
HAL Id: hal-01891174
https://hal.science/hal-01891174

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Granular surface avalanching induced by drainage from
a narrow silo

C.-y Hung, P. Aussillous, H Capart

To cite this version:
C.-y Hung, P. Aussillous, H Capart. Granular surface avalanching induced by drainage from a narrow
silo. Journal of Fluid Mechanics, 2018, 856, pp.444-469. �10.1017/jfm.2018.650�. �hal-01891174�

https://hal.science/hal-01891174
https://hal.archives-ouvertes.fr


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Granular surface avalanching induced by
drainage from a narrow silo

C.-Y. Hung1, P. Aussillous2 and H. Capart3†
1Dept of Soil and Water Conservation, National Chung-Hsing Univ., Taichung 402, Taiwan

2Aix-Marseille Univ., CNRS, IUSTI UMR 7343, 13013 Marseille, France
3Dept of Civil Engineering and Hydrotech Research Institute, National Taiwan Univ., Taipei

106, Taiwan

(Received xx; revised xx; accepted xx)

Using theory and experiments, we investigate granular surface avalanching due to mate-
rial outflow from a narrow silo. The assumed silo geometry is a deep rectangular box, of
moderate spanwise width and small gap thickness between smooth front and back walls.
A small orifice deep below the free surface lets grains drain out at a constant rate. The
resulting granular flows can therefore be assumed quasi-two dimensional and quasi-steady
over most of the surface descent history. To model these flows, we couple a kinematic
model of deep granular flow with a dynamic model of shallow surface avalanching. We
then compare the calculated flow fields with detailed particle tracking measurements,
letting the silo descend relative to the high-speed camera to increase spatial resolution.
The results show that the avalanching surface shape and near-surface flow are controlled
by the spanwise gradient in subsidence velocity, and how this gradient is in turn controlled
by the height above orifice and the gap thickness. Whereas the deep flow pattern is rate-
independent, shallow avalanching is paced by the granular rheology.

1. Introduction

In various environmental and industrial contexts, the removal of material beneath
the surface of a granular substrate can cause the surface above the withdrawal zone
to subside and steepen. Examples include mining-induced ground subsidence (Vivanco
& Melo 2013), and material drainage from granular hoppers or pebble bed reactors
(Cleary & Sawley 2002; Rycroft et al. 2006). If steepening causes the surface inclination
to exceed the angle of repose, avalanching will occur. One common example occurs in the
upper chamber of an hour glass, where a funnel-shaped avalanching surface forms due to
drainage through the underlying narrow throat. In the present work, we examine these
phenomena in a simplified geometry: rectangular silos holding grains between two closely
spaced smooth walls, making the flows quasi-two-dimensional. Such flows have earlier
been investigated using laboratory experiments (Gray & Hutter 1997; Samadani et al.
2002; Benyamine et al. 2014; Maiti et al. 2016), continuum models (Staron et al. 2014;
Dunatunga & Kamrin 2015; Daviet & Bertails-Descoubes 2016), and discrete element
simulations (Cleary & Sawley 2002; Staron et al. 2014; Zhou et al. 2015).

To simplify the problem further, we consider silos of small width to depth ratios,
restricting the span of the avalanching layer (Fig. 1). Experimental observations then
suggest that the following simplifications can be made. When drainage at depth through
a bottom or side orifice occurs at a constant rate, first, the resulting granular surface flow
can be considered quasi-steady. After a starting transient, during which the granular free
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surface deforms from its initial shape to its avalanching shape, the surface flow becomes
nearly steady in a frame of reference descending at constant speed with the free surface.
Avalanching thus takes the form of a travelling wave. Because it is driven by a deep
subsidence flow that varies spatially with height, the avalanching flow is not perfectly
steady. Except for low submergence above the orifice, however, the spatial evolution
of this deep flow is gradual, hence the descending avalanching flow experiences forcing
changes that are slow with respect to its adaptation time. At any given time over most
of its descent history, therefore, the avalanching flow can be approximated as a steadily
flowing layer that continually exchanges grains with the substrate through entrainment
and detrainment. This makes avalanching flows in narrow silos analogous to other steady
granular layer flows subject to erosion and deposition, like flows in rotating drums (Gray
2001; Hung et al. 2016) and bounded heaps (Khakhar et al. 2001; Fan et al. 2013).

In the present paper, we investigate quasi-steady, quasi-two-dimensional silo avalanch-
ing flows using a combination of theory and experiment. Using either continuum or
discrete models, one could attempt to model together both the deep flow and surface
avalanching regions of the phenomenon (see e.g. Staron et al. (2014)). This is however
made difficult by the highly different scales that govern the two regions. Whereas the deep
flow is steady, slow, and gradually varying in space, the avalanching flow is confined to
a thin surface layer featuring faster velocities and steeper velocity gradients. Analogous
to the boundary layer approach for viscous and turbulent flows, therefore, we adopt a
modeling strategy that couples different equations for different zones of the flow. For
the deep flow, we adopt the kinematic model proposed by Nedderman & Tüzün (1979),
which reduces the problem to the solution of a diffusion equation.

To describe surface avalanching, on the other hand, we adopt the model proposed by
Capart et al. (2015) and recently applied by Hung et al. (2016) to granular flows in
rotating drums. Instead of solving local partial differential equations (Jop et al. 2007;
Lusso et al. 2017; Fernández-Nieto et al. 2018), the model uses depth-integrated equations
for the balance of mass, momentum and kinetic energy of the shallow avalanching layer.
This model applies to dry, dense, two-dimensional granular flows in narrow channels, over
deep erodible deposits, when the flow and bed are composed of the same monodisperse
grains. The model further assumes that the flow is subject to friction along the walls and
governed by a linearized form of the viscoplastic µ(I) rheology (Jop et al. 2005; da Cruz
et al. 2005), such that the base of the flow coincides with the yield locus. As a result, it
cannot describe flows over non-erodible beds (Parez et al. 2016; Sarno et al. 2018) or the
transitions between flow and rest observed for shallow granular layers in wide channels
(Pouliquen & Forterre 2002; Edwards & Gray 2015).

For the experiments, we adopt a configuration aimed at maximizing the resolution
at which the deep and surface flows can be recorded by a high speed camera. A half-
silo geometry is adopted, and the silo is mounted on a motorized traverse to make it
rise steadily relative to the camera, keeping the avalanching flow stationary relative to
the observation window. Particle tracking velocimetry is then applied to the footage.
Averaging of the deep flow and avalanching layer velocity fields is performed in the
separate frames of reference in which they can be considered steady.

The paper is structured as follows. In section 2, we describe the theories adopted to
model deep flow and surface avalanching, and how they are coupled together. In section
3, we present the experimental set-up, conditions, and imaging analysis. In section 4, we
compare and discuss results, before drawing conclusions in section 5.
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Figure 1. Sketch of the assumed silo configurations: (a) symmetric silo with a centered
botttom orifice; (b) asymmetric silo with a side orifice.

