

Optimal dual-PZT sizing and network design for baseline-free SHM of complex anisotropic composite structures

Emmanuel Lize, Marc Rébillat, Nazih Mechbal, Christian Bolzmacher

► To cite this version:

Emmanuel Lize, Marc Rébillat, Nazih Mechbal, Christian Bolzmacher. Optimal dual-PZT sizing and network design for baseline-free SHM of complex anisotropic composite structures. Smart Materials and Structures, 2018, 10.1088/1361-665X/aad534. hal-01891029v1

HAL Id: hal-01891029 https://hal.science/hal-01891029v1

Submitted on 9 Oct 2018 (v1), last revised 5 Jul 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Optimal dual-PZT sizing and network design for baseline-free					
2	SHM of complex anisotropic composite structures					
3	Emmanuel LIZÉ ¹ , Marc RÉBILLAT ² , Nazih MECHBAL ² and Christian BOLZMACHER ¹					
4						
5	¹ CEA, LIST, Sensorial and Ambient Interfaces Laboratory, 91191 - Gif-sur-Yvette CEDEX, France.					
6	² Processes and Engineering in Mechanics and Materials Laboratory (CNRS, CNAM, ENSAM), 151,					
7	Boulevard de l'Hôpital, Paris, F-75013, France.					
8						
9	E-mail: emmanuel.lize@cea.fr					
10						
11	Keywords: Structural Health Monitoring, Lamb Waves, dual PZT, anisotropic composite structure,					
12	mode decomposition, baseline free methods.					
13	Abstract					
14	Structural Health Monitoring (SHM) processes for aeronautic composite structures are generally					
15	based on the comparison between healthy and unknown databases. The need for prior baseline signals					
1.0						

1 S 16 is one of the barriers to an industrial deployment and can be avoided with "baseline-free" SHM (BF-17 SHM) methods based on the attenuations and reflections of symmetric and antisymmetric Lamb waves 18 modes attributable to a damage. A promising mode decomposition method is based on the use of dual 19 PZTs (concentric disc and ring electrodes lying on a single PZT). However, performances of such 20 methods highly depend on the Lamb wave modes properties (propagation speed and attenuation that 21 vary with material orientation and inter-PZT distance), the number and the sensitivity of the dual PZT 22 to each mode (which depends on the frequency and element size). Considering these constraints, an 23 original three-step process able to design a full dual-PZT network and the optimal range of excitation frequencies to consider on a highly anisotropic and arbitrarily complex aeronautic structure is presented. 24 25 First, the dispersion curves of Lamb waves in the investigated material together with the minimal size

of the damage to detect are used to estimate the size of the dual PZT as well as convenient excitation frequencies. A Local Finite Element Model representative of the full-scale structure is then used to estimate optimal distance and orientation between neighbor PZTs elements. Finally, a network optimization solver applies these parameters to place dual-PZTs on a fan cowl of an aircraft nacelle and provides a candidate network covering the whole structure.

31 1. Introduction

32 Monitoring in real-time and autonomously the health state of structures is referred to as Structural 33 Health Monitoring (SHM) [1]. Damage detection using Lamb waves is one of the most common method 34 for the SHM of aeronautic composite structures. Among all the methods employed to trigger and catch Lamb waves, the use of piezoelectric transducer (PZT) is one of the cheapest and easiest-to-settle. The 35 36 common approach is based on the comparison of signals recorded on a "pristine" structure - the baseline 37 - against those obtained on a possibly damaged structure. The resulting signals that will be used to 38 elaborate damage indexes strongly depend on the structure's mechanical and geometrical properties as 39 well as on environmental conditions. Some solutions have been proposed to compensate for the effect 40 of temperature [2-5] or to extend baseline data to a wider range of environmental conditions [6, 7]. This drawback of existing methods has also fed the interest for "baseline-free" methods. "Baseline-free" is 41 42 here an abusive word (see Axiom II in [1]) since data, models, or physical assumptions are always 43 needed to decide whether a structure is damaged or not. This expression thus refers here to methods 44 where prior reference signals recorded from the pristine condition of the monitored structure is not 45 necessary for damage detection.

Symmetric and antisymmetric Lamb wave modes are very useful for SHM as they convey complementary information when interacting with damages [8], [9, Ch. 19.4]. Lamb wave modes are related to Lamb solutions for wave propagations in isotropic plates but are also commonly (and abusively) used to designate plate-like waves that propagate in anisotropic materials. Early studies on damage detection in composite structures stated that S_0 mode was more appropriate than A_0 mode for delamination detection since it exhibits higher sensitivity in the structural thickness [8, Para. 3.3]. In 52 most SHM application on composite structures, S_0 mode is actually preferred since it has lower 53 attenuation, allowing for larger distances between neighbor PZTs in the designed network. However, 54 A_0 mode can be more appropriate since it allows an interaction with a delamination at smaller excitation frequencies than S_0 mode and has been favored in most recent works [10–12]. Actually, both modes can 55 56 be used as long as the excitation frequency chosen (and the resulting wavelength of each mode) allow 57 an interaction with the damage [9, Para. 19.5.2.2]. Common methods used to study the behavior of a given mode (A_0 or S_0) are based on response signal obtained with collocated transducers [9, Ch. 17], or 58 59 the use of "sweet spot frequencies" [13, Ch. 8] where only one mode is generated. The former method 60 requires having access to both sides of the instrumented structure and a perfect collocation of the 61 transducers, and the latter restrains the application to specific excitation frequencies that may not 62 correspond to the damage size to detect. Those limitations are overcome by dual PZTs. Dual PZTs are 63 made of a concentric ring and disc as shown in figure 1. Both parts can be used as actuators and sensors 64 bringing more signal combinations than conventional PZTs and allow for the isolation of the first 65 antisymmetric A_0 or symmetric S_0 mode. With dual PZTs, a damage can then be detected in a "baselinefree" manner by using the damage-introduced mode conversion and attenuation (which is not the same 66 67 for each mode) of the propagating waves [8]. The theoretical aspect justifying the use of those PZTs for 68 "baseline-free" SHM (BF-SHM) is well developed in [18] and experiments are reported in [19] on 69 aluminum and in [20] on composite structures. However, the interaction of each mode with the damage is conditioned by the wavelength of the waves generated by the dual PZT and the damage dimension. 70 71 As a consequence, the transducer's dimensions as well as excitation frequencies must be chosen with 72 care. The first objective of the present work is to propose a method for dual-PZT sizing and excitation 73 frequency selection according to the targeted application, *i.e.* BF-SHM. Furthermore, previous works 74 with dual PZTs have been carried out on quasi-isotropic structures but, to our knowledge, no studies 75 have been reported on anisotropic structures. In such materials, the amplitude as well as the propagation 76 speed of A_0 and S_0 modes on a path between two PZTs depends on the angle between the path direction 77 and the orientation of the carbon fibers composing the structure [9]. Since the mode decomposition method depends on the amplitude ratio between both modes, the PZT positions (in terms of distance and 78 79 orientation) need to be chosen carefully to guarantee a sensibility of both modes in any configuration.

