
workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova.

In the second part we solve the open question of Esparza and Desel’s paper. We show that
soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking
soundness is already NP-complete for slightly more general classes.

1998 ACM Subject Classification D.1.3, D.3.2, D.2.2, F.2.0, H.4.1

Keywords and phrases Negotiations, workflows, soundness, verification, concurrency.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

A multiparty atomic negotiation is an event in which several processes (agents) synchro-
nize in order to select one out of a number of possible outcomes. In [3] Esparza and Desel
introduced negotiations, a model of concurrency with multiparty atomic negotiation as in-
teraction primitive. The model describes a workflow of “atomic” negotiations. After an
atomic negotiation concludes with the selection of an outcome, the workflow determines the
set of atomic negotiations each agent is ready to engage next.

The negotiation model has been studied in [3, 4, 5], and in [6] the results have been
applied to the analysis of industrial business processes modeled as workflow Petri nets, a very
successful formal backend for graphical notations like BPMN (Business Process Modeling
Notation), EPC (Event-driven Process Chain), or UML Activity Diagrams (see e.g. [16, 15]).
As shown in [1], deterministic negotiations are very closely related to free-choice workflow
nets, a class that is expressive enough to model many business processes (for example, 70%

∗ This work was partially supported by the DFG Project “Negotiations: A Model for Tractable Concur-
rency”
† On leave from the University of Bordeaux.

© Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

of the almost 2000 workflow nets from the suite of industrial models studied in [17, 7, 6] are
free-choice).

The most prominent analysis problem for the negotiation model is soundness. Loosely
speaking, a negotiation is sound if for every reachable configuration there is an execution
leading to proper termination of the negotiation. In [3] it is shown that the soundness prob-
lem is Pspace-complete for non-deterministic negotiations and coNP-complete for acyclic
non-deterministic negotiations1. For this reason, and in search of a tractable class, [3] in-
troduces the class of deterministic negotiations. In deterministic negotiations all agents are
deterministic, meaning that they are never ready to engage in more than one atomic negoti-
ation per outcome (in the same way that in a deterministic automaton, for each action the
automaton is only ready to move to one state). The main results of [3] are a polynomial
time reduction algorithm for checking soundness of acyclic deterministic negotiations, and
an extension of the algorithm to the more expressive class of acyclic, weakly deterministic2
negotiations. The runtime of this second algorithm was however left open, as well as the
more general question of determining the complexity of checking soundness for other classes
of acyclic negotiations. In [4] the polynomial result for acyclic deterministic negotiations is
extended to the cyclic case.

While unsound negotiations are clearly faulty, sound negotiations are not automatically
correct, they must satisfy other properties. In the first contribution of this paper, we study
two other analysis problems for sound acyclic deterministic negotiations: the race problem
and the omission problem. The race problem is to determine if there is an execution in which
two given atomic negotiations are concurrently enabled. The omission problem asks for given
sets of atomic negotiations P and B if there exists a run that visits all elements of P and
omits all of B. We show that for sound negotiations the race problem is polynomial, as well
as the omission problem for P of bounded size. We then apply these polynomial algorithms
to analysis problems for negotiations with global data studied in [14, 12] in the context of
workflow Petri nets. In this model atomic negotiations can manipulate global variables,
so classical analysis questions are raised, for instance whether every value written into a
variable is guaranteed to be read, or whether a variable can be allocated and deallocated
by two atomic negotiations taking place in parallel. While the algorithms of [14, 12] are
exponential, our solutions for acyclic sound deterministic negotiations take polynomial time.

Our second contribution is the study of the complexity of soundness for classes beyond
deterministic negotiations. We propose to analyze this problem through properties of the
graph of a negotiation. The first indication of the usefulness of this approach is a short
argument giving an Nlogspace algorithm for deciding soundness of acyclic deterministic
negotiations. Next, we settle the question left open in [3], and prove that the soundness
problem can be solved in polynomial time for acyclic, weakly non-deterministic negotiations,
a class even more general than the one defined in [3]. We then show that if we leave out
one of the two assumptions, acyclicity or weak non-determinism, then the problem becomes
coNP-complete3. These results set a limit to the class of negotiations with a polynomial
soundness problems, but also admit a positive interpretation. Indeed, if all processes are
allowed to be cyclic and non-deterministic, then the soundness problem is Pspace-complete,
while for the class above it belongs to coNP.

1 In [3] the notion of soundness has one more requirement, which makes the soundness problem for acyclic
negotiations coNP-hard and in DP.

2 The class considered [3] was called “weakly deterministic”. In this paper we refer to it as “very weakly
non-deterministic”.

3 We show that coNP-hardness holds even for a very mild relaxation of acyclicity.

Related formalisms and related work. The connection between negotiations and Petri
nets is studied in detail in [1]. Every negotiation can be transformed into an exponentially
larger 1-safe workflow Petri net with an isomorphic reachability graph. Every deterministic
negotiation is equivalent to a 1-safe workflow free-choice net with a linear blow-up. Con-
versely, every sound workflow free-choice net can be transformed into a sound deterministic
negotiation with a linear blow-up. Recent papers on free-choice workflow Petri nets are [8, 6].
In [8] soundness is characterized in terms of anti-patterns, which can be used to explain why
a given workflow net is unsound. Our work provides an anti-pattern characterization for
acyclic weakly non-deterministic negotiations, which goes beyond the free-choice case. In
[6] a polynomial reduction algorithm for free-choice workflow Petri nets is presented. Our
results show that soundness is also polynomial for workflow Petri nets coming from acyclic
weakly deterministic negotiations.

As a process-based concurrent model, negotiations can be compared with another well-
studied model for distributed computation, namely Zielonka automata [18, 2, 11]. Such
an automaton is a parallel composition of finite transition systems with synchronization
on common actions. The important point is that a synchronization involves exchange of
information between states of agents: the result of the synchronization depends on the states
of all the components taking part in it. Zielonka automata have the same expressive power as
arbitrary, possibly nondeterministic negotiations. Deterministic negotiations correspond to
a subclass that does not seem to have been studied yet, and for which verification becomes
considerably easier. For example, the question whether some local state occurs in some
execution is Pspace-complete for “sound” Zielonka automata, while it can be answered in
polynomial time for sound deterministic negotiations.

A somewhat similar graphical formalism are message sequence charts/graphs, used to
describe asynchronous communication. Questions like non-emptiness of intersection are in
general undecidable for this model, even assuming that communication buffers are bounded.
Subclasses of message sequence graphs with decidable model-checking problem were pro-
posed, but the complexity is Pspace-complete [9].

Overview. Section 2 introduces definitions and notations, then Section 3 reconsiders
soundness for acyclic, deterministic negotiations. In Section 4 we provide an Nlogspace
algorithm for the race problem. Section 5 solves the omitting problem, that is used in Sec-
tion 6 for analyzing properties of workflows described by acyclic, deterministic negotiations,
and later in Section 7 to decide soundness for acyclic weakly non-deterministic negotiations
in Ptime. Finally, Section 8 establishes the coNP complexity bounds.

2 Negotiations

A negotiation N is a tuple 〈Proc, N, dom, R, δ〉, where Proc is a finite set of processes (or
agents) that can participate in negotiations, and N is a finite set of nodes (or atomic nego-
tiations) where the processes can synchronize. The function dom : N → P(Proc) associates
to every atomic negotiation n ∈ N the (non-empty) set dom(n) of processes participating
in it. Nodes are denoted as m or n, and processes as p or q; possibly with indices.

The set of possible outcomes of atomic negotiations is denoted R, and we use a, b, . . .
to range over its elements. The control flow in a negotiation is determined by a partial
transition function δ : N×R×Proc ·−→ P(N), telling that after the outcome a of an atomic
negotiation n, process p ∈ dom(n) is ready to participate in any of the negotiations from
the set δ(n, a, p). So for every n′ ∈ δ(n, a, p) we have p ∈ dom(n′) ∩ dom(n). Every atomic
negotiation n ∈ N has its set of possible outcomes out(n), and for every n, a ∈ out(n) and

p ∈ dom(n) the result δ(n, a, p) has to be defined. So all processes involved in an atomic
negotiation should be ready for all its possible outcomes. Observe that atomic negotiations
may have one single participant process, and/or have one single outcome.