2. Theory

The geometrical conditions considered in the present work are defined in Fig. 1. We
assume silos of rectangular shape, with smooth front and back walls separated by a small
gap thickness B equal to some multiple (of the order of 10) of the grain diameter D. We
therefore consider three-dimensional grain configurations, not monolayers. Because the
gap is narrow and the walls smooth, however, we can assume that the flow field will be
effectively two-dimensional. For simplicity, we consider either the symmetric geometry
of Fig. 1(a), of spanwise width 2L on either side of a centered botttom orifice, or the
asymmetric geometry of Fig. 1(b) having width L and a side orifice at X = 0. For the
near-field around the orifice, differences between bottom and side outlets are expected,
leading to different variants of the Beverloo relation expressing the rate of outflow in
terms of grain diameter, gap thickness and orifice opening (Zhou et al. 2017). Regardless
of the case, however, a constant flow rate is obtained when the orifice opening is large
enough to prevent jamming, and when the silo free surface is sufficiently high above the
orifice. Both conditions will be assumed, hence we consider the outflow rate known and
constant. Throughout the silo, only a single type of grains is considered.

Upon starting the silo discharge, grains will descend and converge towards the orifice,
drawing down the free surface. Avalanching will then occur once uneven subsidence has
steepened the granular free surface beyond its angle of repose. After this inital transient,
we consider separately the shallow avalanching layer and the deep flow region comprised
between this layer and the orifice near-field. Since the outflow rate is constant, flow in the
deep region will be assumed steady in the silo frame of reference defined by axes (X,Z).
For sufficiently small silo widths L, the span of the avalanching flow will be bounded by
the side walls. We therefore expect the avalanching layer to attain and maintain a quasi-
steady flow state in a frame of reference descending with the surface at the constant mean
rate Ḣ, where H(t) is the time-varying mean height of the free surface above the orifice.
After formulating the theory, we will be able to define more clearly the range of conditions
for which this assumption is reasonable. In the following two sub-sections, we describe the
distinct models adopted for the deep flow and avalanching layers, respectively. In both
zones, variations in solid fraction are neglected, hence incompressible flow is assumed.
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In earlier work (da Cruz et al. 2005; Jop et al. 2005), incompressibility was found to be
a good approximation for dense, slow flows characterized by low inertia numbers. These
are the conditions encountered in the experiments described below. Our objective is to
predict the gradually evolving granular velocity field (U,W )(X,Z, t) (averaged over the

gap width) and shape of the free surface Z̃(X, t).

2.1. Deep flow kinematics

To describe the steady deep flow (U0,W0)(X,Z), we adopt the kinematic model of
Nedderman & Tüzün (1979). In this model, vertical shear is assumed to cause grains to
drift laterally at velocity

U0 = −K∂W0

∂X
, (2.1)

where U0(X,Z), W0(X,Z) are respectively the horizontal and vertical components of the
mean granular velocity in the deep flow region, and K is a coefficient with dimensions
of length called the kinematic constant by Nedderman & Tüzün (1979). Substitution of
(2.1) into the continuity equation

∂U0

∂X
+
∂W0

∂Z
= 0 , (2.2)

then yields the diffusion equation with diffusivity K

∂W0

∂Z
−K∂2W0

∂X2
= 0 , (2.3)

where diffusion proceeds upwards along the timelike Z axis to even out horizontal
variations in W0. The micro-mechanical basis of (2.1) and (2.3) remains to be clarified,
but a simple physical explanation is as follows (Litwinisyn 1963; Caram & Hong 1991). At
the discrete level, the downward motion of individual grains is associated with the upward
migration of void spaces, or holes, into which individual grains fall. At each fall, the hole
can move either right or left with equal probability. The resulting upward random walk
of individual void spaces yields a diffusion process in the continuum limit. The opposite
granular flux W0 is then governed by the diffusion equation (2.3). Although the equation
lacks a rigorous mechanical basis, it describes a physically plausible deep flow velocity
field that can be used to drive surface avalanching. Upon calibrating the diffusivity K,
equation (2.3) has been found to yield good agreement with silo experiments (Tüzün et al.
1982; Choi et al. 2005) and discrete element simulations (Rycroft et al. 2006; Balevičius
et al. 2011).

For the silos we consider, the diffusion equation must be solved subject to the lateral
boundary conditions

∂W0

∂X
= 0 , at X = −L and X = 0 , (2.4)

imposing no flux across the left wall and symmetry plane (for the symmetric silo), or
across the left and right walls (for the asymmetric silo). At the outlet level Z = 0, on
the other hand, a bottom boundary condition can be written

W0 = −2Qδ(X) , (2.5)

where Q is either half the rate of outflow (for the symmetric case), or the full outflow (for
the asymmetric case), divided by the gap width B (see Fig. 1). Disregarding the details
of the flow near the orifice, a delta function is used to represent the outflow as a point
sink. Since the diffusion equation features a first derivative in Z and a second derivative
in X (see e.g. Kevorkian (1990)), no condition is required or can be applied along the
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granular free surface, nor can additional conditions restraining slip be applied along the
side walls. The deep flow is driven by drainage from the orifice, and is not affected by
avalanching at the free surface. In addition to the velocity field, we will also be interested
in the streamfunction Ψ0(X,Z) defined by

∂Ψ0

∂Z
= U0 ,

∂Ψ0

∂X
= −W0 , (2.6)

the contours of which give the granular streamlines. For definiteness, we associate Ψ0 = 0
with the vertical streamline through the origin X = 0.

The above mathematical problem can be made dimensionless by defining variables
X̂ = X/L, Ẑ = ZK/L2, Ŵ0 = W0L/Q, Û0 = U0L

2/(KQ) and Ψ̂0 = Ψ0/Q. As detailed
in Kevorkian (1990), the solution can be obtained using either Fourier series, advisable
for Ẑ moderate to large, or mirrored Green functions, advisable for Ẑ small to moderate.
Since the latter case better fits the conditions of our experiments, we will calculate the
solution using the Green function

G(X̂, Ẑ) =
1

(πẐ)1/2
exp

(
−X̂

2

4Ẑ

)
, (2.7)

which solves (2.3) subject to bottom boundary condition (2.5) on a laterally unbounded
domain. To enforce lateral boundary conditions (2.4), mirrored green functions must be
added to obtain

Ŵ0(X̂, Ẑ) = −G(X̂, Ẑ)−
n∑

k=1

(
G(X̂ − 2k, Ẑ) +G(X̂ + 2k, Ẑ)

)
, (2.8)

which is an infinite sum truncated at n terms that converges to the solution for n large
(Kevorkian 1990). The solution for the streamfunction, likewise, can be obtained by
integration of (2.8) along X as

Ψ̂0(X̂, Ẑ) = Φ(X̂, Ẑ) +

n∑
k=1

(
Φ(X̂ − 2k, Ẑ) + Φ(X̂ + 2k, Ẑ)

)
, (2.9)

where

Φ(X̂, Ẑ) = erf

(
X̂

2Ẑ1/2

)
. (2.10)

The resulting dimensionless solutions are illustrated in Fig. 2. Figure 2(a) shows spanwise
profiles of horizontal velocity at different heights above the orifice. Figure 2(b) shows
the corresponding profiles of vertical velocity. Finally Fig. 2(c) shows the streamlines
Ψ̂ = constant for equally spaced values of the streamfunction. Near the orifice, flow is
apparent only in the central region, but there is no sharp boundary between flowing
and stationary regions. The diffusion solutions feature small non-zero motions even away
from the central zone. Using the kinematic model, similar deep flow fields in silos have
earlier been calculated by Nedderman & Tüzün (1979), using Fourier series, and by Choi
et al. (2005) using numerical computations.