The second objective of the present work is then to propose a method to determine the optimal distance and orientation between neighbor dual-PZTs. Another underlying objective is to optimize the number of active elements which is a key point for industrial deployment specially in aeronautical applications

83

Figure 1 : Simplified view of a dual PZT composed of a concentric ring and a disk.

84 Some of the BF-SHM methods, where mode decomposition using dual PZT is of interest, are here 85 quickly reviewed. The "instantaneous baseline" method is based on a transducer network with paths 86 having the same dimensions and orientations. Instead of comparing signals obtained at unknown 87 conditions with a pristine baseline, signals are compared instantaneously between paths even under 88 varying environmental conditions [15, 21-24]. Drawbacks concern examined paths that must have 89 identical PZT positioning and bonding and avoidance of elastic waves reflections from boundaries. 90 Another technique called the "time reversal" process assumes that for a pristine structure by sending 91 back the reverse signal received by a given PZT, the input signal used in first place should be recovered. 92 A damage potentially breaks this relation, allowing for its detection. This method has been validated on 93 composite structures [11, 25–28] and its limitations have been identified [29]: a high dependency on the excitation frequency, mode dispersion, and reflections from boundaries. In the "reciprocity principle" 94 95 method, two signals obtained from both possible directions of a given path are directly compared. This 96 method has been used successfully in aluminum [15, 19, 30] and quasi-isotropic composite [12] 97 structures. Its drawbacks are that the implemented PZTs must be identically bonded to the structure, and 98 that damages localized far from the investigated path are difficult to detect.

Figure 2: Different steps for the optimal design of a dual-PZT network on an anisotropic composite structure.

99 BF-SHM studies focus on the description of damage detection methods, but do not address the problem 100 of network design when dealing with large structures. However, the PZT network (size, number, 101 distance, and orientation of transducers as well as excitation frequency) to be used highly depends on 102 the considered damage detection method, the environmental conditions, and the geometry of the 103 structure. This step must thus be considered with great care. There have been studies on Optimal Sensor 104 Placement (OSP) for reference-based Lamb-wave based SHM applications [31-36] with recent focus 105 on composite structures [36–38]. These studies show that relevant criteria for PZT positioning are the 106 distance between two neighbor PZTs and the presence of complex geometries [37] (large holes, 107 stiffeners...) on paths between PZT. In BF-SHM applications, additional and very restrictive constraints 108 on PZT networks exist. Based on the observations described above, the current work proposes an

original three-step process to design an optimal dual-PZT network for a structure to be monitored by
means of BF-SHM methods. As depicted in figure 2, the different steps of this process are:

- The mechanical properties of the structure are used to compute the dispersion curves of Lamb
 waves in the investigated material. Dispersion curves and the minimal size of the damage to be
 detected allow sizing dual-PZTs and determining excitation frequencies of interest.
- 114 2. A local FEM model (a plate corresponding to a small part of the monitored structure) equipped 115 with two dual-PZTs is used. Lamb wave attenuation with distance r and orientation θ and for 116 different excitation frequencies f_0 is extracted. Two original indexes quantifying the ability of 117 the set (f_0, r, θ) for mode decomposition are then computed. This provides optimal parameters 118 $(\hat{f}_0, \hat{r}, \hat{\theta})$ for neighbor dual-PZTs of the network.
- 119 3. The network optimization solver applies the optimal parameters obtained from the local FEM
 120 model to the real structure to propose a candidate optimal dual-PZT configuration.
- The rest of the paper is organized as follows, in section II, the material and geometry of the targeted aeronautical structure under study are presented. Then in section III, each step of the process is described and illustrated with results obtained on a highly anisotropic composite material. Finally, in sections IV and V, PZT networks obtained for different geometries and different composite materials are displayed, analyzed and discussed.

126 2. Material and structure under study

127 Composite materials are of great interest in an aeronautical context since they provide lighter 128 structures having the same mechanical properties than previously used materials. The composite 129 material under study is a highly anisotropic composite fiber reinforced polymer (CFRP) with 16 plies 130 oriented at $[0^{\circ}/90^{\circ}]$. Mechanical properties of one ply are listed in table 1.

131 Table 1: Properties of a layer of the CFRP composite laminate.

A part of a nacelle from an A380 plane (the fan cowl as shown in figure 3) is considered to illustrate the three-step process proposed to design an optimal dual-PZT network for BF-SHM methods. This geometrically complex structure is 2.20 m in height for a semi circumference of 5.80 m and is made of composite monolithic carbon epoxy material. Piezoelectric elements manufactured by NOLIAC (see table 2) are used to trigger and collect Lamb waves in that structure.

137 Table 2: Electro-mechanical properties of the PZT material NCE51 from Noliac.

Figure 3: Aircraft nacelle (left), original fan cowl geometry and simplified 3D geometry of the subpart studied (right).

139 3. Optimal dual PZT sizing and placement

140 1.1 PZT dimension and excitation frequency

In this first step of the proposed method, the dimensions of the PZT to be used as actuators and sensors and the excitation frequencies are determined based on the material properties and on the minimal size of the damage to be detected. This approach is developed to meet three main goals (see figure 4): (i) Only the first symmetric and antisymmetric modes S_0 and A_0 must be generated,

146 (ii) The dual PZT used as an actuator and the frequencies of the signal used must guarantee the 147 excitation of S_0 and/or A_0 modes with a wavelength small enough to interact with the 148 targeted minimal damage,

- 149 (iii) The dual PZT used as sensor must be sensitive to both S_0 and A_0 modes on the selected
- 150 range of excitation frequencies.

Figure 4: Schematic illustration of the three steps followed to select the dimensions of the dual PZT from dispersion curves. This corresponds to Step 1 in figure 2.