������������

����������

����������

�����
�����
�����
�����

������������������������������

������������ ����������

n0 n1 n7

n3

Process p

Process q
a a a a

a a a a

a

n2

n6n4 n5 b
b

b

Figure 1 A negotiation. Atomic negotiation n1 involves processes p, q, and has two possible
outcomes a and b. The arrows show next negotiations in which respective processes are willing to
engage.

Negotiations admit a graphical representation. Figure 1 shows a negotiation with Proc =
{p, q}, N = {n0, . . . , n7} and R = {a, b}. For example, we have dom(n1) = {p, q},
δ(n1, b, p) = {n3} and δ(n1, b, q) = {n6}. More details can be found in [3].

A configuration of a negotiation is a function C : Proc → P(N) mapping each process p
to the set of atomic negotiations in which p is ready to engage. An atomic negotiation n is
enabled in a configuration C if n ∈ C(p) for every p ∈ dom(n), that is, if all processes that
participate in n are ready to proceed with it. A configuration is a deadlock if no atomic
negotiation is enabled in it. If an atomic negotiation n is enabled in C, and a is an outcome
of n, then we say that (n, a) can be executed, and its execution produces a new configuration
C ′ given by C ′(p) = δ(n, a, p) for p ∈ dom(n) and C ′(p) = C(p) for p 6∈ dom(n). We denote
this by C (n,a)−→ C ′. For example, in Figure 1 we have C (n1,a)−→ C ′ for C(p) = {n1} = C(q)
and C ′(p) = {n2}, C(q) = {n4}.

A run of a negotiation N from a configuration C1 is a finite or infinite sequence w =
(n1, a1)(n2, a2) . . . such that there are configurations C2, C3, . . . with

C1
(n1,a1)−→ C2

(n2,a2)−→ C3 . . .

We denote this by C1
w−→, or C1

w−→ Ck if the sequence is finite and finishes with Ck. In
the latter case we say that Ck is reachable from C1 on w. We simply call it reachable if w
is irrelevant, and write C1

∗−→ Ck.
Negotiations come equipped with two distinguished initial and final atomic negotiations

ninit and nfin in which all processes in Proc participate. The initial and final configurations
Cinit , Cfin are given by Cinit(p) = {ninit} and Cfin(p) = {nfin} for all p ∈ Proc. A run is
successful if it starts in Cinit and ends in Cfin. We assume that every atomic negotiation
(except possibly for nfin) has at least one outcome. In Figure 1, ninit = n0 and nfin = n7.

2.1 Main definitions
A negotiation N is sound if every partial run starting at Cinit can be completed to a
successful run. If a negotiation has no infinite runs, then it is sound iff it has no reachable
deadlock configuration.

Process p is deterministic in a negotiation N if for every n ∈ N , and a ∈ R, the set
of possible next negotiations, δ(n, a, p), is a singleton or the empty set. A negotiation is

deterministic if every process p ∈ Proc is deterministic. The negotiation of Figure 1 is
deterministic.

A negotiation is weakly non-deterministic if for every n ∈ N at least one of the processes
in dom(n) is deterministic. A negotiation is very weakly non-deterministic4 if for every
n ∈ N , a ∈ R, and p ∈ Proc, there is a deterministic process q such that q ∈ dom(n′) for all
n′ ∈ δ(n, a, p).

Examples of weakly non-deterministic negotiations can be found in [3]. In particular,
weakly non-deterministic negotiations allow to model deterministic negotiations with global
resources (see Section 6). The resource (say, a piece of data) can be modeled as an additional
process, which participates in the atomic negotiations that use the resource. The outcome of
a negotiation can change the state of the resource (say, from “confidential” to “public”), and
at each state the resource may be ready to engage in a different set of atomic negotiations.

The graph of a negotiation has atomic negotiations, N , as set of nodes; the edges are
n

p,a−→ n′ if n′ ∈ δ(n, a, p). Observe that p ∈ dom(n) ∩ dom(n′).
A negotiation is acyclic if its graph is so. Acyclic negotiations cannot have infinite

runs, so as mentioned above, soundness is equivalent to deadlock-freedom. For an acyclic
negotiation N we fix a linear order 4N on its nodes that is a topological order on the graph
of N . This means that if there is an edge from m to n in the graph of N then m 4N n.

The restriction of a negotiation N to a subset of its processes Proc′ is the negotiation
〈Proc′, N ′, dom′, R, δ′〉 where N ′ is the set of those n ∈ N for which dom(n) ∩ Proc′ 6=
∅, dom′(n) = dom(n) ∩ Proc′, and δ′(n, r, p) = δ(n, r, p) ∩ N ′. The restriction of N to
deterministic processes is denoted as ND throughout the paper.

A negotiation N is det-acyclic if ND is acyclic. It follows easily from the definitions that
a weakly non-deterministic, det-acyclic negotiation does not have any infinite run.

3 Soundness of acyclic deterministic negotiations

The main objective of this section is to provide some tools that we will use later. We show
how some properties of negotiations can be determined by patterns in their graphs. As an
example of an application of our techniques we revisit the soundness problem for acyclic,
deterministic negotiations. We provide an alternative polynomial-time algorithm that is
actually in Nlogspace, in contrast with the algorithm of [3] that is based on rewriting.

Fix a negotiation N . A local path is a path n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk in the graph

of N . The path is realizable from some configuration C, if there is a run C w−→ with w of the
form (n0, a0)w1(n1, a1) · · ·wk−1(nk−1, ak−1), such that pi /∈ dom(wi+1), for all i. Here we
use dom(v) to denote the set of all processes involved in some atomic negotiation appearing
in sequence v: dom(v) =

⋃
{dom(n) : for some a, (n, a) appears in v}.

For what follows Lemma 1 is particularly useful as it gives a simple criterion when an
atomic negotiation is a part of some successful run.

I Lemma 1. Let n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk be a local path in the graph of a sound

deterministic negotiation N . If C is a reachable configuration of N and n0 is enabled in C
then the path is realizable from C.

Proof. Let C be such that C(p) = n0 for every p ∈ dom(n0). By induction on i we show
that there is a run C

∗−→ Ci realizing n0
p0,a0−→ n1

p1,a1−→ . . .
pi−1,ai−1−→ ni and such that ni is

enabled in Ci.

4 This class was called weakly deterministic in [3].

For i = 0, we simply take Ci = C. For the induction step we assume the existence of Ci
in which ni is enabled. Let C ′i+1 be the result of executing (ni, ai) from Ci. Observe that
C ′i+1(pi) = ni+1 (recall that N is deterministic). Since N is sound, and C ′i+1 is reachable,
there is a run from C ′i+1 to Cfin. We set then Ci+1 to be the first configuration on this run
when ni+1 is enabled. J

Lemma 1 says that there is a run containing the atomic negotiation m iff there is a local
path from ninit to m. If dom(m) ∩ dom(n) 6= ∅ then the lemma also provides an easy test
for knowing whether there is a run containing both m,n: it suffices to check the existence
of a local path ninit

∗−→ m
∗−→ n, or with m,n interchanged. The next lemma takes care of

the opposite situation.

I Lemma 2. Let m,n be two atomic negotiations in a sound deterministic negotiation N ,
and assume that dom(m) ∩ dom(n) = ∅.

There exists some run of N containing both m,n iff there is an atomic negotiation m′

such that
there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some p, q ∈ dom(m′), a ∈ out(m′),
there are two disjoint local paths in N , one from m0 to m, the other from n0 to n.

Proof. Right-to-left implication: the proof is similar to the one of Lemma 1, but we need
to consider three paths instead of a single one. First we realize using Lemma 1 the path
from ninit to m′. Suppose that the partial run from Cinit to the current configuration C

contains neither m nor n yet (otherwise another application of Lemma 1 suffices) and that
m′ is enabled in C. Let C (m′,a)−→ C1. We show now by induction on the sum of the lengths
of the two local paths how to construct a run containing both m,n. Let

m0
p0,a0−→ . . .

pk−1,ak−1−→ mk = m and n0
q0,b0−→ . . .

ql−1,bl−1−→ nl = n .

Since C1(p) = m0, C1(q) = n0 and N is sound, both m0 and n0 must be executed at some
point. Suppose by symmetry that m0 is executed first, then C1

∗−→ C2
(m0,a0)−→ C3 for some

C2, C3 such that C3(p0) = m1 (since N is deterministic) and C3(q) = n0. We can now apply
the inductive assumption to the local paths m1

∗−→ m, n0
∗−→ n, and we are done.

