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h i g h l i g h t s

� Temperature monitoring is more accurate using an optical fiber than an infrared sensor.

� Transesterification is not accelerated under microwave irradiation.

� Esterification with methanol is not accelerated under microwave irradiation.

� Main cause of ‘‘the microwave effect’’ is temperature underestimation.

� Temperature underestimation may be associated with superheating of methanol.
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a b s t r a c t

Microwave effects have been quantified, comparing activation energies and pre-exponential factors to

those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via

transesterification and esterification reactions. Several publications report an enhancement of biodiesel

production using microwaves, however recent reviews highlight poor temperature measurements in

microwave reactors give misleading reaction performances. Operating conditions have therefore been

carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an

optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction,

the activation energy is 37.1 kJ/mol (20.1–54.2 kJ/mol) in the microwave-heated reactor compared with

31.6 kJ/mol (14.6–48.7 kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the

activation energy is 45.4 kJ/mol (31.8–58.9 kJ/mol) for the microwave-heated reactor compared with

56.1 kJ/mol (55.7–56.4 kJ/mol) for conventionally-heated reactor. The results confirm the absence of

non-thermal microwave effects for homogenous-catalyzed reactions.

1. Introduction

1.1. Context

In recent years, bio-sourced raw material has been investigated

as a substitute for fossil fuels or as solvents for renewable energy

and green chemistry applications. Virgin and food-grade oils were

initially studied to produce the first generation of biofuels, consti-

tuted of Fatty Acids Methyl Esters (FAME). Waste Cooking Oils

(WCO) are of particular interest for biodiesel production for two

reasons. Firstly, WCO are two to three times cheaper than virgin

oils (Zhang et al., 2003). Secondly, by re-using and transforming

of WCO, instead of discarding it into sewers, water treatment costs

are significantly decreased (Banerjee and Chakraborty, 2009). This

double effect propels WCO as a very good environment-friendly

feedstock.

The use of waste cooking oil, however, brings additional

challenges. During the cooking process oils are subjected to high

temperatures, and in the presence of water (released by foods)

fatty acids are formed by a hydrolysis reaction (Gui et al., 2008).

Normally transesterification is base-catalyzed since the reaction

is 4000 times faster than that with acid catalysis (Fukuda et al.,

2001). However, with a basic catalyst the high acidity of the oil

leads to undesired soap formation, which decreases the reaction

yield and acts as a surfactant between the two final immiscible
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products, making downstream separation more difficult. The limit

of acceptable acidity is not clearly defined; the advised limit is

1 mg KOH/goil (fatty acid mass fraction of 0.5%) (Banerjee and

Chakraborty, 2009), however reactions have been successfully per-

formed at 3 mg KOH/goil (fatty acid mass fraction of 1.5%) (Banerjee

and Chakraborty, 2009; Enweremadu and Mbarawa, 2009). The

water content is limited to 0.05% vol/vol (ASTM D6751 standard)

because it forms inactive alkaline soaps (Leung et al., 2010). Due

to these undesirable outcomes, WCO needs to be pre-treated

before reactions are performed.

1.2. FAME production from waste cooking oils

The first pre-treatment step required is to reduce the acidity of

the oil. Both physical (such as drying, filtration, or distillation (Tur

et al., 2012)) and chemical pre-treatment can be used. Chemical

treatment is carried out with an acid-catalyzed esterification reac-

tion. The fatty acids in the oil react with methanol producing

methyl esters and water. This is an immiscible liquid–liquid reac-

tion, which is mass-transfer limited (Santacesaria et al., 2007).

After the esterification reaction the oil mainly contains tri, di and

mono glycerides and the mass fraction of fatty acids is generally

below 1.5%.

Following the esterification reaction and after a water removal

step, the pretreated oil is then transformed using a base-catalyzed

transesterification. Like the esterification reaction, the transesteri-

fication reaction is mass-transfer limited at the beginning due to

the immiscibility of triglycerides and methanol, as well as at the

end of the reaction because most of the catalyst is in the glycerol

phase (Cintas et al., 2010).

A number of types of reactors can be used to carry out the ester-

ification and transesterification of WCO transformations and these

have been reviewed in our previous paper (Mazubert et al., 2013).

In comparison to conventional batch reactors, a number of intensi-

fied equipment types (such as microstructured reactors, cavita-

tional reactors, microwave reactors, oscillatory flow reactors,

membrane reactors, as well as static mixers and reactive distilla-

tion) have shown to enhance FAME production. Microwave

reactors show particularly promising results in terms of residence

times, which are significantly reduced compared with other

technologies. The next section presents the basic principle of

microwave heating and some background on their use for biodiesel

production.