2.2. Shallow layer governing equations

To model surface avalanching (Fig. 3), we consider a distinct coordinate system (x, z)
tilted at the angle of repose α, with origin at (X,Z) = (−L/2, H(t)) and descending
with the granular free surface at speed Ḣ = −Q/L. The x-axis of the coordinate system
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Figure 2. Solutions to the kinematic deep flow model: (a) spanwise profiles of horizontal
velocity; (b) spanwise profiles of vertical velocity; (c) streamlines.

therefore coincides with the inclined profile (Fig. 3(a))

Z(X, t) = H(t)− (X + L/2) tanα . (2.11)

Throughout this section, we assume the restricted domain −L 6 X 6 0, with mirror
symmetry implied in case of a symmetric silo. In the inclined coordinate system, we
define z̃(x, t) and ˜z(x, t) to be the free surface and basal boundary of the avalanching
layer. The depth of the avalanching layer is then given by h(x, t) = z̃ − ˜z. We assume
shallow flow, h� L, and small relief z̃ � L relative to profile z = 0 inclined at the angle
of repose. Consistent with these approximations, flow acceleration in the z-direction will
be neglected relative to acceleration in the downslope x-direction. However both velocity
components, u(x, z, t), in the x-direction and w(x, z, t) in the z-direction, will intervene
in the flow kinematics. Inspired from Liggett (1994), and following Capart et al. (2015)
and Hung et al. (2016), we use different lines above and below variables to denote values
sampled at different locations: ˜· denotes a variable sampled along the basal boundary,
·̃ a variable sampled along the free surface, and · a variable sampled along the angle of
repose profile (2.11). The overbar · is reserved for quantities averaged over the depth h.

Following Capart et al. (2015), we start from local equations and integrate them from

˜z to z̃ to obtain depth-integrated equations governing the avalanching layer. As for the
deep flow, we assume incompressibility of the granular medium, hence the local continuity
equation

∂u

∂x
+
∂w

∂z
= 0 . (2.12)

Variations of u and w in the transverse y-direction are neglected, hence u and w coincide
with the corresponding velocity components averaged over the gap thickness. Local
balance of momentum in the x-direction, on the other hand, yields the width-averaged
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Figure 3. Definition sketch of surface flow model: (a) overview; (b) local cutaway. The surface
flow is depicted in a frame of reference descending with the free surface, in which the flow
is approximately steady. In this frame of reference, the erosion flux across the basal interface
exhibits a change of sign, from positive upstream to negative downstream, hence the apparent
kink in panel (a).

equation of motion (Jop et al. 2007)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= ρg‖ −

∂p

∂x
+
∂τ

∂z
− 2τW

B
, (2.13)

where ρ = cSρS is the mean density of the bulk phase, and p = ρg⊥(z̃ − z) is the
granular pressure, assumed lithostatic. Following (Jop et al. 2005), the normal stresses
are assumed to reduce to an isotropic pressure. For shallow flow (Liggett 1994), granular
accelerations in the z direction normal to the slope can be neglected, hence a lithostatic
pressure balancing the weight of the grains above. In the same equation, g‖ = g sinα
and g⊥ = g cosα are the parallel and perpendicular components of the gravitational
acceleration, τW = µW p is the shear stress along the sidewalls (with µW the wall friction
coefficient), and τ is the internal shear stress. For the latter, we assume the viscoplastic,
dense granular flow rheology (da Cruz et al. 2005)

τ = µ0p+ χD(ρp)1/2γ̇ , (2.14)

expressed as the sum of two components. The first, rate-independent, is a plastic yield
stress proportional to p, with coefficient µ0 = tanα. The second, rate-dependent, is a
viscous stress that varies linearly with the shear rate γ̇ = ∂u/∂z, with effective viscosity
χD(ρp)1/2 dependent on grain diameter D, granular pressure p, and dimensionless
rheological coefficient χ. This is a linearized version of the µ(I) rheology proposed by Jop
et al. (2005) and applied earlier to liquid-granular flows by Berzi & Jenkins (2008). The
non-linear µ(I) rheology has earlier been applied to shallow granular flows over rigid beds
by Gray & Edwards (2014). The two rheological coefficient µ0 and χ will be determined
in the next section by linearizing the non-linear µ(I) rheology calibrated earlier by Jop
et al. (2005) for the same granular material. Note that the constitutive relations for wall
friction and internal shear stress are written assuming u > uW , and γ̇ > 0. For steady
uniform flow over a loose deposit of velocity (˜u,˜w), these equations are satisfied by the
velocity profile (Fig. 3(b))

u(η̂) = ˜u+ (u− ˜u)
(

7
3 −

35
6 η̂

3/2 + 7
2 η̂

5/2
)
, (2.15)
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where η̂ = (z̃ − z)/h and u is the depth-averaged velocity (for a derivation, see Berzi &
Jenkins (2008)). As discussed in Capart et al. (2015), experiments exhibit some deviations
from the profile (2.15) even for equilibrium flows. For unsteady, non-uniform flows,
moreover, the velocity profile is expected to deviate from its equilibrium shape. As long
as such deviations are small, however, integrals over depth based on the profile (2.15)
should furnish a good approximation, and provide a simple way to close depth-integrated
equations. Because the corresponding shear rate at the base ˜γ̇ = ∂u/∂z(˜z) is equal to
zero, note that this profile is appropriate only for flows over erodible beds, when the
basal interface can be assumed to coincide with the yield locus. For flows over rigid beds,
say over rock, a finite shear rate at the base would be expected, and the base elevation
prescribed, instead of the present case with zero basal shear rate and a basal elevation
set by the flow itself. Likewise, the description would not apply for granular flows over
deposits composed of a different type of grains. When assumptions are met, the velocity
profile u(x, z, t) at a given coordinate x and time t can be calculated using (2.15) from
z̃(x, t), h(x, t), u(x, t) and ˜u(x, t). The corresponding streamfunction, likewise, can be
calculated from

ψ(η̂) = ψ̃ − h˜uη̂ − h(u− ˜u)( 7
3 η̂ −

7
3 η̂

5/2 + η̂7/2) , (2.16)

where ψ satisfies ∂ψ/∂z = u, ∂ψ/∂x = −w, and such that

ψ̃ − ˜ψ = hu . (2.17)

To obtain unsteady, non-uniform governing equations for the avalanching layer, we
first integrate (2.12) and apply the Leibniz integral rule to get∫ z̃

˜z
(
∂u

∂x
+
∂w

∂z

)
dz =

∂(hu)

∂x
− ũ ∂z̃

∂x
+ ˜u∂˜z∂x + w̃ − ˜w = 0 , (2.18)

where q = hu =
∫ z̃

˜z udz. This can be further worked out using the kinematic boundary

condition along the free surface,

∂z̃

∂t
+ ũ

∂z̃

∂x
= w̃ , (2.19)

and the definition h = z̃ −˜z to obtain the depth-integrated continuity equation

∂h

∂t
+
∂(hu)