Dispersion curves are computed numerically by finding all the possible frequencies that satisfy Lamb 151 152 waves dispersion relations with iterations on the wave number k [39]. Once those values are computed, the dispersion curves can be displayed as the variation of wavelength $\lambda = 2\pi/k$ of each symmetric and 153 154 antisymmetric modes with frequency. Dispersion curves can also be computed for some rheological materials (please refer to [40] for an open software). The dispersion curves displayed in figure 5 are 155 156 computed considering plane waves propagating in a homogenized material with the properties given in 157 table 3 corresponding to the 0° direction of a [0°, 90°]₁₆ CFRP plate. The 0° orientation is chosen since 158 it is the direction where wavelengths are larger, hence a dual PZT dimensioned for those wavelength 159 will respect criteria described in figure 4 in all orientations.

161 Table 3: Mechanical properties of the [0°, 90°]₁₆ homogenized CFRP plate

BF-SHM methods targeted here consist in tracking S_0 and A_0 mode conversion and attenuation. It is thus necessary to restrain the domain of applications where only those first two modes propagate. Dispersion curves for higher frequencies (not displayed here) show that the excitation frequency should not exceed $f_{max} = 906$ kHz (corresponding in our case to the minimal excitation frequency for which mode A_1 is generated) to meet this condition. A second point to consider is that theoretically half the wavelength λ of the wave used to detect a damage must be shorter than or equal to the size of the damage ϕ_d in order to allow an interaction with it [41]:

$$\frac{\lambda}{2} \le \phi_d \tag{1}$$

This leads us to bound the frequency range under which S_0 and A_0 can be exploited: the largest wavelength validating equation (1) is $\lambda_d = 2 \times \phi_d$. According to this criterion, the excitation frequency used should be greater than a frequency f_{A_0} for A_0 mode and f_{S_0} for S_0 mode, corresponding to excitation frequencies for which wavelength λ_{A_0} and λ_{S_0} are lower than λ_d . (see figure 5). As advised by the aeronautical manufacturer who provided the samples, the minimal damage size that must be detected (BVID for Barely Visible Impact Damage) is 20 mm, hence in our case, $\lambda_d = 40$ mm, $f_{A_0} = 12$ kHz and $f_{S_0} = 134$ kHz (see figure 5).

Furthermore, it is mandatory to ensure that at these frequencies the dual-PZT element can actuate and receive the desired modes. This then leads us to select optimal dual PZT dimensions. Two criteria are important in the choice of the PZT according to [42]:

• as an actuator, the optimal PZT size ϕ_{PZT} is obtained for

$$\phi_{PZT} = \lambda \left(n + \frac{1}{2} \right), \ n = 0, 1, 2, \dots$$
(2)

181

182

• as a sensor, the sensitivity of the PZT increases as its size is reduced and the size of the PZT must be inferior to half the wavelength to be detected, *i.e.*

$$\phi_{PZT} \le \frac{\lambda}{2} \tag{3}$$

183 When classic circular PZT are used as actuators and sensors, the optimal PZT size is obtained for ϕ_{PZT} = 184 ϕ_d by considering criteria described by equations (1), (2) and (3). However, this choice limits in practice 185 the application of detection to very few excitation frequencies. An advantage of the dual PZT, in addition 186 to its mode decomposition ability, is that both parts of the PZT can be chosen independently. Nevertheless, as the disk part of the dual PZT is also used as an actuator for the mode decomposition 187 188 process, it should not be too small to allow the generation of Lamb waves. The choice of ring part 189 dimension of the dual PZT, $\phi_{PZT-ring}$ is chosen such that the maximum energy (see equation (2) with 190 $\lambda = \lambda_d$ and n = 0) is communicated to the structure for the targeted minimal damage size. According 191 to [42], the equivalent diameter for a ring PZT $\phi_{PZT-ring}$ can be determined as the outer diameter minus 192 the inner diameter *i.e.*

$$\phi_{PZT-ring} = \phi_{PZT-ring}^{outer} - \phi_{PZT-ring}^{inner} = \phi_d \tag{4}$$

In our case, it gives $\phi_{PZT-ring} = 20$ mm. The choice of the central part dimension of the dual PZT $\phi_{PZT-disk}$ is governed by the range of frequencies on which BF-SHM methods will be investigated. In the case presented in figure 5, it is interesting to have sensors sensitive to both modes for frequencies up to f_{S_0} because it is the smallest frequency for which both modes are activated and interact with the targeted damage size. To guarantee the sensitivity of the A_0 mode at this frequency, the dimension of the central part of the dual PZT should be sensible to wavelength equal to $\lambda_{min} = \lambda_{A_0}(f_{S_0})$ (wavelength of mode A_0 obtained at f_{S_0} , see figure 5). Using equation (3), this dimension of the disk is obtained for:

$$\phi_{PZT-disk} = \lambda_{A_0} (f_{S_0})/2 \tag{5}$$

200 In the current application, $\lambda_{min} = 11$ mm, hence $\phi_{PZT-disk} = 5.5$ mm.

Figure 5: Dispersion curves for material described in table 3.It shows the minimum frequency to use ($f_{A_0} = 12$ kHz for A_0 mode and $f_{S_0}=134$ kHz for S_0 mode) to allow for an interaction between the propagating wave and a damage of size $\phi_d = 20$ mm. It also shows the range of frequencies to use to guarantee a sensitivity of the dual PZT to A_0 mode and S_0 mode for frequencies up to $f_{S_0} = 134$ kHz. The disk part of the dual-PZT is also sensible to S_0 mode up to $f_{S_0}^{max} = 478$ kHz. $\phi_{PZT-disk} = 5.5$ mm and $\phi_{PZT-ring} = \phi_d = 20$ mm.

201 Figure 5 highlights four distinguishable areas:

202	•	$0 < f_0 < f_{A_0}$: the dual PZT triggers A_0 mode but it does not interact with the damage
203	•	$f_{A_0} < f_0 < f_{S_0}$: the dual PZT triggers A_0 and S_0 modes but only A_0 mode interacts with the
204		damage. Both modes can be properly measured by the disk part of the dual PZT, but the ring
205		part is theoretically only sensitive to the S_0 mode.

• $f_{S_0} < f_0 < f_{S_0}^{max}$: the dual PZT triggers A_0 and S_0 modes and both modes interact with the 207 damage, but only S_0 mode can be properly measured by the disk part of the dual PZT, and the 208 ring part is theoretically insensitive to any mode.

•
$$f_0 > f_{S_0}^{max}$$
: the dual PZT triggers A_0 and S_0 modes and both modes interact with the damage,
210 but the PZT is not sensitive to any mode.