1.3. Microwave background

1.3.1. Principle

The two major mechanisms involved in microwave technology

are dipolar polarization and ionic conduction. Dipolar polarization

occurs when dipoles are forced to align with the direction of the

electric field that is imposed by the microwave. The electric field

rapidly oscillates, as does the dipole, which tries to realign itself

with the field as fast as possible by rotation. The frequency of the

microwaves is sufficiently high to cause a phase difference

between the field and the dipole orientation. The frictional and

collision forces between the molecules thus generate heat. The

second mechanism is ionic conduction. It occurs as the charged

dissolved particles oscillate under the influence of the microwave

field. When the direction of the electric field changes, the ions slow

down and change direction, dissipating their kinetic energy as

heat. This dissipation is caused by friction (Lidström et al., 2001;

Mingos and Baghurst, 1991).

The absorption of microwaves by a dielectric compound can be

characterized by the complex permittivity e
⁄, which depends on

the dielectric constant e0 that represents the ability of the com-

pound to store energy, and the dielectric loss e00 that represents

the ability of the compound to convert the absorbed energy into

heat.

e� ¼ e0 ÿ je00 ð1:1Þ

One limitation of the use of microwaves on a larger scale is the

small penetration depth of the microwaves in the reactive media.

This penetration depth, dp, is a function of the dielectric properties

and the frequency of the microwaves. A limited penetration depth

will make uniform heating difficult at higher volumes.

As it is expressed in literature (Metaxas and Meredith, 1983),

the general expression for the penetration depth approximates to:

dp ¼ k0

ffiffiffiffi

e0
p

2pe00
where the free space wavelength is k0 ¼ c0

f

ð1:2Þ

As an example, at 2.45 GHz the penetration depth of micro-

waves in methanol at 20 °C is 0.76 cm and at 60 °C, it is 1.4 cm

(calculated from work of Grant and Halstead (1998)). This small

penetration depth is the reason why mechanical stirring is

required to homogenize temperature.

1.3.2. Microwave effects

It is generally believed that reaction enhancement and other

observed effects in microwave-assisted processes are due to

thermal phenomena caused by the microwave dielectric heating

mechanisms. Amongst the different thermal effects caused by

microwaves some examples are (Kappe et al., 2012):

� The superheating of solvents due to extremely fast heating to

temperatures above the solvent boiling point; in such cases sol-

vents boil at temperatures that are higher than the usual boiling

point due to absence of nucleation points.

� The heating of selected phases or reagents of the reaction med-

ium, e.g. microwave-absorbing solid catalysts.

� The generation of inverted temperature gradients between the

wall and the bulk of the reactor, and the subsequent elimination

of wall effects.

Despite some controversy, claims that non-thermal microwave

effects on reactions still exist (Perreux et al., 2013). The reduction

of reaction times exclusively due to microwave irradiation is re-

ferred to as non-thermal microwave effects when the comparison

of reaction performance with and without microwave irradiation

is made at the same temperatures and operating conditions (e.g.

agitation intensity, mixing quality). It has been postulated that

these effects are due to the interaction of the electromagnetic field

with the molecules in the reaction medium. It is believed for some

reactions that the electromagnetic field modifies the orientation of

the molecules and could change the pre-exponential factor A in the

Arrhenius equation:

K ¼ A:e ÿDG
RTð Þ ð1:3Þ

where DG is the activation energy or entropy term. The pre-expo-

nential factor, which describes the probability of molecular impacts,

depends on the vibration frequency of the atoms at the reaction

interface. It is thought that this vibration frequency could be af-

fected under microwave irradiation and leads to an increase of

the pre-exponential factor. The decrease in activation energy under

microwaves is attributed to the increase of the entropy term.

1.3.3. Transesterification and esterification reactions under

microwaves

The use of microwaves for enhancing chemical reactions has been

a topic of significant interest in past years (Baig and Varma, 2012)

and the investigations of transesterification and esterification



reactions under microwave irradiation has been numerous as iden-

tified by Mazubert et al. (2013). For these reactions in particular,

microwave efficiency is increased by the high polarity and high

dielectric loss of methanol. Indeed, the dielectric constant of meth-

anol at 25 °C and 2.45 GHz is 32.7 (Albright and Gosting, 1946)

compared with that of water at 78.5, which is high, and that of

oil is only between 3 and 4. The dielectric loss for methanol at

25 °C is around 11.8, which is close to that of water, around 13.

In general, the literature studies show that for homogenous

base-catalyzed transesterification reactions under microwave irra-

diation in batch conditions, high conversions or yields are attained

at very short reaction times in comparison with conventionally

heated systems. For example:

� A 98% conversion of triolein is obtained in 1 min at 50 °C using

an initial power of 25 W in a 100 mL round-flask reactor

(Leadbeater and Stencel, 2006).

� A 93.7% conversion of rapeseed oil is obtained in 1 min at 40 °C

using a power of 1200W (Azcan and Danisman, 2008).

� A yield greater than 96% is obtained in 6 min with a KOH

catalyst, at 60 °C using a maximum power of 500 W in a

50 mL reactor (Zu et al., 2009).

� A 97.2% conversion of rice oil is obtained in 5 min at 60 °C, using

a maximum power of 1600W in a 270 mL reactor (Kanitkar

et al., 2011).