∂x
= e = ˜w − ˜u∂˜z∂x − ∂˜z

∂t
, (2.20)

where e(x, t) is the erosion or entrainment rate, or rate of granular volume transfer
across the basal interface ˜z(x, t) and into the avalanching layer. This rate is defined as
the deviation from volume conservation of the layer, expressed by the left-hand-side.
Likewise, the local equation of motion (2.13) can be integrated over depth to obtain the
depth-integrated momentum equation

∂

∂t
(hu) +

∂

∂x

(
hu2

)
= e˜u+ g‖h− g⊥h

∂z̃

∂x
− 1

ρ˜τ − 2

ρB
hτW . (2.21)

Assuming ˜u(x, t), ˜w(x, t) to be otherwise given, we must solve for three evolving profiles
h(x, t), z̃(x, t) and u(x, t). We therefore supplement (2.20) and (2.21) with an additional
equation expressing the balance of depth-integrated kinetic energy (Capart et al. 2015;
Hung et al. 2016). This is obtained by integrating over depth the product of (2.13) with
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velocity u(x, z, t), yielding

∂

∂t

(
hu2

2

)
+

∂

∂x

(
hu3

2

)
=
e˜u2
2

+ g‖hu− g⊥hu
∂z̃

∂x
−˜τ˜u− 1

ρ
h τ γ̇ − 2

ρB
h τWu . (2.22)

In this equation, the next-to-last and last terms represent dissipation by granular contacts
inside the avalanching layer and dissipation by friction along the walls, respectively.
Equations (2.20)-(2.22) represent a generalization of the equations derived in Capart
et al. (2015) for the case of stationary deposits (˜u = ˜w = 0). We now specialize them to
the problem of avalanching flows over loose deposits undergoing uneven subsidence due to
silo discharge. Ideally, we would wish to match the velocity at the base of the avalanching
layer with the deep flow velocity along the same curve, i.e. let (˜u, ˜w) = (˜u0, ˜w0). The
precise shape of the basal interface ˜z(x, z, t), however, is not known in advance. As in
linearized groundwater seepage problems (see e.g. Ni & Capart (2006)), therefore, we
choose instead to apply kinematic matching to the approximate basal interface given by
Z(X, t). This corresponds to the linear profile (2.11), inclined at the angle of repose. We
therefore approximate

˜u ≈ u0 = U0 cosα− (W 0 − Ḣ) sinα , (2.23)

˜w ≈ w0 = U0 sinα+ (W 0 − Ḣ) cosα , (2.24)

where velocities in the upright, stationary silo frame of reference are converted to the
tilted frame of reference descending at constant speed Ḣ. Likewise we approximate

˜w + ˜u∂˜z∂x ≈ w0 + u0
∂z

∂x
= w0 . (2.25)

In terms of streamfunction, equivalently, we let

˜ψ ≈ ψ0 = Ψ0 + ḢX , (2.26)

where Ψ0 is the streamfunction (2.9) sampled along (X,Z)(x, t) = (−L/2+x cosα,H(t)−
x sinα). The solutions presented below are obtained by applying the matching condition
at this known, but approximate interface position Z(X, t). We could instead proceed by
iterations, applying the matching condition again at each step to the interface location
calculated from the previous step. Because the deep flow varies gradually with height
above orifice, however, the error of the approximate solution with respect to the converged
iterative solution is small, hence we prefer the simpler approach. With this approximation,
the depth-integrated continuity equation becomes

∂z̃

∂t
+
∂(hu)

∂x
= w0 . (2.27)

For quasi-steady flow, the dominant balance is between the second and third term, hence
w0 ∼ hu/L. For shallow flow the ratio h/L = ε is small, thus the deep flow velocity
components u0 ∼ w0 ∼ εu are one order of magnitude smaller than the depth-averaged
avalanche velocity u. Terms associated with the basal velocity ˜u ≈ u0 can therefore be
neglected in the momentum and kinetic energy equations (2.21) and (2.22). Likewise we
can set ˜u = 0 in (2.15). With these simplifications, equations (2.21)-(2.22) governing the
dynamics of the avalanching layer become

∂

∂t
(hu) +

∂

∂x

(
77
48hu

2
)

= −g⊥h
∂z̃

∂x
− µW

B
g⊥h

2 , (2.28)

∂

∂t

(
77
96hu

2
)

+
∂

∂x

(
κhu3

)
= −g⊥hu

∂z̃

∂x
− 35

9 χDg
1/2
⊥

u2

h1/2
− 5

9

µW

B
g⊥h

2u , (2.29)
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where κ = 342853
233376 ≈ 1.469, and where the depth-integrated terms u2 and u3 were

integrated using profile (2.15) with ˜u = 0. The last two terms of (2.29), representing
energy dissipation, are obtained by integration of the corresponding terms τ γ̇ and τWu
in (2.22), using profile (2.15) and the rheology (2.14). The next-to-last term of (2.29) is
thus controlled by the rheology coefficient χ that determines the effective viscosity. After
simplification, equations (2.28) and (2.29) are identical to the momentum and kinetic
energy equations derived earlier in Capart et al. (2015). Together with (2.27) they form
a closed set of governing equations for profiles z̃(x, t), h(x, t), and u(x, t), driven by the
deep flow velocities U0(x, t) and W 0(x, t). These in turn can be estimated using the
kinematic model described in the previous section. While these unsteady equations could
in principle be solved numerically to describe the transient response, here we consider only
the quasi-steady response obtained by neglecting the time derivatives in (2.27)-(2.29).
The semi-analytical approach used to construct solutions for this case is described in the
next sub-section.

2.3. Quasi-steady avalanching solutions

For quasi-steady flow, the continuity equation (2.27) reduces to

∂q

∂x
= w0 = −

∂ψ0

∂x
, (2.30)

where q = hu is the depth-integrated granular discharge of the avalanching layer.
Integration with boundary conditions q = 0, ψ0 = 0 at x = L/(2 cosα) then yields

q(x, t) = −ψ0(x, t) , (2.31)

such that q = 0 is also automatically satisfied at x = −L/(2 cosα). As expected, it follows

from (2.17) and (2.31) that ψ̃ = 0, i.e. the quasi-steady free surface coincides with the
zero streamline. For quasi-steady flow, the downslope distribution of the avalanching
discharge q(x, t) is therefore fully known, including its maximum value qmax(t) at any
given time t during the descent. An example is illustrated in Fig. 4(a). Hereafter, we drop
the explicit time-dependence, but note that the evolving height H(t) of the avalanching
layer during its descent will affect its discharge profile q(x).