According to the PZT manufacturer (NOLIAC), the gap between the two electrodes designed on the upper surface of the PZT should not be less than 1 mm. Following this instruction and equations (4) and (5) the dual PZT dimension must respect:

214
$$\phi_{PZT-disk} \leq \lambda_{A_0}(f_{S_0})/2$$

215
$$\phi_{PZT-ring}^{inner} \ge \phi_{PZT-disk} + 2 \,\mathrm{mm}$$

216
$$\emptyset_{PZT-ring}^{outer} = \emptyset_{PZT-ring}^{inner} + \emptyset_d$$

The smallest dual PZT that satisfies all those recommendations is obtained for $\phi_{PZT-disk} = 5.5$ mm, $\phi_{PZT-ring}^{inner} = 7.5$ mm and $\phi_{PZT-ring}^{outer} = 27.5$ mm. The associated excitation frequency range of interest is from 12 to 134 kHz because it allows mode conversion tracking for both modes while guaranteeing an interaction of the propagating Lamb waves with the damage.

3.2 Optimal distance and orientation between neighbor PZTs of the network

222 Two important information not provided by dispersion curves are the attenuation of waves propagating within the material and the efficiency with which both Lamb wave modes are converted to 223 224 electric signals by the dual-PZT. In anisotropic materials, the attenuation varies a lot with the distance 225 and the orientation of the fibers, and symmetric and antisymmetric modes are not identically affected. 226 This is rarely considered in the design of the PZT network whereas it is of great importance to estimate optimal relative placement of neighbor PZTs, as illustrated in figure 6. The analysis of the 227 electromechanical efficiency of the dual-PZT will be useful to assess the mode decomposition abilities 228 229 of the chosen PZT and to validate the ability of the network to be used in a BF-SHM manner.

Figure 6: Schematic illustration of inputs and outputs to the local FEM (Step 2 of figure 2) as well as limiting parameters for the optimal placement of neighbor PZTs and excitation frequencies.

230 3.2.1 Local Finite Element Model representative of the structure

231 A local FEM model is built using SDTools® [43]. This model is local in the sense that it corresponds only to a FEM model of a rectangular plate made up of the same material as the whole structure instead 232 of a FEM model of the complete structure (see figure 7 and table 2). This local approach aims at 233 diminishing the number of nodes of the FEM model and provide an affordable simulation in terms of 234 235 computation time. It is necessary in a context where parametric studies are conducted with transient 236 simulations performed at various excitation frequencies. Quadratic elements with dimension $2 \text{ mm} \times$ 237 2 mm are used for the meshing of the plate. This mesh size is compatible with the wavelength of A_0 238 and S_0 modes which value does not exceed 11 mm on the investigated frequency range and has been 239 validated by a convergence test. The excitation signal is chosen as a 5 cycles sinusoidal tone burst modulated by a Hanning window at an amplitude of 10 V and a central frequency f_0 varying from 10 to 240 140 kHz (average interval from f_{A_0} to f_{S_0} in figure 5) by steps of 10 kHz. For each step, simulations are 241 conducted alternatively with each possible emission scheme (entire PZT, ring part, disk part), leading 242 243 to a total of 30 simulations. The time step for the transient simulation is $0.36 \ \mu s$ and corresponds to a 244 sampling frequency of 2.8 MHz. The transient simulation is performed with Newmark's method and

the structure dynamic damping is simulated by considering a coefficient of 5.10^{-8} for the stiffness 245 246 matrix and no damping coefficient for the mass matrix (coefficients obtained from a calibration with experimental measurements and used in [44]). The plate used for the simulation is a [0°, 90°]₁₆ CFRP 247 plate with the properties given in table 1 modeled as a 3D orthotropic material and homogenized using 248 249 Mindlin theory for thin laminate plates. The PZT elements are composed of Noliac NCE51 material (see 250 properties in table 2) and simulated as piezoelectric shell finite elements. The inter-distance between 251 PZTs is 400 mm and the circle arc to study attenuation with orientation is placed 150 mm away from 252 the actuator. Previous works, using this software, have been conducted to assess SDTools® proposed 253 PZT elements reliability for SHM applications. Indeed, the electromechanical interaction and the effect 254 of glue and temperature have been experimentally validated [45, 46]. The displacement is saved for each 255 node between the actuator and the sensor to estimate Lamb wave attenuation with distance, and on the 256 circle around the actuator to estimate Lamb wave attenuation with orientation (see figure 7).

Figure 7: Local FEM composite plate with two dual PZTs and the sensing point (black line and circle) used to study antisymmetric and symmetric mode propagation (left) and mesh of the dual PZT (right)

257 3.2.2 Lamb waves attenuation and dual-PZT electromechanical efficiency

The electric signal measured by the dual PZT $V_{a \rightarrow s}$, depending on the PZT part used as actuator *a*,

259 the PZT part used as sensor s, the distance r between actuator and sensor, the orientation compared to

260 the 0° ply θ and the excitation frequency of the input f_0 can be analytically expressed as:

$$V_{a\to s}(r,\theta,f_0,t) = V_{a\to s}^{A_0}(r,\theta,f_0,t) + V_{a\to s}^{S_0}(r,\theta,f_0,t)$$
(6)

$$V_{a\to s}^{[X]_0}(r,\theta,f_0,t) = C^{[X]_0}(r,\theta,f_0,t) \times S_{a\to s}^{[X]_0}(f_0)$$
(7)

where t is the time, $V_{a\to s}^{A_0}$ and $V_{a\to s}^{S_0}$ refer to the electrical signal measured by the PZT for A_0 and S_0 mode 262 263 when part a is used as actuator and part s is used as sensor. [X] is either A or S referring to antisymmetric or symmetric mode. $C^{[X]_0}$ is independent of the actuator or sensor size as shown in [18], and corresponds 264 265 to the mechanical displacement attributable to the $[X]_0$ mode at the sensor position. In the approach 266 proposed here, the antisymmetric mode is assumed to correspond mainly to the out-of-plane deformations and the symmetric mode to correspond mainly to the in-plane deformations. $S_{a\to s}^{[X]_0}$ then 267 corresponds to the electromechanical efficiency of the PZT to mode $[X]_0$ for actuator a and sensor s. 268 Since $S_{a\to s}^{[X]_0}$ only depends on the excitation frequency f_0 , it can be determined from the electrical signal 269 270 obtained on the dual PZT electrodes of the PZT sensor and the mechanical displacements measured at the center of the sensor (the white cross in figure 7). With equations (6) and (7) and $C^{[X]_0}(r, \theta, f_0, t)$ 271 obtained from the FEM simulation, $S_{a\to s}^{A_0}(f_0)$ and $S_{a\to s}^{S_0}(f_0)$ are computed with an iterative process that 272 273 consists in finding the minimum mean square error between the envelope of the signal measured on the PZT electrode $V_{a\to s}(r,\theta,f_0,t)$ and the sum of envelopes of $C^{A_0}(r,\theta,f_0,t) \times S^{A_0}_{a\to s}(f_0)$ and 274 $C^{S_0}(r, \theta, f_0, t) \times S^{S_0}_{a \to s}(f_0)$ (the iteration is performed on values of $S^{A_0}_{a \to s}(f_0)$ and $S^{S_0}_{a \to s}(f_0)$). Figure 10(b) 275 shows an example of envelopes of each mode displacements scaled by their respective 276 277 electromechanical efficiencies and the response signal measured by the disk part of the dual PZT.