� A 98.4% conversion of safflower oil is obtained in 6 min at 60 °C

using a maximal power of 300 W in a 500 mL reactor (Duz et al.,

2011).

Similar results have also been found in continuous reactors. For

example, using a 9 mm diameter coiled tube in a household micro-

wave and a flow rate of 19.8 L/h Lertsathapornsuk et al. (2008)

obtained a 97% conversion in 30 s using ethanol, at an average out-

let temperature of 78 °C with a maximal power of 800 W. In a 4 L

non-agitated continuous tank with a flow rate of 432 L/h, a 98.9%

conversion was obtained in 30 s at 50 °C using a maximum power

of 1600W in a large multimode microwave cavity (Barnard et al.,

2007).

Few studies on the esterification of fatty acids with a homoge-

nous catalyst have been carried out; indeed most investigations on

esterification reactions with microwaves have used heterogeneous

catalysts. The use of microwaves for decreasing the fatty acid con-

tent with a homogenous catalyst has only recently been shown:

the acidity of Jatropha oil was decreased from 14% to 1% using a

sulfuric acid catalyst at a power of 110 W in a 500 mL reactor in

35 min (Jaliliannosrati et al., 2013).

In summary, the literature results globally show that the use of

microwaves for FAME reactions allows high yields or conversions

to be attained in very short times compared with conventionally

heated reactors. However, it should be pointed out that very few

of these studies provide details on how the temperature in the

microwave reactor is measured. This is an extremely important

point, which has been highlighted recently by Kappe and co-workers

(Herrero et al., 2008; Kappe, 2013; Kappe et al., 2013). These

authors report that erroneous temperature measurements and

poor mixing of the reaction mixture are often responsible for the

observation of reaction enhancement due to non-thermal micro-

wave effects. Infrared (IR) temperature sensors are typically used

for temperature measurement in commercial microwave systems.

However, it is known that the use of IR sensors that measure the

temperature at the outer bottom surface of the reactor do not pro-

vide correct information on the internal reaction temperature. In

situ fiber-optic temperature probes provide much more accurate

temperature measurements and therefore are highly recom-

mended. As a result, it is clearly understood that poor temperature

measurements in microwave reactors give misleading results in

terms of reaction performance. Indeed, in the current literature

on the use of microwave heating for enhancing FAME reactions,

infrared sensors are very often used and one may question the real

gain in using this novel heating method compared with conven-

tional techniques.

1.4. Present work

This work investigates the effects of microwaves on the perfor-

mance of transesterification and esterification reactions using

WCO as feedstock. To do this, the reactions performed in a conven-

tionally heated reactor and a microwave reactor have been

compared under the same operating conditions (temperature and

stirring conditions). The microwave reactor operates in single

mode and is equipped with a mechanical rotating impeller to

ensure good mixing quality and homogenous temperature in the

reactor. The temperatures are measured directly in the reaction

medium by a fiber optic probe to ensure the accuracy of the tem-

perature measurements. To quantify a potential enhancement of

the reaction by the microwave irradiation, the influence of micro-

wave irradiation on the Arrhenius equation is presented for both

reactions.

2. Methods

2.1. Products

WCO was collected in restaurants and supplied by the company

Coreva Technologies (Auch, France). Two different WCOs are stud-

ied: one with low fatty acid content (2.1%) and the other with a

higher level of fatty acids (39%). Both oils contain no water or solid

wastes. The profiles of the carbon chains are as follows:

� Oil with 2.1% of FFA: palmitic C16:0 (15.2%), palmitoleic C16:1

(3.5%), stearic C18:0 (4.6%), oleic C18:1 (36.5%), linoleic C18:2

(36.1%) and alpha-linoleic C18:3 (3.5%).

� Oil with 39% of FFA: palmitic C16:0 (13.1%), stearic C18:0 (3.7%),

oleic C18:1 (54.3%), linoleic C18:2 (24.6%), arachidic C20:0

(4.3%).

Methanol (99% HPLC grade), sodium hydroxide pellets, sulfuric

acid (96%), cyclohexane (analytical grade) and ethanol (absolute,

99.9%) were supplied by VWR, France. Phenolphthalein and KOH-

ethanol solution (1 M or 0.1 M) were supplied by Sigma–Aldrich,

France. Methyl imidazole (MI) was supplied by Alfa Aesar.

N-méthyl-N-triméthylsilyl-heptafluorobutyramide (MSHFBA) was

supplied by Marcherey-Nagel.

2.2. Experimental apparatus

The conventionally heated reactor, as shown in Fig. 1(a), con-

sists of a 1L-jacketed vessel equipped with a 3-bladed paddle, a

cooling system to avoid the vaporization of methanol and a

mercury thermometer. The agitation speed is fixed at 300 rpm

for both reactions. The transesterification is carried out at four

temperatures (25 °C, 40 °C, 50 °C and 60 °C) using the 2.1% FFA

oil. The methanol to oil molar ratio is 6:1 and the mass fraction

of KOH catalyst (with respect to the mass of oil) is 1%. An initial

mass of 600 g of oil is preheated in the reactor before adding the

methanol and catalyst solution.