To solve the momentum and kinetic energy equations (2.28) and (2.29) subject to the
known discharge profile q(x), we substitute u = q/h and introduce the dimensionless

variables x̂ = x/(L/ cosα), q̂ = q/Q, ĥ = h/ha, Ŝ = (−∂z̃/∂x)/Sa, where

ha =

(
χDQ

g
1/2
⊥ µW /B

)2/7

and Sa =
µW

B
ha (2.32)

are the characteristic depth and excess surface inclination associated with equilibrium
avalanching flow (Hung et al. 2016). At equilibrium, the flow is paced (via rheological
coefficient χ) by the rate-dependent term of the dense granular flow rheology (2.14).
Translated to dimensionless form, (2.28) and (2.29) become

Q̂8/7 ∂

∂x̂

(
77

48

q̂2

ĥ

)
= ĥŜ − ĥ2 , (2.33)

Q̂8/7 ∂

∂x̂

(
κq̂3

ĥ2

)
= q̂Ŝ − 35

9

q̂2

ĥ5/2
− 5

9
ĥq̂ , (2.34)
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Figure 4. Dynamic model solution for the avalanching layer: (a) imposed spanwise profile of
normal to slope velocity ŵ0 = dq̂/dx̂ (dashed line) and the resulting avalanching discharge

q̂(x̂) (continuous line); (b) dimensionless phase diagram (x̂, ĥ) with the solution curve ĥ(x̂) in
black; (c) basal interface (dashed line) and streamlines (continuous lines) in frame of reference
descending with the free surface.

where Q̂ is the dimensionless silo discharge

Q̂ =
Q

(µW /B)1/8g
1/2
⊥ (χD)3/4(L/ cosα)7/8

. (2.35)

An equivalent dimensionless number, found to control avalanching behavior in rotating
drums, was given the name entrainment number by Hung et al. (2016). It can be seen
from (2.33) and (2.34) that this number controls the strength of the left-hand-side flux
divergence terms associated with convective inertia. For low Q̂, the avalanching layer is
locally in equilibrium and its behavior is dominated by the dense granular flow rheology.
In the inertialess limit Q̂ → 0, in particular, the flux divergence terms disappear, and
the solution is simply

ĥ(x̂) =
(
35
4 q̂(x̂)

)2/7
, Ŝ(x̂) = ĥ(x̂) . (2.36)

For high Q̂, by contrast, inertia effects dominate and take the flow far from local
equilibrium (Hung et al. 2016). For intermediate Q̂, both inertia and rheology intervene.
The equations in that case can be solved by eliminating Ŝ between (2.33) and (2.34),
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yielding for ĥ the ordinary differential equation of the first order

dĥ

dx̂
=

35
9 ĥ

1/2q̂ − 4
9 ĥ

4 + Q̂8/7(3κ− 77
24 )ĥq̂ dq̂/dx̂

Q̂8/7(2κ− 77
48 )q̂2

. (2.37)

Starting from ĥ(−1/2) = 0 at the upstream boundary, this non-linear equation can

be integrated numerically in the phase plane (x̂, ĥ) to obtain the solution curve ĥ(x̂)
(Fig. 4(b)). Because the solution has vertical tangents at end points x̂ = ±1/2, we

integrate using discrete steps of constant distance dξ̂ = (dx̂2 + dĥ2)1/2 rather than
constant intervals dx̂. Next, we deduce the excess inclination profile Ŝ by substituting the
solution to (2.37) back into (2.33). Finally, the free surface profile ˆ̃z(x̂) = z̃/(SaL/ cosα)

is determined by integrating dˆ̃z/dx̂ = −Ŝ numerically subject to the integral condition∫ 1/2

−1/2
ˆ̃zdx̂ = 0. Results are plotted in Fig. 4(c), together with the streamlines calculated

from (2.16). For the experiments below, the dimensionless silo discharge Q̂ takes relatively
low values, hence the inertialess solution (2.36) provides a good approximation to the
full solution of (2.37). Because the basal forcing term and discharge distribution q̂(x̂)
gradually evolve as the avalanching layer descends down the silo, note that solutions
must be calculated anew for each time at which a snapshot of the flow is desired.

3. Experiments

The experiments were performed at the granular flow laboratory of IUSTI, Aix-
Marseille Univ., using the set-up shown in Fig. 5. The rectangular silo is composed
of parallel glass walls separated by wooden strips, planed to uniform thickness and
sandwiched between the glass plates along the perimeter. By switching between different
sets of wooden strips, three gap thicknesses B1 = 3.5 mm, B2 = 5 mm and B3 = 7 mm
were investigated. To one side, wood pieces with mitered edges were used to control the
orifice opening in the range 6 mm to 11 mm, yielding mass flowrates in the range ṁ = 3
to 12 g/s, as measured using a scale collecting the silo efflux. The lower edge of the orifice
was set at a fixed height of 20 mm above the silo floor, and taken as origin (X,Z) = (0, 0)
of the coordinate system. The internal silo chamber had spanwise width L = 60 mm and
maximum depth Hmax = 600 mm.

Slightly polydisperse glass spheres were used as granular material. Two different sphere
sizes were tested, having diametersD1 = 0.5 mm andD2 = 0.76 mm. TheD1 spheres were
drawn from a batch used in previous experiments, for which the following properties were
determined in earlier work (Jop et al. 2005, 2007): density ρS = 2450 kg/m3, sphere-wall
friction coefficient µW = tan(13.1◦), and parameters µs = tan(20.9◦), µ2 = tan(32.76◦)
and I0 = 0.279 in the non-linear µ(I) rheology

µ =
τ

σ
= µs +

µ2 − µs

I0/I + 1
, (3.1)

where I = γ̇D/(p/ρS)1/2 is the inertia number. Provided that I is not too large, this non-
linear relation between µ an I can be linearized by Taylor expansion around I = 0. This
yields for the coefficients of our assumed linear rheology (2.14) the values µ0 = µs = 0.38

and χ = (µ2 − µs)/(I0c
1/2
0 ) = 1.2, where c0 = 0.6 is the estimated granular volume

fraction. These values of µ0 and χ are used without adjustment for all the comparisons
between theory and experiment presented below. Based on the theory described in the
previous section, we can estimate as follows the range of inertia numbers encountered
in the present experiments. Using the theoretical velocity profile (2.15), first, the inertia
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Figure 5. Experimental setup: (a) schematic; (b) overview; (c) close-up showing the side
orifice of adjustable opening.

number averaged over the depth of the avalanching layer is given by

I =
35

8

uD

(c0g⊥h
3)1/2

. (3.2)

Using the approximation (2.36) and adopting the silo discharge Q as an upper bound on
the avalanching discharge q, next, a maximum depth-averaged inertia number for each
experiment can be obtained from

Imax =
1

2

(
35

4

)2/7
QD

(c0g⊥h
5
a)1/2

. (3.3)

The different conditions tested are listed in Table 1.
Measurements were acquired using a Photron high-speed camera of resolution 640 by

640 pixels operated at frame rates in the range 250 to 500 frames per second. To maximize
both the resolution and coverage of the footage acquired for each experiment, the silo
was mounted on a motorized track allowing it to rise at constant speed V ≈ Q/L relative
to the camera. In this fashion, the camera could zoom in on an observation window
of width L, within which the descending avalanching layer was nearly stationary. The
lower part of the window, moreover, could scan the undisturbed deep flow, travelling
past different regions of the deep flow as the silo moved relative to the camera. In one
single experiment, therefore, the camera can record the deep flow over a height greater
than the observation window, and capture the avalanching layer at different stages of
its descent relative to the silo. Lighting was provided by a high-intensity LED, giving a
point-like source of illumination that produced sharp highlights near the centers of the
spheres, facilitating their capture and tracking.