Figure 8 shows the variation of electromechanical efficiency of ring and disk parts of the dual PZT for A_0 and S_0 mode depending on the excitation frequency. The disk part appears to be much more efficient than the ring part to measure the A_0 mode on the whole range of frequencies considered, whereas both parts are efficient to measure the S_0 mode. This graph echoes the results observed in figure 5 and the associated observations. It also explains the ability of dual-PZTs to decompose modes in the measured signal since each part of the dual PZTs exhibit different electromechanical efficiency for each mode.

Figure 8: (a) Variation of electromechanical-efficiency of PZT sensor ring and disk for S_0 and A_0 mode against excitation frequency f_0 . (b) Response signal obtained for r = 150 mm, $\theta = 0^\circ$, $f_0 = 80$ kHz with the disk as actuator and the ring or the disk as sensor.

284 Figure 9(a) shows that A_0 and S_0 have different amplitude variation with excitation frequency: A_0 mode 285 is significantly greater for lower frequencies (below 35 kHz) whereas S_0 mode is greater for higher frequencies (after 90 kHz). Figure 9(b) shows that A_0 mode attenuates faster than S_0 mode with distance. 286 287 From figure 10(a) one can see that S_0 is much more impacted by the wave propagation direction than 288 A_0 . The S_0 mode tends to propagate well in the composite fibers directions (maximum at 0° and 90°) 289 but its amplitude can be reduced to 10 % of its maximum value (around 17° and 73°). The A_0 mode 290 amplitude (maximum at 0°) is only reduced to 50% of its maximum value at 45°. Figure 10 emphasizes 291 the fact that, both modes may have the same amplitudes in the 0° direction, but this comparison varies 292 a lot with the direction of propagation.

Figure 9: (a) Maximum amplitude variation of out-of-plane ($\sim A_0$) and in-plane ($\sim S_0$) displacement with frequency 150 mm away from the actuator in the 0° direction. (b) Maximum amplitude variation of out-of-plane ($\sim A_0$) and in-plane ($\sim S_0$) displacement with distance for $f_0 = 80$ kHz in the 0° direction.

Figure 10: (a) Maximum amplitude variation of out-of-plane ($\sim A_0$) and in-plane ($\sim S_0$) displacement with orientation for $f_0 = 80$ kHz and at a distance of 150 mm from the actuator. (b) Response signal measured by the disk part of the dual PZT for $f_0 = 80$ kHz, at r = 150 mm and $\theta = 0^\circ$ or $\theta = 45^\circ$.

3.2.3 Optimal frequencies for mode conversion using dual PZT

In a BF-SHM context where A_0 and S_0 mode conversion and attenuation in presence of damage are investigated [10, 16, 18, 47, 48], distance between neighbors dual-PZTs and orientation of the dual PZT path with respect to fiber orientation as well as frequency of excitation must be correctly chosen such that:

299 (i) The two modes propagate and are measured in comparable proportions,

300 (ii) The first wave packet of the A_0 mode must not superpose too much with the S_0 mode.

301 To evaluate those two parameters, two criteria are proposed:

$$\tilde{V}_{a\to s}^{A_0/S_0}(r,\theta,f_0) = \frac{\max\left[\exp\left(V_{a\to s}^{A_0}(r,\theta,f_0,t)\right)\right]}{\max\left[\exp\left(V_{a\to s}^{S_0}(r,\theta,f_0,t)\right)\right]}$$
(8)

$$\tau_{a\to s}(r,\theta,f_0) = \frac{\int_{t_0}^{t_1} \exp\left(V_{a\to s}^{A_0}(r,\theta,f_0,t)\right) + \int_{t_1}^{t_2} \exp\left(V_{a\to s}^{S_0}(r,\theta,f_0,t)\right)}{\int_{t_0}^{t_3} \exp\left(V_{a\to s}^{A_0}(r,\theta,f_0,t)\right)},$$
(9)

302 where env(.) denotes the envelope of the signal. $[t_0, t_3]$ is the time interval corresponding to the first A_0 wave packet, t_1 the instant when $V_{a \to s}^{A_0}$ gets higher than $V_{a \to s}^{S_0}$, and t_2 the end of the first S_0 wave 303 packet (see figure 12(b)). $\tilde{V}_{a\to s}^{A_0/s_0}$ represents the amplitude ratio of the contribution of the A_0 mode against 304 305 the contribution of the S_0 mode in the measured response signal. $\tau_{a \rightarrow s}$ qualifies the superposition of 306 modes in the measured response signal: it represents the intersection of both modes against A_0 mode 307 measured in the time corresponding to the first A_0 wave packet (see figure 12(b)). These two criteria 308 depend on the distance between actuator and sensor r, the orientation of the path actuator-sensor in 309 comparison with the 0° ply of the structure θ , and the excitation frequency f_0 . The PZT part chosen as 310 actuator has very little influence on the criteria chosen since it affects both modes amplitudes 311 proportionally. And as the disk part of the dual PZT is sensible to both A_0 and S_0 modes (in opposition 312 to the ring part), only results obtained with the disk part as actuator and sensor are displayed.