Left-to-right implication: consider a run from ninit of the form w = w1(m, b)w2(n, c),
and choose some p ∈ dom(m), q ∈ dom(n). Let (m′, a) be the rightmost atom in w1 such
that {p, q} ⊆ dom(m′), and let m0 = δ(m′, a, p), n0 = δ(m′, a, q). Then we can take a path
of process p from m0 to m in w1, and another path of process q from n0 to n in w1w2. By
the choice of m′ these paths are disjoint. J

Soundness can be characterized by excluding a special variant of the pattern from the
above lemma. Consider two processes p 6= q of an acyclic negotiation N . A (p, q)-pair is a
pair of disjoint local paths of N :

m0
p,a0−→ . . .

p,ak−1−→ mk and n0
q,b0−→ . . .

q,bl−1−→ nl

such that mk 4N nl and q ∈ dom(mk).

I Lemma 3. Let N be an acyclic deterministic negotiation. Then N is not sound if and
only if there exist an atomic negotiation m′ and two processes p, q such that:

there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some a ∈ out(m′),

there is a (p, q)-pair as above.

Proof. For the right-to-left direction, suppose that we have m′ and the (p, q)-pair as above.
Suppose for a contradiction that N is sound. By Lemma 1 we can consider a run Cinit

∗−→
C

(m′,a)−→ C1 in N , and a successful run from C1. On this run m0 and n0 must be executed.
Say m0 is executed first, and take C2, the configuration reached after executing m0. Since
N is deterministic, we have that C2(p) = m1; also, C2(q) = n0 since m0 6= n0. The case
when n0 is executed first is analogous. Continuing like this we will reach a configuration C ′
with C ′(p) = mk and C ′(q) = ni for some i < l. Observe that it cannot be the case that
nl is executed before mk as q ∈ dom(mk) and q appears all along the path to nl. Once
again, by soundness from C ′ there is a run executing ni, and as we have noted this should
happen before executing mk. Repeating this reasoning we get to a configuration C ′′ with
C ′′(p) = mk and C ′′(q) = nl. But from this configuration mk can never be executed since
mk 4N nl and q ∈ dom(mk). So from C ′′ it is no possible to reach the final configuration,
contradiction with the soundness of N .

For the left-to-right direction, since N is acyclic and not sound, there is a reachable
deadlock configuration Cd. Take the smallest atom m appearing in Cd with respect to 4N
ordering: Cd(p) = m for some process p, and m 4N Cd(q) for all processes q. Since Cd is a
deadlock there is q ∈ dom(m) such that Cd(q) = n 6= m. We create a pattern as required in
the lemma out of this situation. Consider a run of N till Cd. Let C be the last configuration
on this run such that C(p) = C(q), and let C ′ be its successor, that is C (m′,a)−→ C ′ for some
(m′, a). We have C ′(p) = m0 = δ(m′, a, p), and C ′(q) = n0 = δ(m′, a, q). We construct a
(p, q)-pair by looking at the run from C ′ to D and taking all the actions of p on the one
side, and all the actions of q on the other. The two paths will end in mk = m and nl = n

respectively. So mk 4N nl and q ∈ dom(mk). J

I Theorem 4. Soundness of acyclic deterministic negotiations is Nlogspace-complete.

Proof. Clearly the problem is Nlogspace-hard since graph reachability is a special instance
of it. The Nlogspace algorithm for deciding soundness establishes the existence of the
pattern from the previous lemma. Note that the topological order 4N we use is arbitrary,
so we can simply replace the condition mk 4N nl by asking that there is no path from nl
to mk.

J

4 Races

For a given pair of atomic negotiations m,n ∈ N of a deterministic negotiation N =
〈Proc, N, dom, R, δ〉, we want to determine if there is a reachable configuration at which
m,n are concurrently enabled. In other words, we are asking whether a race between m and
n is possible. This is a standard question for concurrent systems, that is difficult to answer
when working with linearizations. In this section we show a simple linear time algorithm
answering the above question for acyclic, sound negotiations. Our algorithm reduces it to
graph reachability questions, and can be implemented in logarithmic space. In the long ver-
sion of our paper we also give a polynomial-time algorithm for possibly cyclic (and sound)
negotiations.

We will write m ‖ n when there is a reachable configuration C of N where both m and
n are enabled. Our goal is to decide if m ‖ n holds for given m, n.

We say below that a run w ∈ (N ×R)∗ can be reordered into another run w′ if w′ can be
obtained from w by repeatedly exchanging adjacent (m, a)(n, b) into (n, b)(m, a) whenever
dom(m) ∩ dom(n) = ∅.

I Lemma 5. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff every run w from ninit containing both m and n
can be reordered into a run w′ such that w′ = Cinit

∗−→ C
∗−→ C ′ for some configuration C

where both m and n are enabled.

Proof. It suffices to show the implication from left to right. So assume that there exists
some reachable configuration C where both m and n are enabled. In particular, dom(m) ∩
dom(n) = ∅. By way of contradiction, let us suppose that there exists some run containing
both m and n, but this run cannot be reordered as claimed. We claim that there must be
some local path fromm to n in N . To see this, assume the contrary and consider a run of the
form w = w1(m, a)w2(n, b)w3. The run w defines a partial order (actually a Mazurkiewicz
trace) tr(w) with nodes corresponding to positions in w, and edges from (m′, c) to (n′, d)
if dom(m′) ∩ dom(n′) 6= ∅ and (m′, c) precedes (n′, d) in w. Since there is no path from m

to n in N , nodes (m, a) and (n, b) are unordered in tr(w). So we can choose a topological
order w′ of tr(w) of the form w′ = w′1(m, a)(n, b)w′2. This shows the claim.

So let π be a path in N from m,n1, . . . , nk, n. Let p be some process such that nk
p,a′−→ n

for some outcome a′.
Let us go back to C. Since bothm and n are enabled in C, we have a transition C n,b−→ C1,

for some b ∈ out(n). Note that m is still enabled in C1, since dom(m)∩ dom(n) = ∅. So we
can apply Lemma 1 to C1 and π (because N is sound), obtaining a configuration C2 where
C2(p) = n. But since n was executed before C1, this violates the acyclicity of N . J

The next step is to convert the condition from Lemma 5 to a condition on the graph of
a negotiation.

I Proposition 6. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff there exists a run containing both m,n, and there
is neither a local path from m to n nor a local path from n to m.

Proof. For the left-to-right implication, assume by contradiction that there is some local
path π fromm to n. Consider some reachable configuration C such that C � m. By Lemma 1
we find a run C ∗−→ C ′ such that C ′ � n. But note that the run Cinit

∗−→ C
∗−→ C ′ cannot

be reordered as stated in Lemma 5, a contradiction.
For the converse, consider some run w containing both m,n. Since there are no local

paths in N between m,n, we can reorder, as in the proof of Lemma 5, the run w into some
w′ such that we find a configuration C of w′ with C � m and C � n. J

Observe that dom(m) ∩ dom(n) = ∅ is a necessary condition for m ‖ n. Thus, from Propo-
sition 6 and Lemma 2 we immediately obtain:

I Theorem 7. For any acyclic, deterministic, sound negotiation N we can decide in linear
time whether two atomic negotiations m,n of N satisfy m ‖ n. The above problem is
Nlogspace-complete.

We now show a cubic algorithm for computing the relation ‖ for arbitrary deterministic
negotiations. The algorithm is inspired by [10], and we give a simpler correctness proof
adapted to negotiations.

4.1 Computing ‖ for sound, deterministic negotiations
For technical reasons we will also consider pairs (p,m) ∈ Proc × N . We say that x ∈
N ∪ (Proc ×N) holds in a configuration C, written C � x, if either: (i) x = m is a atomic
negotiation and m is enabled in C, or (ii) x = (p,m) and C(p) = m. We extend the notation
‖ to x ‖ y for x, y ∈ N ∪ (N ×Proc), if there is a reachable configuration C with C � x and
C � y. In this section we show how to compute the extended relation ‖ in polynomial time
for a given deterministic negotiation N = 〈Proc, N, dom, R, δ〉.

In order to compute ‖ in general, we introduce another relation co that will be clearly
computable in polynomial time. This relation is already known from [10], who used it to
compute ‖ for free-choice Petri nets.