Experiments were started with the silo filled up almost to maximum depth, with a level
free surface. An initial transient was therefore needed to deform the free surface from its
horizontal initial state to its tilted avalanching state. The time needed for a discharge
q ∼ Q to resorb the corresponding triangular area A = tanαL2/2 is approximately T =
A/Q ∼ L2/Q. Over this time, the surface has descended by ∆H = −ḢT ∼ QT/L = L.
To avoid this initial transient, measurements were therefore acquired only after an initial
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Table 1. Experimental conditions for the different runs

Run gap grain orifice mass flow silo dimensionless maximum
no. thickness size opening rate discharge silo discharge inertia number

B [mm] D [mm] b [mm] ṁ [g/s] Q [mm2/s] Q̂ [-] Imax [-]

1 3.5 0.5 11 4.7 780 0.44 0.23
2 3.5 0.5 8 3.1 460 0.26 0.20
3 3.5 0.5 9 3.8 680 0.38 0.22
4 5 0.5 7 3.7 395 0.23 0.15
5 5 0.5 9 6.0 660 0.39 0.17
6 5 0.5 11 8.2 900 0.52 0.18
7 7 0.5 8 8.3 720 0.44 0.14
8 7 0.5 10 11.6 1000 0.61 0.15
9 7 0.5 6 5.1 420 0.26 0.12
10 5 0.76 7 3.0 300 0.13 0.15
11 5 0.76 11 6.7 840 0.36 0.20
12 5 0.76 9 4.8 600 0.26 0.19
13 7 0.76 6 3.9 360 0.16 0.13
14 7 0.76 8 5.5 480 0.21 0.14
15 7 0.76 10 8.9 840 0.37 0.16

drawdown ∆H of at least 8 times the silo width L. For this reason, the silo was designed
to be twice as high as the target observation domain.

Particle tracking velocimetry was performed using the methods of Capart et al. (2002),
upgraded to take into account path regularity when matching particles from one frame
to the next. For each experiment, of the order of 108 velocity vectors were acquired.
Averaging over multiple frames was conducted by binning vectors into non-overlapping
Cartesian mesh cells, using distinct frames of reference for the deep flow and for the
avalanching layer. For the deep flow, stationarity in the silo frame of reference was
assumed to average vectors from the lower part of the window using a mesh of coordinates
(X,Z). For the avalanching layer, averaging was performed in the descending frame of
reference (X,Z − Ḣt), over time intervals of shorter duration to capture different stages
of the layer evolution during its descent. During each experiment, an electronic scale was
also used to monitor the mass outflow from the silo. Flow fields acquired in this fashion
are illustrated in Fig. 6, and compared to long exposure images acquired with the silo
moving or held stationary with respect to the camera.

As a check on the PTV measurements and some of the assumptions of the theory,
the mass flow rates ṁ estimated by weighting the collected efflux can be compared with
mass flow rates c0ρSBQ estimated from particle tracking velocimetry, where Q = −LW 0

is the volume flow rate per unit width and W 0 is the mean downward velocity of the
grains averaged from 12 cross sections at different heights of the measured deep flow
field. Values of both ṁ and Q are listed in Table 1. The PTV values understimate the
collected efflux by up to 20 %, for the smaller grains, and by up to 10 % for the larger
grains. This discrepancy indicates that the granular velocities measured by PTV along
the tank front wall are somewhat slower than the granular velocities averaged over the
gap thickness and associated with the bulk efflux. Since the discrepancy is not large,
however, it appears reasonable to assume for simplicity that the flow is two-dimensional
in character.
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Figure 6. PTV process applied to run 3: (a) long exposure image for silo moving relative to
the camera; (b) color map of the measured magnitude of the granular velocity, averaged over
250 images; (c) reconstructed color map of the deep granular velocity field, in the silo frame of
reference; (d) composite long exposure image of the deep silo flow, with the silo held stationary
with respect to the camera. In (a), the colored lines illustrate the control volumes used to derive
(4.2). In (b), the region below the dashed line was assumed unaffected by surface avalanching,
yielding the measurements used to produce the deep flow map (c).

Figure 7. Qualitatively different avalanching flow pattern observed in silo of large gap
thickness (B = 7 mm , run 7): (a) long exposure image; (b) color map of velocity magnitude.

Reflecting the crucial role of wall friction (Jop et al. 2005), the silo gap thickness was
found to exert a significant influence on the observed avalanching flow patterns. For small
to medium gap thickness (B = 3.5 and 5 mm), shallow avalanching layers are obtained,
with lenticular shapes that span the entire silo width L (Fig. 6). The resulting flow pattern
(Fig. 6(b)) is qualitatively similar to the flow field expected from the theory (see Fig.
4(c)). The largest gap thickness tested, however (B = 7 mm), produces deep avalanching
layers with slow velocity dead zones upstream and downstream (Fig. 7). This pattern
no longer matches that expected from our shallow avalanching theory. Judging from the
comparison between outflow rates measured by the scale and by PTV, respectively, the
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flows in that case remain roughly two-dimensional, hence the change of character does
not seem due to a breakdown of this assumption. Instead, we suspect that for these
flows there is no longer a sufficient separation of scales between the deep flow and surface
avalanching. For the avalanching layer, quantitative comparisons with the dynamic theory
will therefore be restricted to experimental runs conducted with small to medium gap
thickness. For the deep flow, by contrast, the kinematic theory will be compared with
data from all runs. These comparisons are described in the next section.

4. Comparison and discussion

4.1. Deep flow comparison

Prior to comparing theory with experiments for the deep flow region, the kinematic
constant or diffusivity K must be calibrated. This is done for each experiment using the
following approach. Consider the rate of material transfer (per unit interface area) across
an imaginary horizontal interface Z(X, t) = H(t) descending at speed Ḣ = −Q/L down
the silo, and given by

W ′0(X,Z) = W0(X,Z)− Ḣ , (4.1)

where only the deep flow is considered. Assuming that the flow above this interface is
steady in the descending frame of reference, this influx must be balanced by a horizontal
granular current J(X,Z) (per unit gap width) given by

J(X,Z) = −
∫ X

0

W ′0(X ′, Z)dX ′ . (4.2)

The control volumes associated with this balance are illustrated in Fig. 6(a). Let Jmax(Z)
denote the maximum value of the granular current J(X,Z). Taken along horizontal
interface Z = H instead of the tilted interface Z(X), it provides an approximation to the
maximum avalanching discharge qmax. Here we use measurements of Jmax for different
elevations Z to calibrate the diffusivity K for each experiment. Using the deep flow theory
of sub-section 2.1, the current J is given by

J(X,Z) = Ψ0(X,Z) + ḢX , (4.3)

or in dimensionless form

Ĵ =
J

Q
= Ψ̂0(X̂, Ẑ)− X̂ . (4.4)

where as before X̂ = X/L and Ẑ = ZK/L2. Let Ĵmax = F (Ẑ) denote the maximum
dimensionless current for a given dimensionless elevation Ẑ. This relation can be inverted
(numerically) to obtain for Z as a function of Jmax the relation

Z

L
=
L

K
F−1

(
Jmax

Q

)
, (4.5)

where we have reverted to dimensional variables. This provides a simple linear relation
in coefficient L/K that can be fitted to measurements of Jmax/Q for different relative
elevations Z/L.