We introduce two thresholds $\varepsilon_{\tilde{v}}$ and $\varepsilon_{\tilde{\tau}}$ to determine whether a sensor position and excitation frequency can be considered as suitable for mode decomposition. These thresholds will serve as tuning parameters of the proposed method. The amplitude ratio of the A_0 mode against the S_0 mode as described in equation 316 (8) is used to select optimal frequencies where both modes are in comparable proportion in the response measured by the disk part of the PZT. The threshold $\varepsilon_{\tilde{v}}$ is set to 1/3 so that the amplitude of the A_0 317 318 mode should not exceed 3 times the amplitude of the S_0 mode and vice versa. Figure 11(a) shows the 319 maximum amplitude of each mode contribution obtained with equation (7) for the disk part of the dual 320 PZT at 150 mm from the actuator (the electromechanical efficiency of the sensor according to frequency $S_{a \to s}^{[X]_0}$ is considered). The striped area depicts the frequency range for which the amplitude ratio does not 321 respect the threshold $(\tilde{V}_{a\to s}^{A_0/S_0} > 1/\varepsilon_{\tilde{V}})$). Hence, the optimal frequency range to observe mode 322 323 conversion is from 40 to 140 kHz. This graph also shows that the optimal frequencies for A_0 mode 324 studied alone would be for frequencies below 40 kHz because the amplitude of the A_0 mode is 325 significantly higher than the S_0 mode. 30 kHz corresponds to the "sweet spot frequency" of the A_0 mode 326 in mode tuning methods. Those methods consist in an appropriate selection of the excitation frequency 327 of Lamb waves in order to generate only one of the Lamb wave modes [13, Para. 8.8]. The frequency range obtained here is for the 0° orientation and is discussed for other orientations later. Figure 11(b) 328 329 shows the contribution of each mode on the measured response signal. A difference between the 330 maximum amplitude of the response signal $(V_{disk \rightarrow disk})$ on wave packets corresponding to S_0 (first wave 331 packet) and A_0 (second wave packet) and the maximum amplitudes of each mode contribution $(V_{disk \to disk}^{A_0} \text{ and } V_{disk \to disk}^{S_0})$ is noticed because a little mode conversion (from S_0 to A_0) occurs at the 332 edge of the ring part of the PZT and is measured by the disk part. 333

Figure 11: (a) Maximum amplitude of $V_{disk \to disk}^{A_0}$ and $V_{disk \to disk}^{S_0}$ in the response signal measured by the disk part of a dual PZT place for r = 150 mm. The striped area represents the frequency range where the amplitude ratio $\tilde{V}_{a\to s}^{A_0/S_0}$ (right axis) between maximum amplitude of $V_{disk\to disk}^{A_0}$ and $V_{disk\to disk}^{S_0}$ does not respect the threshold $\varepsilon_{\tilde{v}} = 1/3$. (b) Superposition of contributions of each mode and the signal measured by the disk part of the dual PZT for $f_0 = 80$ kHz, at r = 150 mm and $\theta = 0^{\circ}$.

335 3.2.4 Optimal distance and orientation between neighbor dual-PZTs

The minimum distance is obtained by observing the superposition τ described in equation (9). Results displayed in figure 12(a) show that a minimum distance r_{min} of 150 mm must be respected to avoid superposition of the modes in the chosen excitation frequency range, and the superposition threshold $\varepsilon_{\tilde{\tau}}$ is set to 5% based on decomposition algorithm results observations. This allows us to clearly distinct between S_0 and A_0 modes.

Figure 12: (a) Mode superposition against distance and excitation frequency for direct contribution of Lamb waves propagating in the 0° direction of a composite plate measured by the disk part of the dual PZT. (b) Representation of the superposition criteria estimation (equation (9)).

342 Given the orientation of the plies of the composite structure under study, it is relevant to notice that there is a symmetry in the wave propagation such as propagation from 0° to 45° is exactly the opposite of the 343 344 propagation from 90° to 45° (this is observable on the results displayed in figure 10). First, from figure 10 (a), orientation $17^{\circ} [\pi/2]$ and $73^{\circ} [\pi/2]$ should be avoided since S_0 mode hardly propagates in those 345 directions. Since A_0 and S_0 modes have different amplitude variations with frequency (see figure 9(a)), 346 distance (see figure 9(b)), and orientation (see figure 10), the amplitude criteria $\tilde{V}_{a\to s}^{A_0/S_0}$ cannot meet the 347 348 threshold $\varepsilon_{\tilde{V}}$ for every excitation frequency, orientation and distance. Figure 13 shows the amplitude 349 ratio as measured by the disk part of the dual PZT for varying excitation frequencies and orientation. It 350 shows that for 150 mm (minimum distance for the superposition criteria), the threshold is exceeded for 351 excitation frequencies above 100 kHz and orientations 10° away from fiber directions. Except for an 352 excitation frequency of 40 kHz, this observation is not applicable for 300 mm (because A_0 mode 353 attenuates faster than S_0 mode, see figure 9(b)). However, at this distance the threshold is not respected 354 for frequencies higher than 130 kHz. Therefore, the range of frequencies is reduced to 50 to 140 kHz, 355 minimum distance between actuator and sensor r_{min} is evaluated at 230 mm (for shorter distance, A_0 mode is too high compared to S_0 mode at $f_0 = 60$ kHz) and maximum distance r_{max} is evaluated at 270 356 357 mm (for larger distances, S_0 mode is to high compared to A_0 mode for $f_0 = 140$ kHz and $\theta = 0^\circ$).

Figure 13: Amplitude ratio of the A_0 mode against S_0 mode amplitude and excitation frequency for r = 150 mm and r = 300 mm.

Figure 13 shows that the amplitude ratio at high frequencies is the limiting parameter for the maximum distance between two PZT neighbors. On the one hand, having a larger range of frequencies enables to robustify damage detection process (since damage indexes can be applied to several excitation frequencies), and on the other hand, reducing the range of frequencies toward lower accepted values lead to greater maximal distances r_{max} , which means fewer PZT on the targeted network. Hence, a tradeoff between the robustness of the detection and the number of PZT is necessary.

364 3.3 PZT network optimization solver

The previous simulation step allows the determination of PZT placement requirements given by the minimum and maximum distance between PZT (r_{min} and r_{max}), and optimal angles of PZT paths compared with the 0° orientation of the structure (θ_{opt}). Those requirements and the mesh of the structure under study constitute the input parameters of the PZT network optimization as described in the following algorithm:

Algorithm: PZT placement

This approach may appear basic compared to other studies focusing on network optimization but allows for a simple transition from a local model to a larger structure. A constraint on boundary conditions is also considered to avoid border reflection influence on measured signals. Figure 14 shows the solver process for the selection of the first 3 PZT nodes respecting r_{min} , r_{max} and θ_{opt} . The "forbidden"

orientation refers to orientations $17^{\circ}[\pi/2]$ and $73^{\circ}[\pi/2]$, corresponding to orientation not contained in 376 377 θ_{opt} . It is important to notice that the placement requirements are constrained by the capability of two neighbor PZTs to allow mode decomposition on the path they form: if a dual PZT is placed in a 378 379 "forbidden orientation" (see figure 14), the decomposition process may be difficult to apply. However, 380 a damage in this zone will always interact with the propagating waves (at least with the A_0 mode since 381 it is less influenced by plies orientations than the S_0 mode, and is generated on all the given excitation 382 frequency range with wavelength allowing an interaction with the targeted damage size), hence the 383 influence of the damage on both modes will still be measured by the dual PZT path. In an aeronautical 384 context, the minimum number of transducers should be observed for weight purposes. In practice, the 385 algorithm considers this by taking a minimal distance which is close to r_{max} instead of r_{min} .