Relation co is the smallest symmetric relation (N ∪ (Proc×N))2 satisfying the following
conditions (we let p, q range over processes; m,n over atomic negotiations; x over N∪(Proc×
N); and a over outcomes):
1. (p, ninit) co (q, ninit), for all processes p, q.
2. If m co x and δ(m, p, a) = n then (p, n) co x.
3. If (p,m) co x for all p ∈ dom(m) then m co x.

I Lemma 8. For every x, y ∈ N ∪ (Proc ×N), if x ‖ y then x co y.

Proof. We show that if C � x and C � y then x co y. The proof is by induction on the
length of the shortest computation reaching C.

Consider the case when x = m and y = n are atomic negotiations. Let C ′ (n′,a)−→ C. If
m and n were enabled already in C ′ then m co n by induction hypothesis. Suppose that n
was not enabled in C ′. Then for every p ∈ dom(n) with C ′(p) 6= n we have C ′(p) = n′ and
δ(p, n′, a) = n. By induction we have m co (p, n′) for all such p. From the second item of
the definition of co we also obtain that m co (p, n) for all these p. By induction hypothesis
again, m co (p, n) for all p with C ′(p) = n. Finally, the third item of the definition of co
yields m co n.

The proof for the remaining cases, where x or y are in Proc ×N is similar, except that
it uses also the first item of the definition of co in the base case. J

I Proposition 9. Suppose N is a sound, acyclic and deterministic negotiation. For every
x, y ∈ N ∪ (Proc ×N), if x co y then x ‖ y.

Proof. Clearly, relation ‖ satisfies conditions (1) and (2) above. We show that it also satisfies
condition (3).

Assume that m,n ∈ N are such that m ‖ (p, n) for all p ∈ dom(n). We will prove that
m ‖ n.

Suppose for a contradiction thatm and n are never simultaneously enabled. Choose some
p ∈ dom(n). Since m ‖ (p, n), there is some reachable configuration C where m is enabled
and C(p) = n. From C we repeatedly execute enabled atomic negotiations, except for m.
Since the negotiation is acyclic this process must stop. Let C1 be the current configuration.
Observe that m is the unique enabled atomic negotiation in C1, and that C1(p) = n. Since
n is not enabled in C1, there is some process q ∈ dom(n) with C1(q) = n′ 6= n. As the
negotiation is sound, there is an execution from C1 reaching a configuration where n′ is
enabled (as q should eventually reach n). Note that n′ 4N n in the linear ordering of
atomic negotiations. Moreover, there must be some processes p1 ∈ dom(m), p2 ∈ dom(n′),
and some local path (p1,m) ρ−→ (p2, n

′) that starts with (m, a).
Now we use the fact that m ‖ (q, n). This gives us a configuration C2 where m is enabled

and C2(q) = n. From C2 we can realize the local path (p1,m) ρ−→ (p2, n
′) (cf. Lemma 1),

reaching a configuration C3 where C3(p2) = n′ and C3(q) = n. But q ∈ dom(n′), so n′
can never be executed since n′ 4N n and q cannot go back to n′. A contradiction with the
soundness assumption. J

Next we state some general properties of sound negotiations with cycles. They say
that every loop in a sound negotiation goes through some node that contains all processes
occurring in that loop. For a sequence w ∈ (N ×R)∗, or x ∈ (Proc×R)∗, we write dom(w)
and dom(x), respectively, for the set of all the processes occurring in (negotiations of) w
and x, respectively.

I Lemma 10. If N is a sound and deterministic negotiation then the following holds:
1. On every execution loop C w−→ C of N there is an atomic negotiation m appearing in w

such that dom(m) = dom(w).
2. On every local cycle n x−→ n in N there is an atomic negotiation m appearing in x such

that dom(m) = dom(x).

Proof. Part (1) follows from [4]. Part (2) is a consequence of (1), together with Lemma 1.
Assume that we have a cycle n +−→ n as above. We know by Lemma 1 that it is realizable,
so we can have an execution C1

+−→ C2 that realizes it. By iterating the cycle further, we
obtain executions C1

+−→ C2
+−→ · · · such that Ci

+−→ Ci+1 all realize n +−→ n. Assume
that Ci

+−→ Cj is a loop. By part (1) we find some m with dom(m) containing all processes
occurring in this loop. Note that m must also occur on the cycle n x−→ n, by the definition
of realizability. J

I Proposition 11. Suppose N is a sound, deterministic, not necessary acyclic, negotiation.
For every x, y ∈ N ∪ (Proc ×N), if x co y then x ‖ y.

Proof. The proof is a variation on the argument for the acyclic case but instead of a straight-
forward contradiction due to acyclicity we use Lemma 10.

Assume that m,n ∈ N are such that m ‖ (p, n) for all p ∈ dom(n). We will prove that
m ‖ n. Suppose for a contradiction that there is no reachable configuration where m and n
are simultaneously enabled. Choose some p ∈ dom(n). Since m ‖ (p, n), there is a reachable
configuration C where m is enabled and C(p) = n. Since N is sound there is some run
ρ = (m1, a1) . . . (mk, ak) from C where finally n is executed, i.e. mk = n. Clearly m = mj

for some j = 1, . . . , k, because otherwise m ‖ n. Suppose that from C we try to execute ρ
but omitting mj . In other words, we execute (m1, a1) . . . (mj−1, aj−1), and then we execute
all (m`, a`) with ` > j such that there is no local path from (mj , aj) to (m`, a`). Let C1
be the configuration from which we cannot continue. We have that m is enabled in C1 and
C1(p) = n. Since n is not enabled in C1, there is some q ∈ dom(n) with C1(q) = n′ 6= n.

Let us then execute m from C1, and the rest of the run ρ above. At some moment of
this run the atomic negotiation n′ should occur. So there are some processes p1 ∈ dom(m),
p2 ∈ dom(n′) and a local path (p1,m) σ−→ (p2, n

′). Moreover σ does not involve process q.
The run gives also a local path π = (q, n′1) . . . (q, n′l) of process q, from node n′1 = n′ to node
n′l = n. Observe that p does not occur in π, since C(p) = n and n is not executed on ρ.

Now we use the hypothesis thatm ‖ (q, n). We take a reachable configuration C2 wherem
is enabled and C2(q) = n. From this configuration we play the local path (p1,m) σ−→ (p2, n

′).
In other words we have a run from C2 to C3 where C3(p2) = n′ and C3(q) = n (since σ does
not involve process q). Since q ∈ dom(n′), from C3 there should be a way to execute n′.
This gives a local path (q, n) π′−→ (q, n′). Observe that p2 does not occur in π′.

We have constructed a local path that is a loop (q, n′) π−→ (q, n) π′−→ (q, n′). By
Lemma 10 there should be an atomic negotiation on this loop that involves all the pro-
cesses, and in particular p and p2. But p 6∈ dom(π), and p2 6∈ dom(π′). A contradiction. J

I Theorem 12. There is a polynomial time algorithm that computes the concurrent enabled
relation ‖ of deterministic, sound negotiations.

Proof. Relation co can be calculated in Ptime by a simple fixpoint computation. Lemma 8
and Proposition 11 say that this is the same relation as ‖. J

5 Omitting problem

In this section we will be interested in determining the existence of some special successful
runs of a deterministic negotiation N . Let B ⊆ N be a set of nodes of a negotiation N . We
say that a run (n1, a1)(n2, a2) . . . omits B if it does not contain any nodes from B, that is,
ni 6∈ B for all i. Let P ⊆ N × R be a set of positive requirements. We say that a run as
above includes P and omits B if it omits B and contains all the pairs from P .

We are interested in deciding if for a given N together with P and B there is a successful
run of N including P and omitting B. We will consider only N that are sound, acyclic, and
deterministic.

As a first step we define a game G(N , B) that is intended to produce runs that omit B
(see e.g. [13] for an introduction to games):

the positions of Eve are N \B,
the positions of Adam are N ×R,
from n, Eve can go to any (n, a) with a ∈ out(n),
from (n, a), Adam can choose any process p ∈ Proc and go to n′ = δ(n, a, p),
the initial position is ninit ,
Adam wins if the play reaches a node in B, Eve wins if the play reaches nfin.