The esterification is also carried out at four temperatures (30 °C,

40 °C, 50 °C and 60 °C) using the 39% FFA oil in the conventionally

heated reactor. The methanol to oil ratio is 36:1 and the mass frac-

tion of the sulfuric acid catalyst (with respect to the mass of oil) is

7%. The methanol and sulfuric acid are preheated in the reactor,



whilst the oil is preheated in a thermal bath. The total volume is

fixed at 1 L.

The microwave reactor is a CEMÒ Discover SP (f = 2.45 GHz)

operates at atmospheric pressure and is equipped with a 100 mL

round-flask and a 2-bladed paddle impeller made of PTFE, as

shown in Fig. 1(b). The maximum power is 300 W. The power is

automatically adjusted to the measured temperature via an optical

fiber. The agitation speed is fixed at 300 rpm. The 2-bladed paddle

impeller has been used instead of the conventional magnetic stir-

rer in order to homogenize the temperatures in the microwave

cavity and to ensure good mixing of the reactants. Indeed, the

default magnetic stirrer provided in the microwave reactor was

unable to rotate in the viscous oils and therefore provided insuffi-

cient mixing. The temperature homogeneity was also assisted by

the use of a single mode microwave reactor, instead of a multi-

mode reactor type that has often been used in previous studies

(Barnard et al., 2007; Lertsathapornsuk et al., 2008). The total

reaction volume is 80 mL. The transesterification and the esterifi-

cation are carried out at the four different temperatures as in the

conventionally heated reactor. As stirring and microwave irradia-

tion start simultaneously, the initial time is set to when the

agitation starts even if the desired temperature is not reached

yet. The times required to reach each of the set temperatures are

given in Table 1.

2.3. Characterization of reaction performance

The composition of FAME produced from the transesterification

and esterification reactions was characterized by gas chromatogra-

phy (GC) using a Perkin Elmer Instrument based on the EN-14103

method. The chromatograph is equipped with a flame ionization

detector (FID). The column used was Restek (CP-Sil 8 Rtx-5: 5%

diphenyl, 95% dimethylpolysiloxane) 15 m � 0.32 mm � 0.25 lm.

The injection is ‘‘on-column’’ because the di- and triglycerides

are not vaporized in the injector and are injected as liquids in

the column. One internal standard (heptadecane) and six reference

materials (triolein, monoolein, diolein, triolein, oleic acid, methyl

oleate) supplied by Sigma–Aldrich were used for the GC calibra-

tion. The samples are diluted in cyclohexane (Analytical grade)

supplied by VWR, France. The operating conditions used for the

oven were 55 °C for 30 s, 45 °C/min to 80 °C, 10 °C/min to 360 °C

and hold for 11 min. The carrier gas was helium at a constant pres-

sure at the top of the column of 15 psi. The hydrogen flowwas kept

at 45 mL/min and the air flow was kept at 450 mL/min. The

hydroxyled compounds (fatty acids, mono, di- and triglycerides)

are silyled by a mixture of N-methyl-N-trimethylsilyl-heptafluoro-

butyramide (MSHFBA) and methylimidazole (MI). This reaction

increases the volatility and the stability of injected hydroxyled

compounds to enhance their detection.

The fatty acid level is determined by titration with a 0.1 N

KOH-ethanol solution using a Mettler Toledo DL50 titrator based

on the ISO 660 norm. The sample (about 1 mL) is diluted in ethanol

(about 30 mL). The titrator gives the exact volume added at the

equivalence point, which is determined by a pH sensor. Phenol-

phthalein is used as the colored indicator to detect the equivalence

point. The percentage of acidity Ac is given by the relationship:

Fig. 1. Two experimental systems: (a) the conventionally heated reactor and its agitator and (b) the microwave heated reactor with its mechanical agitator (M) and

temperature monitored by optical fiber (T). Dimensions are given in mm.

Table 1

Comparison of temperature measurements using an optical fiber probe (OF) and

infrared sensor (IR) for the esterification reaction. The reactor volume is 80 mL and

the stirring speed using an mechanical agitator is 300 rpm.

Experimental tests

Setpoint T (°C) 30 40 50 60

Time needed by OF to reach setpoint T (s) 20 26 34 45

T (OF) (°C) 30 40 50 60

T (IR) (°C) 23 33 39 33



Ac = (Veq�MC18�CKOH)/mass of oil, where Veq is the volume at the

equivalence point, MC18 the molar mass of fatty acids and CKOH
the concentration of the KOH-ethanol solution. The percent con-

version is given by the relationship: X = (Acinitial ÿ Acfinal)/Acinitial
where Acinitial = 39%.