Results obtained via this calibration procedure are presented in Fig. 8 for one of
the experimental runs. In Fig. 8(a), relation (4.5) is compared with the measured data
for the K value yielding the best fit. In Figure 8(b), we then compare the theoretical
profiles W0(X,Z) obtained with this K value with the measured vertical velocity profiles.
Finally, in Fig. 8(c), we compare the theoretical profiles J(X,Z) with the corresponding
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Figure 8. Comparison of the kinematic theory (blue curves) with experimental measurements
(black symbols) for the deep flow region (run 2): (a) dependence of maximum horizontal current
Jmax on elevation above orifice Z, used to calibrate the diffusivity K; (b) vertical velocity
profilesW (X,Z); (c) horizontal current profiles J(X,Z), with locus of maximum values indicated
by dashed line (theory) and circles (experiment). The error bars indicate ± one standard
deviation, estimated from measurements of three repeat experiments for the same conditions,
and multiplied for clarity by factors 20, 40 and 3 for panels (a),(b) and (c) respectively.

experimental profiles. In addition to matching well the values of maximum current
Jmax(Z), on which the fitting was performed (Fig. 8(a)), the results show good agreement
for other features of the deep flow, including the detailed velocity profiles (Fig. 8(b)) and
the locus Xmax(Z) where the maximum current Jmax is attained (Fig.8(c)).

Considering that the diffusivity K is the only parameter requiring calibration, agree-
ment is good overall. Nevertheless, there are some significant differences between the
predicted and measured velocity profiles. Most conspicuously (Fig. 8(b)), the experiments
feature a zone of low velocity near the sidewall above the orifice, the thickness of which
grows with height. This departure from our assumed condition of perfect slip may be
partly due to the use of wood strips for the sides. The same behavior, however, was also
observed by Maiti et al. (2016) in their experiments conducted in an eccentric silo made
entirely from acrylic (polymethyl methacrylate) plates. Regardless of sidewall material,
it is likely that grain mobility near the sides is reduced due to corner effects (grains in
contact with both the front and sidewalls). This vertical boundary layer is not modeled
by the theory, which instead assumes perfect slip along the side walls. Fortunately (Fig.
8(c)), this local discrepancy exerts a limited influence on the integrated granular current
profiles J(X,Z), hence its effect on the dynamics of the avalanching layer is expected to
be small.

Using the larger set of experiments, in which we varied the outflow discharge, silo
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Figure 9. Variation of the dimensionless diffusivity with the dimensionless gap thickness for
all experimental runs.

Figure 10. Comparison of the deep flow theory (blue line) with all experimental measurements
(black dots): (a) maximum current Jmax; (b) location Xmax where the maximum current occurs.

gap thickness, and grain diameter (see Table 1), we can further investigate the influence
of these parameters on the calibrated diffusivity K. The results, plotted in Fig. 9, are
unexpectedly simple. For the range of conditions examined, K is simply proportional to
the gap thickness B, satisfying to a close approximation the linear relation K = λB,
where λ = 0.26. When the gap thickness is held constant, K is independent of the
discharge Q, consistent with the rate-independent character of the kinematic model.
Likewise, K is found to be independent of the grain diameter D.

As a consequence of this simple dependence, the Ĵmax and X̂max data for all the
experimental runs should collapse together when plotted against dimensionless number
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Ĥ = HB/L2. This is checked in Fig. 10. Upon substituting Ẑ = λĤ in (4.4), the data
collapse and agree closely with the theoretical curve Ĵmax(Ĥ) (Fig. 10(a)). Agreement
for the locus X̂max(Ĥ) is also good (Fig. 10(b)). The two-dimensional deep flow pattern
above the orifice, therefore, is effectively the same for all cases when plotted in the
dimensionless variables (X̂, Ĥ). To test whether this holds more generally, one would need
to vary parameters over a broader range. For instance, it is unclear if the same reduction
would hold for grains and walls of materials different from glass, which would affect their
frictional properties. For the present experimental conditions, however, this reduction to
a single dimensionless flow pattern accounts well for the deep flow observations.

4.2. Surface flow comparison

Once the basal forcing is known from the kinematic model, the dynamic model can be
used to predict the surface avalanching flow. For this purpose, we estimate the basal
normal velocity w0 or equivalently the basal streamfunction ψ0 from the analytical
solutions (2.8) and (2.9). For the diffusivity, we adopt the values K = λB estimated
from the gap thickness B using the linear relation calibrated in the previous section.
For the rheological coefficients µ0 and χ, we adopt the values determined in section
3 from previous experiments by Jop et al. (2005) using the same granular material.
Detailed comparisons will be presented for two runs, corresponding respectively to gap
thicknesses B = 3.5 and 5 mm. In Fig. 11, we first compare predicted and measured
streamfunctions for the entire flow field, at three successive times. The streamlines shown
represent equally spaced streamfunction contours, hence the distance between contours
is inversely proportional to the discharge through the corresponding streamtube. For the
theory, the streamfunction is obtained from

Ψ = Ψ0 + ψ − ˜ψ , (4.6)

where the first term represents the deep flow, the second term surface avalanching,
and the third their common part that must be subtracted in order not to be counted
twice. This approach is used in boundary layer problems to match inner and outer
solutions (Kevorkian 1990). By analogy, the same approach can be used here to bridge
between the avalanching and deep flow models. In our case, however, a more formal
boundary layer analysis is not feasible because we do not know the more general equations
that would reduce to the avalanching and deep flow models in the appropriate limits.
For the experiments, the streamfunction is obtained from the measured velocity field
(U,W )(X,Z) by integrating U column-wise from the bottom andW row-wise from the far
sidewall, then averaging the two results. Side by side comparisons between the theoretical
and experimental streamlines obtained in this fashion are shown in Fig. 11. Going from
top to bottom, the streamlines are first evenly spaced across the silo width, due the quasi-
steady drawdown of the free surface. They then get focused by the avalanching layer,
where the streamlines become very closely spaced, to connect with the uneven deep
flow streamlines at their base. Thereafter, the streamlines gradually converge toward the
orifice where they again become closely spaced. Theory and experiment are seen to be
in good agreement regarding this overall pattern.

In Fig. 12, we compare predictions and measurements for the granular velocity fields.
At five equally spaced times during the descent, we compare calculated results for the
downslope velocity u(x, z, t) (Fig. 12(a,c)) with measured results for the magnitude of
the velocity norm ((U −U0)2 + (W −W0)2)1/2, from which the deep flow was subtracted
(Fig. 12(b,d)). On all panels, the last, lowermost snapshot shows the magnitude of the
total velocity when the avalanching layer approaches the orifice level. In both theory
and experiment, the avalanching layers exhibit lenticular depth profiles, with vanishing
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Figure 11. Comparison of predicted and measured streamlines for two different gap thicknesses,
at three successive times: (a) prediction, and (b) measurements, for gap thickness B = 3.5 mm
(run 3); (c) prediction, and (d) measurements for gap thickness B = 5 mm (run 5). Streamlines
are plotted at equal streamfunction increments, each corresponding to 1/8 of the total outflow
discharge.

depths at both sidewalls and maximum depths hmax that occur towards the orifice side
of the silo. This asymmetry and the steepness of the avalanching layer become stronger
as the surface descends closer to the orifice, becoming more strongly influenced by its
localized pull. Surface velocities likewise accelerate as the avalanching layer drops.