Observe that since N is acyclic, the winning condition for Eve is actually a safety condition:
every maximal play avoiding B is winning for Eve. So if Eve can win then she wins with a
positional strategy. A deterministic positional strategy for Eve is a function σ : N → R, it
indicates that at position n Eve should go to position (n, σ(n)). Since G(N , B) is a safety
game for Eve, there is a biggest non-deterministic winning strategy for Eve, i.e., a strategy
of type σmax : N → P(R). The strategy σmax is obtained by computing the set WE of all
winning positions for Eve in G(N , B), and then setting for every n ∈ N :

σmax(n) = {a ∈ out(n) : ∀p ∈ dom(n). δ(n, a, p) ∈WE}

I Lemma 13. If N has a run omitting B then Eve has a winning strategy in G(N , B).

Proof. Define σ(n) = a iff (n, a) appears in the run. For other nodes define the strategy
arbitrary. To check that this strategy is winning, it is enough to verify that every play
respecting the strategy stays in the nodes appearing in the run. J

I Lemma 14. Suppose N is sound. Let σ : N → R be a winning strategy for Eve in
G(N , B). Consider the set S of nodes that are reachable on a play from ninit respecting σ.
There is a successful run of N containing precisely the nodes S.

Proof. Consider an enumeration n1, n2, ..., nk of the nodes in S ⊆ (N \B) according to the
topological order 4N . Let wi = (n1, σ(n1)) . . . (ni, σ(ni)). By induction on i ∈ {1, . . . , k}

we prove that there is a configuration Ci such that Cinit
wi−→ Ci is a run of N . This will

show that wk is a successful run containing precisely the nodes of S.
For i = 1, n1 = ninit , in Cinit all processes are ready to do n1, so C1 is the result of

performing (n1, σ(n1)).
For the inductive step, we assume that we have a run Cinit

wi−→ Ci, and we want to
extend it by Ci

(ni+1,σ(ni+1))−→ Ci+1. Consider a play respecting σ and reaching ni+1. The
last step in this play is (nj , σ(nj)) → ni+1, for some j ≤ i and nj in S. This means that
δ(nj , σ(nj), p) = ni+1 for some process p. Since j ≤ i and (nj , σ(nj)) occurred in wi (but
not ni+1), we have Ci(p) = ni+1. If we show that Ci(q) = {ni+1} for all q ∈ dom(ni+1) then
we obtain that ni+1 is enabled in Ci and we get the required Ci+1. Suppose by contradiction
that Ci(q) = {nl} for some l 6= i + 1. We must have l > i + 1, since otherwise nl already
occurred in wi. By definition of our indexing ni+1 ≺N nl. But then no execution from Ci
can bring process q to a state where it is ready to participate in negotiation ni+1, and p will
stay forever in ni+1. This contradicts the fact that the negotiation is sound. J

I Corollary 15. For a sound negotiation N : Eve wins in G(N , B) iff N has a successful
run omitting B.

I Theorem 16. Let K be a constant. It can be decided in Ptime if for a given deterministic,
acyclic, and sound negotiation N and two sets B ⊆ N , and P ⊆ N ×R, with the size of P
at most K, there is a successful run of N containing P and omitting B.

Proof. If for some atomic negotiation m, we have (m, a) ∈ P and (m, b) ∈ P for a 6= b

then the answer is negative as N is acyclic. So let us suppose that it is not the case. By
Lemmas 13 and 14 our problem is equivalent to determining the existence of a deterministic
strategy σ for Eve in the game G(N , B) such that σ(m) = a for all (m, a) ∈ P , and all these
(m, a) are reachable on a play respecting σ.

To decide this we calculate σmax, the biggest non-deterministic winning strategy for
Eve in G(N , B). This can be done in Ptime as the size of G(N , B) is proportional to the
size of the negotiation. Strategy σmax defines a graph G(σmax) whose nodes are atomic
negotiations, and edges are (m, a,m′) if (m, a) ∈ σmax and m′ = δ(m, a, p) for some process
p. The size of this graph is proportional to the size of the negotiation. In this graph we look
for a subgraph H such that:

for every node m in H there is at most one a such that (m, a,m′) is an edge of H for
some m′;
for every (m, a) ∈ P there is an edge (m, a,m′) in H for some m′, and moreover m is
reachable from ninit in H.

We show that such a graph H exists iff there is a strategy σ with the required properties.
Suppose there is a deterministic winning strategy σ such that σ(m) = a for all (m, a) ∈ P ,

and all these (m, a) are reachable on a play respecting σ. We now define H by putting an
edge (m, a,m′) in H if σ(m) = a and and m′ = δ(m, a, p) for some process p. As σ is
deterministic and winning, this definition guarantees that H satisfies the first item above.
The second item is guaranteed by the reachability property that σ satisfies.

For the other direction, given such a graph H we define a deterministic strategy σH . We
put σH(m) = a if (m, a,m′) is an edge of H. If m is not a node in H, or has no outgoing
edges in H then we put σH(m) = b for some arbitrary b ∈ σmax(m). It should be clear that
σH is winning since every play respecting σH stays in winning nodes for Eve. By definition
σH(m) = a for all (m, a) ∈ P , and all these (m, a) are reachable on a play respecting σH .

So we have reduced the problem stated in the theorem to finding a subgraph H of
G(σmax) as described above. If there is such a subgraph H then there is one in form of a

tree, where the edges leading to leaves are of the form (m, a,m′) with (m, a) ∈ P . Moreover,
there is such a tree with at most |P | nodes with more than one child. So finding such a tree
can be done by guessing the |P | branching nodes and solving |P |+ 1 reachability problems
in G(σmax). This can be done in Ptime since the size of P is bounded by K. J

6 Workflows and deterministic negotiations with data

We show how our algorithms from the previous sections can be used to check functional prop-
erties of deterministic negotiations, like those studied for workflow systems with data [16].
We take some of the functional properties of [16], and give polynomial algorithms for veri-
fying them over deterministic, acyclic, sound negotiations.

In this section we consider acyclic, deterministic negotiations with shared variables over
a finite domain, that can be updated by the outcomes of the negotiation. More precisely,
each outcome (n, a) ∈ N ×R comes with a set Σ of operations on these shared variables. In
our examples this set Σ is composed of alloc(x), read(x), write(x), and dealloc(x).

Formally, a negotiation with data is a negotiation with one additional component: N =
〈Proc, N, dom, R, δ, `〉 where ` : (N × R) → P(Σ×X) maps every outcome to a (possibly
empty) set of data operations on variables from X. We assume that for each (n, a) ∈ N ×R
and for each variable x ∈ X the label `(n, a) contains at most one operation on x, that is,
at most one element of Σ× {x}.

As an example, we enrich the negotiation of Figure 1 with data, as shown in Table 1.
(This example is taken from [14]). The variables are X = {x1, . . . , x10}. The table gives
for each outcome and for each operation the set of (indices of the) variables to which the
outcome applies this operation.

atom. neg. n0 n1 n2 n3 n4 n5 n6 n7

outcome a a b a a a a b a a

alloc 1, . . . , 10
read 1 1 1, 8 5 2, 7, 9 6, 8, 9
write 3, 5, 6 3 1, 4, 8 9, 10 2, 7, 10 7 9 6, 8
dealloc 4 2 5, 6, 7

Table 1 Data for the negotiation of Figure 1 (adapted from [14]).

In [14] some examples of data specifications for workflows are considered. They are
presented in the form of anti-patterns, that is, patterns that the negotiation should avoid.
(1) Inconsistent data: an atomic negotiation reads or writes a variable x while another atomic

negotiation is writing, allocating, or deallocating it in parallel.
In our example there is an execution in which (n2, a) and (n6, a) write to x8 in parallel.

(2) Weakly redundant data: there is an execution in which a variable is written and never
read before it is deallocated or the execution ends.
In the example, there is an execution in which x10 is written by (n4, a), and never read
again.

(3) Never destroyed: there is an execution in which a variable is allocated and then never
deallocated before the execution ends.
In the example, the execution taking (n5, b) never deallocates x2.

It is easy to give algorithms for these properties that are polynomial in the size of the
reachability graph. We give the first algorithms that check these properties in polynomial

time in the size of the negotiation, which can be exponentially smaller than its reachability
graph.