2.4. Operating conditions requirements

2.4.1. Reproducibility

In order to ensure the reproducibility of results, the microwave-

assisted transesterification reaction has been performed five times

for a duration of 8 min. The standard deviation, the interval of con-

fidence at 95% and the average values of the compounds present

following the reaction are given in Table 2. The quantity of esters

is 91.3% (±1%). The uncertainties of the other compounds are

relatively larger in comparison to the small measured quantities.

The control of the temperature and the reproducibility are there-

fore regarded as satisfactory considering the small changes in ester

production for a fixed duration of reaction time.

2.4.2. Effect of hydrodynamics

As described above, the vessels used with conventional heating

and with microwave heating have different sizes (1 L and 100 mL,

respectively) and different agitators. To ensure that any potential

enhancement of the reactions is not caused by differences in the

mixing quality and hydrodynamics of the liquid–liquid reactive

medium the reactions were also performed in the 100 mL vessel

with conventional heating, using a thermal bath with a tempera-

ture of 60 °C. After 5 min, the concentration of esters in the 1 L con-

ventionally heated reactor is 2.25 mol/L (2.23–2.28 mol/L) whereas

for the 100 mL vessel heated with the thermal bath, the concentra-

tion of esters is 2.24 mol/L (2.26–2.21 mol/L). Theses concentra-

tions obtained in both vessels are very close, thereby showing

that the vessel size and the different agitators have no effect on

the reaction performance. Consequently, it is supposed the

difference of shape or size of the two different reactors has a small

impact on reaction rates, and thereby makes it possible to directly

compare the reaction performance in the reactor.

2.4.3. Importance of temperature monitoring

In order to quantify the difference in temperature measure-

ments using different types of probes two experiments have been

conducted. The first compares the temperature measured within

the reaction medium during an esterification reaction using and

optic fiber probe (OF) and the temperature measured by an infra-

red sensor (IR) at the bottom wall of the vessel. Table 1 shows that

the temperatures measured by OF are equal to the set point

temperature and are approximately 10–20 °C greater than those

measured by IR. The second experiment aims at assessing the

response time of the OF and IR probes when heating water in

the microwave reactor; the results are given in Table 2. In the first

step of this experiment, the power is fixed at 100 W for 90 s and

the water temperature from 18 °C to 45 °C according to OF mea-

surement and to 41 °C according to IR measurement; the difference

in measurements is 4 °C. When the water is heated again for 30 s at

a power of 300 W, the temperature increases from 37 °C to 64 °C

according to OF measurement but still reads as 37 °C with the IR

sensor. At least half a minute is necessary for the IR sensor to

detect the increase and temperature and the IR sensor finally

measures 57 °C. After 30 more seconds of microwave irradiation,

the temperature increases from 61 °C to 82 °C according to OF

measurement but still reads as 60 °C with the IR sensor. The

response time of the IR sensor is therefore somewhere between

30 and 60 s. Indeed, this time is incompatible with the very fast

heating rates provided by microwaves (see Table 1). Finally,

temperature measurements in the reactor using the optical fiber

and the IR sensor are compared to the value given by a mercury

thermometer inserted in the reactor without microwave irradia-

tion. The results show that the IR always measures lower

temperatures than OF and mercury thermometers. This confirms

that the OF provides correct temperature measurements.

The reason for this difference is due to nature of the measure-

ment. Indeed, the IR sensor measures the external surface temper-

ature of the reaction vessel that is made of borosilicate glass, which

has a low thermal conductivity (1.2 Wmÿ1 Kÿ1). This thermal iner-

tia has been already been described in the literature in a study on

the influence of reactor material on the synthesis of ionic liquids

using microwaves (Obermayer and Kappe, 2010). Other authors

show that the temperatures measured with OF probes are higher

than those measured with the IR sensor (Herrero et al., 2008).

The difference between the two types of measurements is also

recognized by the microwave reactor manufacturer CEM who rec-

ommends the use of OF probes.

In some recent works focused on transesterification and esteri-

fication reactions under microwave irradiation, the temperature is

controlled with an infrared sensor (Azcan and Danisman, 2008;

Leadbeater and Stencel, 2006; Zu et al., 2009) or at the outlet of

the reactor with a mercury thermometer (Lertsathapornsuk et al.,

2008); only one study has used an OF probe (Barnard et al.,

2007). The rest of the cited studies do not however specify how

the temperature was measured. As a result, it is highly probable

that many of the temperatures indicated in these literature studies

were lower than the real temperature in the reaction medium. A

consequence of inaccurate temperature measurement is the non-

detection of superheating of the reaction media, which is purely

thermal phenomena, not a non-thermal microwave effect. In order

to ensure the accuracy of temperature measurement and the

absence of superheating in the current experiments, temperature

is monitored with an OF probe.

3. Results and discussion

3.1. Transesterification: conventional versus microwave reactor

In a previous study, it was found that the kinetics of sunflower

transesterification at low temperatures is governed by three re-

gimes: a mass-transfer limited regime, an irreversible pseudo-

homogenous regime and a reversible pseudo-homogenous regime

(Stamenkovic et al., 2008). In the current study, the regime is

assumed to be a reversible pseudo-homogenous regime since the

temperatures are higher and the agitation is strong, and thereby

takes into account the reaction in both directions.