Comparison of the left and right panels of Fig. 12 further shows the influence of
gap thickness B on the avalanching flows. The maps of Fig. 12(a,b) correspond to gap
thickness B = 3.5 mm, whereas those of Fig. 12(c,d) correspond to gap thickness B = 5
mm. For the larger gap thickness (Fig. 12(c,d)), kinematic diffusion is stronger, hence a
less localized surface drawdown by the deep flow. The maximum discharge qmax that
the avalanching layer must transfer to even out the drawdown is therefore reduced,
hence weaker avalanching flows. The larger gap thickness, moreover, reduces the relative
magnitude of wall friction, leading to deeper and slower avalanching layers for the same
discharge. Note that this does not imply any change in the magnitude of the wall friction
coefficient, assumed constant in the theory. For increasing gap width, the magnitude
of the wall friction force relative to the other terms decreases because, in the width-
averaged equation (2.13) and the ensuing depth-integrated equations, the wall friction
force per unit width −2τW /B is the only term that gets divided by the width B. For the
smaller gap thickness (Fig. 12(a,b)), kinematic diffusion is weaker hence the deep flow
drawdown is more concentrated above the orifice. The induced maximum avalanching
discharge qmax is therefore greater. Due to the smaller gap thickness, wall friction causes
the avalanching layers to reduce their depth and steepen their inclination. As a result
of these different effects, surface velocities are significantly increased compared to Fig.
12(c,d), even though the discharge Q through the orifice is nearly the same.

Although the free surface is nearly linear for the wider gap (Fig. 12(c,d)), for the thinner
gap the surface curvature is more pronounced, transitioning from concave downward to
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Figure 12. Comparison of predicted and measured granular velocity fields for two different gap
thicknesses, at six successive times: (a) prediction, and (b) measurements, for gap thickness B =
3.5 mm (run 3); (c) prediction, and (d) measurements for gap thickness B = 5 mm (run 5).
Colors from blue to red indicate increasing velocity magnitude.

concave upward going from upstream to downstream (Fig. 12(a,b)). As it nears the orifice
wall, the avalanching layer cusps upwards as it thins to a sharp tip. Similar behavior
was earlier described for symmetric silos, with avalanching layers that cusp upwards as
they reach the silo axis of symmetry (Samadani et al. 2002). Although this behavior
was interpreted as resulting from shock formation, our shallow flow theory captures this
phenomenon without a shock. Similar behavior can be observed for flows in rotating
drums, where the granular free surface goes from straight to curved as the rotation rate
increases (Rajchenbach 1990).

To make comparisons more precise, Fig. 13 plots together theoretical and experimental
profiles for two depth-integrated quantities associated with the avalanching layers: the
depth-integrated discharge q =

∫
udz, and the depth-integrated kinetic energy, k =∫

1
2u

2dz, both varying with height above orifice H and with the downslope coordinate x.
Since the discharge profile is controlled by the deep flow, the comparisons for q represent a
test of the kinematic model (Fig. 13(a,c)). For a given discharge profile, on the other hand,
the kinetic energy profile is controlled by the avalanche dynamics, hence comparisons for k
represent a test of the dynamic model (Fig. 13(b,d)). In both the theory and experiments,
peaks in q and k occur further downstream as the granular surface drops and approaches
the orifice. Also, profiles for the smaller gap thickness (Fig. 13(a,b)) are more asymmetric
than profiles for the larger gap thickness (Fig. 13(c,d)). Finally, the profiles for k are more
strongly peaked than the profiles for q. For all these features, fairly good agreement is
registered between theory and experiment. Although the measured signal for the kinetic
energy is more noisy, the level of agreement obtained for q and k indicates that both the
kinematic and dynamic models perform reasonably well.
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Figure 13. Comparison of theory (blue lines) and experiment (black lines) for profiles of
discharge and kinetic energy, at six successive times during the descent of the avalanching layers,
for two different gap thicknesses:(a) discharge profiles q(x), and (b) kinetic energy profiles k(x),
for gap thickness B = 3.5 mm (run 3); (c) discharge profiles q(x), and (d) kinetic energy profiles
k(x), for gap thickness B = 5 mm (run 5). Circles indicate peaks in the predicted profiles. The
error bars in panels (a) and (b) indicate ± one standard deviation, estimated from three repeat
experiments for the same conditions.

5. Conclusion

In the present work, theory and experiment were used to investigate granular surface
avalanching in narrow silos. Provided that the deep and shallow flows exhibit a clear
separation of scales, it was shown that narrow silo avalanching can be described well by
combining kinematic and dynamic models, matched along an approximate basal interface.
The resulting theory captures both the rate-independent character of the deep flow and
the rate-dependent behavior of the avalanching layer, each in the frame of reference where
they can be considered steady. For the deep flow, the measured velocities and the induced
forcing at the base of the avalanching layer are described fairly well by the kinematic
model, subject to a linear relation between the kinematic diffusivity and the silo gap
thickness. For the surface flow, on the other hand, the shape of the avalanching layer and
longitudinal profile of depth-integrated kinetic energy are well predicted by the dynamic
model. Combined together, the two models also produce velocity fields and streamlines
that agree fairly well with experiments over the entire domain.

More general continuum formulations have been proposed (Staron et al. 2014;
Dunatunga & Kamrin 2015; Lee et al. 2015; Daviet & Bertails-Descoubes 2016), and
may be able to model subsidence-driven granular avalanching under less restrictive
assumptions. Nevertheless, the simple approach proposed in the present work presents
various advantages. First, it applies to precisely the conditions likely to tax the
capabilities of modeling approaches like discrete element simulations or Navier-Stokes
solvers. The number of grains contained in the present experimental silos, for instance,
would require very large computational resources to be modeled by discrete particles.
Resolving the steep gradients and large convective inertia of the present avalanching
layers, likewise, would require very small mesh cells and small time steps for Navier-
Stokes-type computations. Another advantage of our semi-analytical approach is to
clarify the physical role played by different parameters.

Nevertheless, the approach of the present paper is currently subject to various
limitations. In particular, it is restricted to two-dimensional, quasi-steady flows of
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monodisperse grains over deep erodible beds of the same composition, assumed governed
by wall friction and by the linearized µ(I) rheology. Further research will be needed
to overcome these limitations and possibly address other applications like flows partly
controlled by non-erodible beds (Parez et al. 2016; Fernández-Nieto et al. 2018; Sarno
et al. 2018), and unsteady non-uniform flows like granular column collapse (Chou et al.
2012; Ionescu et al. 2015; Lee et al. 2015).
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