Figure 14: Illustration of the solver parameters and PZT node selection process. The optimization solver choses nodes that are optimal for the maximum number of PZT nodes available.

386 4. Results

387 4.1 Tested cases

Four different cases (described in table 4) are considered in order to show the applicability of the process to different structures. These cases are considered to show the influence of the anisotropy of the material on the PZT network proposed, and the implementation to 2D and 3D structures. Two different 391 geometries and three materials are used. The first geometry - called "Plate" - is a large plate of 2000 × 392 $500 \times 2 \text{ mm}^3$, and the second one is the geometry of the subpart from the fan cowl (see figure 3). Three 393 different materials are compared (see table 4). The first one is the highly anisotropic CFRP with 16 plies 394 oriented at $[0^{\circ}/90^{\circ}]$, used for structure #1 and #4. The second material is an isotropic material with 395 simplified properties as displayed in table 3 used for structure #2. The third one is a quasi-isotropic 396 CFRP with 16 plies oriented at $[0^{\circ}/90^{\circ}/45^{\circ}/-45^{\circ}]$ and properties of each ply described in table 1 397 (same ply properties as structure #1 and #4).

Figure 15 shows the variations of amplitude of A_0 and S_0 modes with orientation depending on the material properties.

Figure 15: Mode attenuation for the three materials used in the tested cases of A_0 (red) and S_0 (blue) with varying orientation at $f_0 = 100$ kHz and a distance of 150 mm from the disk part of the dual PZT used as actuator.

400 4.2 Results

Table 4 sums up the results obtained for the dual PZT network implementation on the four different
 structures described in the previous paragraph. For each structure, outputs, from each step, are displayed.

		structure #1	structure #2	structure #3	structure #4
(Geometry	Plate	Plate	Plate	Fan Cowl
	Material	[0°/ 90°] ₁₆	isotropic	[0°/ 90°/45° /-45°] ₁₆	[0°/ 90°] ₁₆
TEP 2 OUTPUT STEP 1 OUTPUT	Ø _{PZT-disk} [mm]	5.5	5.5	5.5	5.5
	Ø ^{inner} PZT-ring [mm]	7.5	7.5	7.5	7.5
	Ø _{PZT-ring} [mm]	27.5	27.5	27.5	27.5
	f_0 [kHz]	12…134	12…134	13 … 138	14…134
	r _{min} [mm]	230	150	150	230
	r _{max} [mm]	270	350	360	270
	θ _{forbidden} [[π/2]°]	17,73	-	-	17,73
Š	f_0 [kHz]	$50 \cdots 140$	$50 \cdots 140$	50…140	$50 \cdots 140$
STEP 3 OUTPUT	PZT network				
	Number of PZT	16	12	11	14

405 4.3 Observations

406 For all structures, same dual PZT dimensions are advised as output of step 1 (see table 4). Actually, 407 variations of mechanical properties of the material influence more the usable range of frequencies than 408 the dimensions of the dual PZT. Dual PZT dimensions would be more affected by changing damage 409 sizes (downsized as the damage size is lowered and vice-versa). For the chosen composite materials, 410 there is very little variation of the mechanical properties, hence the range of excitation frequencies 411 obtained with the dispersion curves do not change a lot. The frequency range would be more affected 412 by a change in the thickness of the material: for a given material if the thickness is divided by n, the 413 range of frequencies obtained as output of step 1 would be divided by n.

414 Comparing results obtained for structure #1 and #2 from table 4 shows the influence of the anisotropy 415 of the structure on the PZT network. For the isotropic material, there is no amplitude variations of modes 416 with orientation (see figure 15), and a greater distance between transducers r_{max} can be achieved with 417 respect to the superposition and amplitude ratio criteria. This greater distance and the fact that there is 418 no orientation constrains for structure #2 leads to a smaller PZT network of only 12 dual PZTs, compared to the 16 obtained on the anisotropic case of structure #1. The minimum distance ($r_{min} = 150 \text{ mm}$) of 419 420 structure #2 is imposed by the superposition criteria in opposition to #1 where minimum distance 421 $(r_{min} = 230 \text{ mm})$ is imposed by the amplitude ratio criteria.

Structure #2 and #3 show very little difference since mode attenuation with orientation for those two materials is very similar, and in both cases, S_0 and A_0 modes amplitude is constant with orientation contrary to the anisotropic material (see figure 15). S_0 mode amplitude in the isotropic case is greater than in the quasi-isotropic case leading to a smaller maximum distance between transducers ($r_{max} =$ 350 mm for structure #2 and $r_{max} =$ 360 mm for structure #3).

427 Comparison of results obtained for structure #1 and #4 from table 4 shows the ability of the algorithm 428 to be applied on 3D meshes and to provide a PZT network that respects the placement constraints. The 429 introduction of a cavity in the structure is not really taken into account by the algorithm. It is somehow 430 considered since no PZT node can be placed in the hole (it does not contain any node), the supplementary 431 constraint on boundary conditions is applied to hole edges, and the computing of distances between432 nodes takes the hole into account.

433 5. Discussion

434 The proposed method opens several discussion points:

The sizing method described in the first step of the process is theoretical. Experimental 435 436 measurements often give exploitable results even if the PZT dimensions do not respect the 437 Lamb wave constraints. However, this theoretical approach is the first attempt to justify the 438 dual PZT electrodes sizes, and those dimensions are consistent with physical properties of the 439 structure and lamb wave propagation. There is not only one good sizing, but this method gives 440 landmarks for the choice of the dual PZT, which is hardly discussed in other studies. The range 441 of frequencies chosen does not take into account the continuous mode conversion well 442 described in [9, Pt. IV]. However, by targeting a minimal damage size $\phi_d > 7 \text{ mm}$ (maximum 443 width of roving in twill fabric composites), wavelengths of both modes obtained on the selected 444 range of frequencies are larger than the eventual roving thus limiting continuous mode 445 conversion due to coupling elements. This phenomenon could be responsible for A_0 mode 446 measurements arriving before the main wave packet in experimental conditions.