Table 2

Repeatability study for transesterification reaction performed at T = 60 °C for 8 min: statistics of the mass fraction of methyl esters (EM), fatty acids (FA), monoglycerides (MG),

diglycerides (DG) and triglycerides (TG).

Standard deviation (%) Interval of confidence (%) Average (%)

%EM 91.8 91.8 90.1 90.9 92.1 0.84 1.0 91.3

%FA 2.1 2.4 3.4 2.3 2.6 0.50 0.6 2.6

%MG 2.4 2.4 2.4 2.7 2.3 0.17 0.2 2.4

%DG 2.1 1.9 1.9 2.1 1.5 0.25 0.3 1.9

%TG 1.6 1.6 2.3 2.0 1.5 0.31 0.4 1.8



The global equation is:

TGþ 3A ¢
k1

k2

3Eþ GL ð3:1Þ

During the reaction, the reaction rate is written as:

r ¼ ÿ d½TG�
dt

¼ ½TG�0ð1ÿ XÞ ÿ k2½TG�03X ð3:2Þ

dX

dt
¼ k1ð1ÿ XÞ ÿ k2ð3XÞ ð3:3Þ

dX

dt
þ ðk1 þ 3k2ÞX ÿ k1 ¼ 0 ð3:4Þ

The solution of this differential equation is:

X ¼ Keÿðk1þ3k2Þt þ k1
k1 þ 3k2

ð3:5Þ

At the initial time t = 0, X is equal to 0, therefore:

K ¼ ÿ k1
k1 þ 3k2

� �

ð3:6Þ

The expression of X is then:

X ¼ k1
k1 þ 3k2

ð1ÿ eÿðk1þ3k2ÞtÞ ð3:7Þ

Gas chromatography gives access to the molar fraction x of methyl

esters in the media. The quantity of methyl esters in moles E is

therefore assumed to be:

E ¼ 3½TG�0x ð3:8Þ

The experimental data is fitted with the equation:

E ¼ að1ÿ ebtÞ ð3:9Þ

The coefficients are determined by identification:

ÿk1 ¼ ab
3½TG�0

� �

ÿk2 ¼ b
3
ÿ ab

9½TG�0

ð3:10Þ

The experimental data and the corresponding models are presented

in Fig. 2. Model and experimental data show good agreement. Mass

fractions of esters increase with higher temperatures.

The kinetic constants, the pre-exponential factor and the activa-

tion energy have been determined from the data and are presented

in Table 3. Theminimumandmaximumvalues given for coefficients

b and c have been estimated with the Curve Fitting Tool in Matlab

(R2011b). This tool uses a nonlinear least-squares method (lsqcurv-

efit function) which consists in minimizing the square of the differ-

ence between E ¼ að1ÿ ebtÞ and E obtained in experiments. Interval

of confidence C is then calculated by confint function, given by:

C ¼ b� t
ffiffiffi

S
p

ð3:11Þ

where b contains the coefficients of the fit, t is the critical t value of

the Student t-distribution with a confidence level of 95% at a degree

of freedom equals to n ÿ p (where n is the number of experiments

and p is the number of coefficients). S is a vector of diagonal

elements of covariance matrix equal to (XTX)ÿ1s2, where X is the

Jacobian of the fitted values and s2 the mean squared error. The

minimum and maximum values of kinetic constants ha then been

deduced from these values respecting error propagation rules:

sðk1Þ2 ¼ 1

3½TG�0

� �2

sðabÞ2 ð3:12Þ

sðabÞ2 ¼ ðabÞ2 sðaÞ
a

� �2

þ sðbÞ
b

� �2

þ 2covða; bÞ
" #

ð3:13Þ

sðk2Þ2 ¼ 2 ÿ b

9½TG�0
1

3
ÿ a

9½TG�0

� �� �2

covða; bÞ

þ ÿ b

9½TG�0

� �2

sðaÞ2 þ 1

3
ÿ a

9½TG�0

� �2

sðbÞ2 ð3:14Þ

Table 3

Difference of temperature measured by IR or OF for 80 g of water in the 100 mL vessel

heated at fixed power for 90 and 30 s. Magnetic agitation speed is 600 rpm.

Temperatures are measured simultaneously by IR, OF and by a mercury thermometer

(THg).

P = 100 W, t = 90 s, T0 (°C) = 18

TIR (°C) TOF (°C) DT (°C)

41 45 4

P = 300 W, t = 30 s, T0 (°C) = 37

TIR (°C) TOF (°C) DT (°C)

37 64 10

After 30 s without irradiation

TIR (°C) TOF (°C) DT (°C)

57 61 4

P = 300 W, t = 30 s, T0 (°C) = 58

TIR (°C) TOF (°C) DT (°C)

60 82 22

After cooling at the open air

TIR (°C) TOF (°C) THg (°C)

67 79 77

60 66 64

58 63 62

56 60 60

22 18 18
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Fig. 2. Quantity of esters produced in the transesterification reaction as a function

of time at different temperatures in the (a) conventionally heated and (b)

microwave reactor.