For the first property we can directly use the algorithm of the previous section: It
suffices to check if the negotiation has two outcomes (m, a), (n, b) such that m and n can be
concurrently enabled, and there is variable x such that `(a) ∩ {read(x),write(x)} 6= ∅ and
`(b) ∩ {write(x), alloc(x), dealloc(x)} 6= ∅.

In the rest of the section we present a polynomial algorithm for the following ab-
stract problem, which has the problems (2) and (3) above as special instances. Given
sets O1,O2,O ⊆ N ×R such that O1 ∪O2 ⊆ O, we say that the negotiation N violates the
specification (O1,O2,O) if there is a run w = (n1, a1) · · · (nk, ak) with indices 0 ≤ i < j ≤ k
such that (ni, ai) ∈ O1, (nj , aj) ∈ O2, and (nl, al) /∈ O for all i < l < j. In this case we also
say that (O1,O2,O) is violated at (ni, ai), (nj , aj). Otherwise N complies with (O1,O2,O).

I Example 17. Observe that variable x is weakly redundant (specification of type (2)) iff
N violates (O1,O2,O), where O1 = {(n, a) ∈ N × R : write(x) ∈ `(n, a)}, O2 = {(n, b) ∈
N ×R : n = nfin ∨ dealloc(x) ∈ `(n, b)} and O = {(n, c) : `(n, c) ∩ (Σ× {x}) 6= ∅}.

Variable x is never destroyed (specification of type (3)) iff N violates (O1,O2,O), where
O1 = {(n, a) ∈ N × R : alloc(x) ∈ `(n, a)}, O2 = {nfin}, O = {(n, c) : n = nfin ∨ `(n, c) ∩
{alloc(x), dealloc(x)} 6= ∅}.

For the next proposition it is convenient to use the notation m +−→ n, whenever there is
a (non-empty) local path in N from the atomic negotiation m to the atomic negotiation n.

I Proposition 18. Let N be an acyclic, deterministic, sound negotiation with data, and
(O1,O2,O) a specification. Let (m, a) ∈ O1, (n, b) ∈ O2. Then N violates (O1,O2,O) at
(m, a), (n, b) iff either m ‖ n, or m +−→ n and N has a run from ninit containing P =
{(m, a), (n, b)}, and omitting the set B = {m′ ∈ O : m +−→ m′

+−→ n}.

Proof. For the right to left direction: first, if m ‖ n then clearly there are runs where (m, a)
is immediately followed by (n, b), and such runs violate (O1,O2,O). Note that in this case
we have B = ∅.

So assume that N has a run w as claimed, and that m +−→ n. This implies that w must
be of the form w = w1(m, a)w2(n, b)w3. By reordering the run w we may suppose that
for every (m′, c) in w2, we have m +−→ m′

+−→ n. So, since w omits B this means that
(m′, c) /∈ O, so the claim follows.

For the left to right direction: if N violates (O1,O2,O) at (m, a), (n, b) then there is a run
w = (n1, a1) · · · (nk, ak) with (ni, ai) = (m, a), (nj , aj) = (n, b) and such that (nl, al) /∈ O
for all i < l < j. Since ({m′ : m +−→ m′

+−→ n} ∩ {ni : 1 ≤ i ≤ k}) ⊆ {nl : i < l < j}, the
run w contains (m, a), (n, b) and omits B. J

Putting together Proposition 18 and Theorem 16 we obtain:

I Corollary 19. Given an acyclic, deterministic, sound negotiation with data N , and a
specification (O1,O2,O), it can be checked in polynomial time whether N complies with
(O1,O2,O).

7 Soundness of acyclic weakly non-deterministic negotiations is in
Ptime

In previous sections we have presented algorithms for analysis of sound negotiations. Here
we show that our techniques also allow to find a bigger class of negotiations for which we can

decide soundness in Ptime. The class we consider is that of acyclic, weakly non-deterministic
negotiations, c.f. page 5. That is, we allow some processes to be non-deterministic, but every
atomic negotiation should involve at least one deterministic process.

Recall that ND is the restriction of N to deterministic processes. Since N is weakly non-
deterministic, every atomic negotiation involves a deterministic process, so ND = N . Recall
also that for an acyclic negotiation N we fixed some linear order 4N that is a topological
order of the graph of N .

We first show two auxiliary lemmas on the structure of runs in negotiations.

I Lemma 20. Every run of an acyclic negotiation N can be reordered according to 4N
order: if Cinit

w−→ C is a run of N , and u is a permutation of w respecting 4N , then
Cinit

u−→ C.

Proof. The proof is by induction on the number of transpositions needed to obtain u from
w. Suppose we have a run

Cinit
u−→ C1

(n,b)−→ C2
(m,a)−→ C3

v−→ C

of N , and m 4N n. We have m ∈ C2(p) for all p ∈ dom(m). But then, since N is acyclic,
we have dom(m)∩ dom(n) = ∅ because processes participating in n cannot later participate
in m. So

Cinit
u−→ C1

(m,a)−→ C ′2
(n,b)−→ C3

v−→ C

is also a run of ND. J

I Lemma 21. Suppose N is a sound acyclic weakly non-deterministic negotiation. Let
CDinit

w−→ CD be a run of ND respecting 4N order, and such that CD is either a deadlock
or a final configuration. In this case, for every prefix v of w, N has a run Cinit

v−→ Cv and
moreover Cv(d) = CDv (d) for every deterministic process d, and CDv such that CDinit

v−→ CDv
is a run of ND.

Proof. The proof is by induction on the length of v. Consider a prefix v(m, a) of w. We
have that m is the 4N -smallest atomic negotiation enabled in CDv . Suppose to the contrary
that it is not enabled in Cv. Since N is weakly non-deterministic, all atomic negotiations
enabled in Cv must be enabled in CDv . Since N is sound, there is a run from Cv to the final
configuration. But by simple induction on its length we can show that this run can involve
only atomic negotiations 4N –bigger than m (by acyclicity executing a bigger negotiation
can never enable a smaller one). A contradiction. J

The next lemma gives a necessary condition for the soundness of N that is easy to check.
It is proved by showing that ND cannot have much more behaviours than N .

I Lemma 22. If N is a sound, acyclic, weakly non-deterministic negotiation then ND is
sound.

Proof. Suppose to the contrary that ND has a run reaching a deadlock configuration
Cinit

w−→ C. By Lemma 20 we can assume that w respects 4N ordering. By Lemma 21 we
get a run of N to a deadlock configuration, but this is impossible. J

We then first consider the case of a negotiation with only one non-deterministic process.
The next lemma reduces (un)soundness of N to some pattern in ND.

I Lemma 23. Let N be an acyclic, weakly non-deterministic negotiation with only one
non-deterministic process p. Then N is not sound, if and only if, either:
ND is not sound, or
ND is sound, and it has two nodes m 4N n with outcomes a ∈ out(m), b ∈ out(n) such
that:
p ∈ dom(m) ∩ dom(n), n 6∈ Sp = δ(m, a, p), and
there is a successful run of ND containing P = {(m, a), (n, b)} and omitting B =
{n′ ∈ Sp : m ≺N n′ ≺N n}.

Proof. Consider the right to left direction. If ND is not sound then by Lemma 22, N is not
sound.

Suppose then that ND satisfies the second item from the statement of the lemma, and
take a run w of ND as it is assumed there. By Lemma 20 we can assume that this run
respects 4ND

order. Towards a contradiction suppose also that N is sound. Lemma 21 says
that w is also a run ofN . Let C1 be a configuration of this run just after (m, a) was executed.
Denoting Sp = δ(m, p, a), we have C1(p) = Sp. Let C2 be the first configuration after C1
such that C(d) = n for some process d (it may be that C2 = C1). We have C2(p) = Sp since
the run w omits {n′ ∈ Sp : m ≺ND

n′ ≺ND
n}, so p cannot move between C1 and C2. When

we continue following w form C2 we see that d cannot move since n will never be enabled
for p. So this run leads to a deadlock, contradiction with the soundness of N .

For the left to right direction, assume thatND is sound. We need to show the second item
of the lemma. Observe that since N is acyclic and not sound then there is a run Cinit

w−→ C

where C is a deadlock. By Lemma 20 we can assume that w respects 4N . Let n be the
smallest in 4N ordering atomic negotiation such that C(d) = n for some deterministic
process d. Since C is not a deadlock with respect to the deterministic processes, n must be
deterministically enabled in C: that is C(d′) = n for d′ ∈ dom(n). This implies p ∈ dom(n),
and n 6∈ C(p).