The covariance cov(a,b) is the value of non-diagonal elements of the

covariance matrix. The interval of confidence, I, of the kinetic con-

stants is then given by the relation:

I ¼ k� t sðkÞ ð3:15Þ

The method for the determination of interval of confidence of

regression coefficients has been used for the calculation of activa-

tion energy with the relation ln k = A ÿ Ea/RT), where A and Ea/R

the coefficients of the fit between ln k and 1/T values, keeping the

same method as for determination of intervals of confidence of

the kinetic constants.

Models and experimental data are compared in Fig. 2. Corre-

sponding parameters are given in Table 4. The differences in the

kinetics obtained in the microwave reactor and the conventionally

heated reactor are shown in Fig. 3. From these results, the follow-

ing observations are made:

- Considering the intervals of confidence, the activation energies

are close in both reactor types, with mean values of Ea1 equal to

37.1 kJ/mol in microwave reactor compared with 31.6 kJ/mol in

the conventionally heated reactor, and 17.9 kJ/mol in micro-

wave reactor compared with 9.7 kJ/mol for Ea2. The confidence

level of 95% of Ea2 gives negative values. To respect physical

considerations by obtaining only positive values, t value has

been reduced, corresponding to a confidence level between

80% and 90%.

- The pre-exponential factors are in the same range for both sys-

tems with values in the range 102–108 L/mol/min for A1 and in

the range 10ÿ4–102 L/mol/min for A2.

- The average values of the kinetic constants are slightly higher in

the microwave reactor, however the intervals of confidence of

these constants shown in Fig. 3 suggest that there is little differ-

ence between the two reactor types.

These results can be compared with those found in the litera-

ture in conventionally heated reactors in the same temperatures

conditions as present with a molar ratio of methanol to oil of 6

and a mass fraction of KOH of 1%. Darnoko and Cheryan (2000) cal-

culated an activation energy of 61.4 kJ/mol with palm oil and a

constant speed provided by a magnetic stirrer and Stamenkovic

et al. (2008) found a value of 53.5 kJ/mol with sunflower oil at a

constant speed of 200 rpm.

3.2. Esterification: conventional versus microwave reactor

The model used is a pseudo-homogeneous second-order model.

dE

dt
¼ k � FFA2 ð3:16Þ

dE

dt
¼ FFA0 �

dX

dt
¼ k � ðFFA0 � ð1ÿ XÞ2Þ ð3:17Þ

dX

ð1ÿ XÞ2
¼ k � FFA0 � dt ð3:18Þ

The integration between 0 and X and 0 and t gives:

1

1ÿ X
¼ k � FFA0 � t þ 1 ð3:19Þ

The experimental data and the corresponding models are presented

the Fig. 4. Model and experimental data show good agreements.

Conversion increases with higher temperatures.

The kinetic constants, the pre-exponential factor and the activa-

tion energy have been determined and presented in Table 5. The

intervals of confidence have been determined with a method

Table 4

Comparisons of model coefficients, kinetic constants, activation energies and pre-exponential factors obtained at different temperatures in the microwave and conventionally

heated reactor for the transesterification reaction. These values are given in bold and are associated with an interval of confidence that is given in italics.