Let us split w as u(m, a)v where p ∈ dom(m) and all atomic negotiations in v involving p
are 4N -bigger than m. Let Cm be the configuration reached after doing (m, a): Cinit u(m,a)−→
Cm. Take Sp = Cm(p) = δ(m, a, p). Consider Cn the first configuration after Cm where
n is deterministically enabled (it may be Cm itself). We must have that Cn(p) = Sp since
the next move of p is 4N –bigger than n hence it can occur only after n is deterministically
enabled. For the same reason, the run from Cn to C does not use actions in {n′ ∈ Sp : m ≺N
n′ ≺N n}. By soundness of ND, from C there is a run to the final configuration, and by
the choice of n this run cannot use actions smaller than n. Let b be the outcome such that
(n, b) appears in this run. Putting these pieces together we have a successful run of ND from
Cinit containing {(m, a), (n, b)} and omitting {n′ ∈ Sp : m ≺N n′ ≺N n}. We have already
observed that p ∈ dom(m)∩ dom(n) and n 6∈ Sp = δ(m, a, p). So all the requirements of the
lemma are met. J

I Lemma 24. Soundness of acyclic, weakly non-deterministic negotiation with only one
non-deterministic process can be checked in Ptime.

Proof. For every m ≤ n, a and b we check the conditions described in Lemma 23. The
existence of a run of ND can be checked in Ptime thanks to Theorem 16 and the fact that
the size of P is always 2. J

The next lemma deals with the case when there is more than one non-deterministic
process.

I Lemma 25. An acyclic weak non-deterministic negotiation N is not sound if and only if:
1. either its restriction ND to deterministic processes is not sound,
2. or, for some non-deterministic process p, its restriction N p to p and the deterministic

processes is not sound.

Proof. For the right-to-left direction the case when ND is unsound follows directly from
Lemma 22. It remains to check the case when N p is not sound for some non-deterministic
process p. Consider a run Cpinit

w−→ Cp. By Lemma 20 we can assume that w is 4N
increasing. Now let us try to make N execute the sequence w.

If Cinit
w−→ C is a run of N then C is a deadlock. Indeed if in N it would be possible to

do C (n,a)−→ for some (n, a) then Cp (n,a)−→ would be possible in N p.
The other case is when in N it is not possible to execute all the sequence w. Then we

have w = v(n, a)v′, a run Cinit
v−→ C1 and from C1 action (n, a) is not possible. Since

Cpinit
v−→ Cp1

(n,a)−→ Cp2 is a run of N p, we know that there is a deterministic process d with
C1(d) = n, and n 4N C1(d′) for all other deterministic processes d′. Thus C1 is a deadlock
because by Lemma 20 if there is an action possible from C1 then this must be n.

For the left-to-right direction, suppose that N is not sound and take a run Cinit
w−→ C

with C a deadlock configuration. SinceN is weak deterministic, every atomic negotiation has
at least one deterministic process participating in it. Take the smallest atomic negotiation
n in the 4N ordering such that n = C(d) for some deterministic process d. Consider a
non-deterministic process p and a run Cpinit

w−→ Cp of N p; it is indeed a run since N p is a
restriction of N . As N p is sound, it is possible to extend this run. By Lemma 20, it should
be possible to execute n form Cp. Hence for every deterministic process d ∈ dom(n), we
have C(d) = {n}. Moreover n ∈ C(p) if p ∈ dom(n). Since the choice of p was arbitrary, we
have n ∈ C(p) for all p ∈ dom(n). Thus it is possible to execute n from C, a contradiction.

J

I Theorem 26. Soundness can be decided in Ptime for acyclic, weakly non-deterministic
negotiations.

Proof. By Lemma 25 we can restrict to negotiations N with one non-deterministic process.
For every m 4N n, a and b we check the conditions described in Lemma 23. The existence
of a run of ND can be checked in Ptime thanks to Theorem 16 and the fact that the size
of P is constant.

J

8 Beyond acyclic weakly non-deterministic negotiations

In this section we show that the polynomial-time result for acyclic, weakly non-deterministic
negotiations from Section 7 requires both acyclicity and weak non-determinism. We prove
that if we remove one of the two assumptions then the problem becomes coNP-complete. In-
deed, even a very mild extension of acyclicity makes the soundness problem coNP-complete.

It is not very surprising that deciding soundness for acyclic, non-deterministic negotia-
tions is coNP-complete. The problem is in coNP since all runs are of polynomial size, so
it suffices to guess a run and check if the reached configuration is a deadlock. The hardness
is by a simple reduction of SAT to the complement of the soundness problem. It strongly
relies on non-determinism.

I Proposition 27. Soundness of acyclic non-deterministic negotiations is coNP-complete.

In view of the above proposition, the other possibility is to keep weak non-determinism
and relax the notion of acyclicity. We consider a very mild relaxation: deterministic processes
still need to be acyclic. This condition implies that all the runs are of polynomial size. We
show that even for very weakly non-deterministic negotiations (c.f. page 5) the problem is
already coNP-complete.

I Theorem 28. Non-soundness of det-acyclic, very weakly non-deterministic negotiations
is NP-complete.

Proof. We describe a reduction from 3-SAT and fix a 3-CNF formula ϕ = c1∧· · ·∧cm, with
clauses c1, . . . , cm, each of length 3, and k variables x1, . . . , xk. Let cj = `j,1 ∨ `j,2 ∨ `j,3.
We construct a det-acyclic, very weakly non-deterministic negotiation N such that ϕ is
satisfiable iff N is not sound.

The atomic negotiations of N are (apart from ninit and nfin):
An atomic negotiation m0, and for each variable xi three atomic negotiations n+

i , n
−
i ,mi.

For every pair clause/literal (j, d), j = 1, . . . ,m and d = 1, 2, 3, three atomic negotiations
mj,d, nj,d, and rj,d.
For every clause cj , two auxiliary atomic negotiations tj and t′j .

The processes of N are:
A deterministic process E.
For each clause cj , a deterministic process Vj .
For every pair clause/literal (j, d), where j = 1, . . . ,m and d = 1, 2, 3: two deterministic
processes Tj,d, T ′j,d, and a non-deterministic process Pj,d.

Now we describe the behaviour of each process P by means of a graph. The nodes of
the graph for P are the atomic negotiations in which P participates. The graph has an
edge n → n′ if there is an outcome a of n such that P moves with a from n to n′. If P is
nondeterministic, and after a is ready to engage in a set of atomic negotiations {n1, . . . , nk},
then the graph contains a hyperedge leading from n to {n1, . . . , nk}.

The graphs of all processes are shown in Figure 2. Intuitively, process E is in charge of
producing a valuation of x1, . . . , xk: it chooses between n+

1 and n−1 , then between n+
2 and

n−2 , etc. Choosing n+
i stands for setting xi to true, and choosing n−i for setting xi to false.

Observe that in the graph for the non-deterministic process Pj,d we assume `j,d ∈ {xi, xi}.
After ninit , the process goes to mi, and then to n+

i or n−i in a deterministic way, depending
on the outcome chosen at mi. The rest of its behaviour depends on whether `j,d = xi or
`j,d = xi. If `j,d = xi, then after n+

i the process goes to to rj,d, and then to one of {nfin, nj,d}
(nondeterminism!). For the other case, see Figure 2.

Process Pj,d is designed with the following purpose. If process E sets literal `j,d to true,
then Pj,d guarantees that mj,d is executed before nj,d; if E sets literal `j,d to false, then mj,d

and nj,d can occur in any order. In other words, in every successful run containing n+
i : if

`j,d = xi then node mj,d appears before nj,d; if `j,d = xi then the nodes mj,d and nj,d can
appear in any order. Similarly for runs containing n−i , interchanging xi, xi.

It is easy to see that N is very weakly non-deterministic. The only nondeterministic
processes are the Pj,d processes. Moreover, the sets {nfin, rj,d} and {nfin, nj,d} are the only
two sets of atomic negotiations such that (a) there are configurations such that Pj,d is ready
to engage in them, and (b) contain more than one element. Since nfin contains all processes,
the condition for very weak non-determinism is clearly verified.

If the valuation chosen by E makes all cj true, we claim that the partial run corresponding
to this valuation cannot be completed to a successful run. Indeed, in this case for each cj
there is a true literal `j,d, and so Pj,d enforces that mj,d is executed before nj,d. We denote

ninit m0E :

n−1

n+
1

m1 mk−1

n−k

n+
k

mk nfin

0

1

0

1

Vj : ninit −→ t′j −→ tj+1 −→ nfin

Tj,d: ninit −→ tj −→ mj,d −→ rj,d −→ nfin

T ′j,d: ninit −→ nj,d −→ t′j −→ nfin

Pj,d (with lj,d = xi): ninit mi

n+
i

n−i

rj,d

nj,d

nfin

Pj,d (with lj,d = xi): ninit mi

n+
i

n−i

rj,d

nj,d

nfin

Figure 2 Graphs of the processes of N .

this by mj,d < nj,d. But then, since process Tj,d enforces tj < mj,d, process T ′j,d enforces
nj,d < t′j , and process Vj enforces t′j < tj+1mod(m+1), we get the cycle

t1 < t′1 < t2 < · · · tm < t′m < t1

Since, say, t2 cannot occur before and after t1, because the deterministic process are acyclic,
the partial run cannot be completed.

Otherwise, if the valuation makes at least one cj false, then no cycle is created and the
partial run can be extended to a successful run.

Here is a more formal version of the proof. By construction, dom(tj) = {Vj−1, Tj,d |
d = 1, 2, 3}, dom(t′j) = {Vj , T ′j,d | d = 1, 2, 3}, dom(mj,d) = {Tj,d}, dom(nj,d) = {T ′j,d, Pj,d},
dom(rj,d) = {Tj,d, Pj,d}.

Let ν : {1, . . . , n} → {0, 1} be a valuation of the variables x1, . . . , xn. By Cν we denote
the following configuration (note that only the position of processes Pj,d depends on the
valuation):

Cν(E) = nfin
If the literal `j,d is true under ν then Cν(Pj,d) = rj,d, and otherwise Cν(Pj,d) = nj,d.

Cν(Tj,d) = tj , Cν(T ′j,d) = nj,d

Cν(Vj) = t′j

The following property is easy to check:

Fact 1. Every configuration Cν is reachable. Moreover, every maximal run has some trace-
equivalent prefix that reaches one of the configurations Cν .

Fact 2. If ν does not satisfy the formula then there is a successful run from Cν .

Assume that ν does not satisfy clause cj . By Fact 1, nodes nj,d, d = 1, 2, 3, are enabled.
By executing these nodes we can reach a configuration with Pj,d in rj,d and T ′j,d in t′j . Now
t′j is executable, and Vj moves to node tj+1. Notice that tj+1 is now executable, so we
can reach a configuration with Tj+1,d in rj+1,d, d = 1, 2, 3 (and Vj in nfin). Now either
Pj+1,d is already in rj+1,d or it can come there after nj+1,d is executed. In the first case
nodes rj+1,d, nj+1,d can be executed (in this order), in the second case nj+1,d, rj+1,d can
be executed (in this order). In either case we can get to a configuration where processes
Tj+1,d are in nfin and processes T ′j+1,d are in t′j+1. Therefore, t′j+1 is also executable. By
iterating this argument we obtain a successful run executing t′j , tj+1, t

′
j+1, . . . , t1, t

′
1, . . . , tj

in this order.

Fact 3. If ν does satisfy the formula then there is no successful run from Cν .

Suppose by contradiction that there is a successful run σ from Cν . By assumption, for
each j there is some d = 1, 2, 3 such that Cν(Pj,d) = rj,d. Therefore mj,d is necessarily
executed before nj,d in σ. By construction this implies that tj is executed before t′j in σ.
Also by construction, t′j must be executed before t(j+1)mod(m+1), for every j. This means
that t1 should be executed before t′m, and t′m before t1, a contradiction.

J

9 Conclusions

Analysis of concurrent systems is very often Pspace-hard because of the state explosion
problem. One way to address this problem is to look for restricted classes of concurrent
systems which are non-trivial, and yet are algorithmically easier to analyze. We argue
in this paper that negotiations are well adapted for this task. Processes in a negotiation
are stateless, at every moment their state is the set of negotiations they are willing to
engage. When processes are non-deterministic this mechanism can simulate states, so that
the interesting cases occur when non-determinism is limited. These limitations are still
relevant as show examples from workflow nets. In short, the negotiation model offers a simple
way to formulate restrictions that are sufficiently expressive and algorithmically relevant.

We have shown that a number of verification problems for sound deterministic acyclic
negotiations can be solved in Ptime or even in Nlogspace. In our application to workflow
Petri nets, acyclicity and determinism (equivalent to free-choiceness) are quite common:
about 70% of the industrial workflow nets of [17, 7, 6] are free-choice, and about 60% are
both acyclic and free-choice (see e.g. the table at the end of [6]).

Open problems. It would be interesting to have a better understanding what verification
problems for deterministic, acyclic, sound negotiations can be solved in Ptime. The coNP
result for weakly-deterministic negotiations shows that one should proceed carefully here:
allowing arbitrary products with finite automata would not work.

References
1 Jörg Desel and Javier Esparza. Negotiations and Petri nets. In Int. Workshop on Petri

Nets and Software Engineering (PNSE’15), volume 1372 of CEUR Workshop Proceedings,
pages 41–57. CEUR-WS.org, 2015.

2 Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

3 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive. In CONCUR,
pages 440–454, 2013. Extended version in CoRR abs/1307.2145.

4 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive II: Determin-
istic cyclic negotiations. In FoSSaCS, pages 258–273, 2014. Extended version in CoRR
abs/1403.4958.

5 Javier Esparza and Jörg Desel. Negotiation programs. In Application and Theory of Petri
Nets and Concurrency, volume 9115 of LNCS, pages 157–178. Springer, 2015.

6 Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In FASE,
volume 9633 of LNCS, pages 342–358. Springer, 2016.

7 Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Hagen
Völzer, and Karsten Wolf. Instantaneous soundness checking of industrial business process
models. In Business Process Management, pages 278–293. Springer, 2009.

8 Cédric Favre, Hagen Völzer, and Peter Müller. Diagnostic information for control-flow
analysis of workflow graphs (a.k.a. free-choice workflow nets). In TACAS 2016, volume
9636 of LNCS, pages 463–479. Springer, 2016.

9 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf.& Comput., 204(6):920–
956, 2006.

10 Andrei Kovalyov and Javier Esparza. A polynomial algorithm to compute the concurrency
relation of free-choice signal transition graphs. In Workshop on Discrete Event Systems,
WODES’96, pages 1–7. Institute of Electrical Engineers, 1996.

11 Anca Muscholl. Automated synthesis of distributed controllers. In ICALP 2015, volume
9135 of LNCS, pages 11–27. Springer, 2015.

12 Natalia Sidorova, Christian Stahl, and Nikola Trcka. Soundness verification for conceptual
workflow nets with data: Early detection of errors with the most precision possible. Inf.
Syst., 36(7):1026–1043, 2011.

13 Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of LNCS, pages 635–655. Springer, 2008.

14 Nikola Trcka, Wil M. P. van der Aalst, and Natalia Sidorova. Data-flow anti-patterns:
Discovering data-flow errors in workflows. In Advanced Information Systems Engineering
(CAiSE), volume 5565 of LNCS, pages 425–439. Springer, 2009.

15 Wil M. P. van der Aalst. Business process management as the “Killer App” for Petri nets.
Software & Systems Modeling, 14(2):685–691, 2015.

16 Wil M.P. van der Aalst. The application of Petri nets to workflow management. J. Circuits,
Syst. and Comput., 08(01):21–66, 1998.

17 B. van Dongen, M. Jansen-Vullers, H.M.W. Verbeek, and Wil M. P. van der Aalst. Verifica-
tion of the SAP reference models using EPC reduction, state-space analysis, and invariants.
Computers in Industry, 58(6):578–601, 2007.

18 W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical Informatics and
Applications, 21:99–135, 1987.

	Introduction
	Negotiations
	Main definitions

	Soundness of acyclic deterministic negotiations
	Races
	Computing for sound, deterministic negotiations

	Omitting problem
	Workflows and deterministic negotiations with data
	Soundness of acyclic weakly non-deterministic negotiations is in Ptime
	Beyond acyclic weakly non-deterministic negotiations
	Conclusions