Microwave heating

T (°C) 25 40 50 60

b (L/mol/min) ÿ0.422 ÿ0.979 ÿ1.183 ÿ2.038

Min value/max value ÿ0.507/ÿ0.337 ÿ1.235/ÿ0.724 ÿ1.320/ÿ1.046 ÿ2.534/ÿ1.542

a (mol/L) 2.186 2.278 2.307 2.328

Min value/max value 2.136/2.235 2.224/2.333 2.291/2.324 2.307/2.350

R2 0.9983 0.9977 0.9998 0.9992

k1 (L/mol/min) 0.376 0.909 1.112 1.933

Min value/max value 0.291/0.460 0.650/1.168 0.975/1.249 1.444/2.421

k2 (L/mol/min) 0.015 0.024 0.024 0.035

Min value/max value 0.011/0.020 0.014/0.033 0.020/0.028 0.025/0.046

Conventional heating

T (°C) 25 40 50 60

b (L/mol/min) ÿ0.3415 ÿ0.646 ÿ1.017 ÿ1.149

Min value/max value ÿ0.416/ÿ0.267 ÿ0.713/ÿ0.579 ÿ1.134/ÿ0.900 ÿ1.312/ÿ0.987

a (mol/L) 2.177 2.246 2.338 2.322

Min value/max value 2.107/2.247 2.213/2.278 2.310/2.365 2.295/2.349

R2 0.9948 0.9982 0.999 0.9987

k1 (L/mol/min) 0.302 0.590 0.969 1.087

Min value/max value 0.237/0.368 0.529/0.652 0.852/1.085 0.928/1.245

k2 (L/mol/min) 0.013 0.018 0.016 0.021

Min value/max value 0.009/0.017 0.015/0.022 0.012/0.020 0.016/0.026

Microwave heating Conventional heating

Ea1 (kJ/mol) 37.1 R2 31.6 R2

Min value/max value 20.1/54.2 0.978 14.6/48.7 0.970

A1 (L/mol/min) 1.3 � 106 1.1 � 105

Min value/max value 1.9 � 103/8.2 � 108 1.7 � 102/7.2 � 107

Ea2 (kJ/mol) 17.9 0.886 9.7 0.748

Min value/max value 2.2/33.5 0/19.4

A2 (L/mol/min) 2.1 � 101 6.7 � 10ÿ1

Min value/max value 5.5 � 10ÿ2/7.9 � 103 9.8 � 10ÿ4/4.6 � 102



analogous to that used in the previous part, with the following

regression function:

1

1ÿ X
¼ a � t þ 1 witha ¼ k � FFA0: ð3:20Þ

The differences in the kinetics between the microwave reactor and

the conventionally heated reactor are shown in the Fig. 5.

The remarks pertaining to the results presented in Table 5 are

very similar to those made for the transesterification reaction.

- The activation energies are approximately the same considering

the intervals of confidence with an average value of 45.4 kJ/mol

in the microwave reactor compared with 56.1 kJ/mol in the

conventionally heated reactor.

Fig. 3. Comparison of ln k as a function of the inverse of temperature in conventionally heated and microwave reactors for the transesterification reaction with the limits of

intervals of confidence denoted by (- -) for the microwave reactor and (. . .) for the conventionally heated reactor. Corresponding zones are represented with a blue surface for

results obtained in microwave, and in grey for results obtained in batch reactor. The intersection of the zones is darker. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Conversion as a function of time at different temperatures in the conventionally heated (a) and microwave reactor (b).



- Considering the intervals of confidence, the pre-exponential

factors are also approximately the same for both reactors, with

a mean value of 7.0 � 107 L/mol/min in the microwave reactor

compared with 4.2 � 109 L/mol/min in the conventionally

heated reactor.

Fig. 5 shows that considering the intervals of confidence, the ki-

netic constants are more or less the same under microwave irradi-

ation or in the conventionally heated reactor.

4. Conclusions

In similar operating conditions, with accurate temperaturemon-

itoring, kinetics of transesterification and esterification reactions

have been compared with conventional or microwave-heating.

Similar results support the belief that non-thermal microwave

effects do not exist as claimed in previous reports. It also suggests

the enhancement of transesterification and esterification reactions

observed in previous studiesmay be an artifact of poor temperature

measurements, underestimated using infrared sensors, and

therefore results in higher reaction conversions since the real

temperature is higher and possibly superior to boiling points due

to the superheating of reactive media. Nevertheless, microwave

thermal effects reduce heating and therefore process times .
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Table 5

Comparisons of model coefficients, kinetic constants, activation energies and pre-exponential factors obtained at different temperatures in the microwave and conventionally

heated reactor for the esterification reaction. These values are given in bold and are associated with an interval of confidence that is given in italics.

Microwave heating

T (°C) 30 40 50 60

a (L/mol/min) 0.339 0.691 1.413 2.236

Min value/max value 0.305/0.374 0.571/0.812 1.216/1.610 1.603/2.868

R2 0.985 0.960 0.978 0.914

k1 (L/mol/min) 0.830 1.691 3.457 5.471

Min value/max value 0.739/0.921 1.374/2.009 3.011/3.903 4.038/6.904

Conventional heating

T (°C) 30 37.8 47 55.4

a (L/mol/min) 0.373 0.654 1.212 1.872

Min value/max value 0.332/0.414 0.5966/0.711 1.076/1.348 2.086/2.299

R2 0.972 0.990 0.992 0.975

k1 (L/mol/min) 0.913 1.600 2.966 5.104

Min value/max value 0.813/1.013 1.459/1.741 2.632/3.299 4.582/5.626

Microwave heating Conventional heating

Ea1 (kJ/mol) 45.4 R2 56.1 R2

Min value/max value 31.8/58.9 0.991 55.7/56.4 1

A1 (L/mol/min) 7.0 � 107 4.2 � 109

Min value/max value 4.1 � 105/1.2 � 1010 3.7 � 109/4.8 � 109
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Fig. 5. Comparison of ln(k) as a function of the inverse of temperature in the conventionally heated and microwave reactors for the esterification reaction with the intervals of

confidence denoted by (- -) for the microwave reactor and (. . .) for the conventionally heated reactor. Results relative to microwave are represented in blue. Corresponding

zones are represented with a blue surface for results obtained in microwave, and in grey for results obtained in batch reactor. The intersection of the zones is darker. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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