The thresholds for the superposition criteria and the amplitude ratio criteria may appear
arbitrary but they have been empirically verified. They could be softened if the aim is to place
fewer transducers on the structure or hardened if the aim is to obtain the best mode
decomposition results. This article presents here a concept methodology and some parameters
can be flexible.

The large structure presented in this article is not very complex compared to other SHM
 applications (only one hole, no stiffener) and the proposed optimization solver would not be
 very robust for very complex structures. Still, the local FEM approach could be improved by
 integrating stiffeners, holes, and/or complex local geometries preventing the simulation from
 modeling the full-scale model at once.

Hypotheses done on the local FEM are not very strong and allow to have a good appreciation
 of the limiting criteria for the current BF-SHM methods. Even if the model has been calibrated
 properly to fit the real material, future works on composite structure will allow the validation
 of the obtained optimal parameters meeting the targeted expectations.

461 Results obtained for different structures in part 4 show that a quasi-isotropic structure behaves quite similarly to an isotropic structure concerning mode attenuation with orientation. This 462 463 observation shows that for such a poorly anisotropic structure, the orientation between 464 transducers has no influence on the designed PZT network, and larger distances can be considered since the amplitude ratio between A_0 and S_0 modes is nearly constant in all 465 directions. In the case of the highly anisotropic structure, the amplitude of both modes highly 466 467 depends on the propagation orientation, and it has a great impact on the distance and orientation 468 between transducers.

469 6. Conclusion

This article presents a process to design a PZT network on a large structure for BF-SHM methods based on the tracking of mode variations in a composite structure. This work falls within the framework of research which tries to bridge the gap between laboratory research and industrial deployment of SHM processes [49]. Indeed, the method proposed in this work tackles one of the problems that hinders the deployment of a promising dual PZT BF-SHM method, which is how to choose optimally the PZT elements in terms of size, number and placements.

The first contribution of this work, is to propose a generic solution to the choice of dimensions of the dual PZT (used to decompose A_0 and S_0 mode contributions in the response signal) based on the dispersion curves and the damage size to detect. This also brings out the range of excitation frequencies that favor an interaction with the eventual damage.

480 The second contribution resides in the precise and careful exploitation of Lamb wave mode propagation 481 simulated in a local FEM. Particularly, two criteria are proposed (mode superposition ratio and mode 482 amplitude ratio) in order to define the best actuator-sensor placement (optimal distance and orientation) and optimal excitation frequencies in a context where both A_0 and S_0 modes have to propagate in the structure and be measured by the PZT sensor. This local model gives the relevant parameters for the last key point of this article, which is a simple PZT network optimization solver. This solver guarantees that

486 dual PZT are optimally placed on the monitored structure, and together with the local FEM avoid the

- 487 need for a large-scale FEM simulation.
- 488 This article does not give an absolute method for a PZT network design but proposes a generic process:
- 489 given the material and geometry of a structure, dual PZT size, placement and excitation frequencies are
- 490 proposed in order to optimize the implementation of BF-SHM method on the structure to monitor. The
- 491 authors have chosen to apply it on four different structures. This emphasizes the need for a local FEM

492 for highly anisotropic structures to understand the Lamb wave propagation in such materials before

493 being confronted with unexplainable results in real experimentation.

494 References

- K. Worden, C. R. Farrar, G. Manson, and G. Park, "The fundamental axioms of structural health monitoring," *Proc. R. Soc. Math. Phys. Eng. Sci.*, vol. 463, no. 2082, pp. 1639–1664, Jun. 2007.
- 497 [2] J. E. Michaels and T. E. Michaels, "Detection of structural damage from the local temporal
 498 coherence of diffuse ultrasonic signals," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 52,
 499 no. 10, pp. 1769–1782, Oct. 2005.
- S. Roy, K. Lonkar, V. Janapati, and F.-K. Chang, "A novel physics-based temperature compensation model for structural health monitoring using ultrasonic guided waves," *Struct. Health Monit.*, vol. 13, no. 3, pp. 321–342, 2014.
- 503 [4] Y. Wang, L. Gao, S. Yuan, L. Qiu, and X. Qing, "An adaptive filter-based temperature
 504 compensation technique for structural health monitoring," *J. Intell. Mater. Syst. Struct.*, vol. 25, no.
 505 17, pp. 2187–2198, Nov. 2014.
- 506 [5] Y. Wang, L. Qiu, L. Gao, S. Yuan, and X. Qing, "A new temperature compensation method for guided wave-based structural health monitoring," 2013, p. 86950H.
- 508 [6] G. Konstantinidis, B. W. Drinkwater, and P. D. Wilcox, "The temperature stability of guided wave structural health monitoring systems," *Smart Mater. Struct.*, vol. 15, no. 4, pp. 967–976, Aug. 2006.
- 510 [7] Y. Lu and J. E. Michaels, "A methodology for structural health monitoring with diffuse ultrasonic
 511 waves in the presence of temperature variations," *Ultrasonics*, vol. 43, no. 9, pp. 717–731, Oct.
 512 2005.
- [8] Z. Su and L. Ye, *Identification of damage using Lamb waves: from fundamentals to applications*.
 Berlin: Springer-Verlag, 2009.
- [9] R. Lammering, U. Gabbert, M. Sinapius, T. Schuster, and P. Wierach, Eds., *Lamb-Wave Based Structural Health Monitoring in Polymer Composites*. Cham: Springer International Publishing, 2018.
- [10]C. M. Yeum, H. Sohn, and J. B. Ihn, "Delamination detection in a composite plate using a dual
 piezoelectric transducer network," 2011, p. 798406.

- [11]R. Gangadharan, C. R. L. Murthy, S. Gopalakrishnan, and M. R. Bhat, "Time reversal health monitoring of composite plates using Lamb waves," *Int. J. Aerosp. Innov.*, vol. 3, no. 3, pp. 131– 142, 2011.
- [12] L. Huang, L. Zeng, and J. Lin, "Baseline-free damage detection in composite plates based on the
 reciprocity principle," *Smart Mater. Struct.*, vol. 27, no. 1, p. 015026, Jan. 2018.
- 525 [13] V. Giurgiutiu, *Structural health monitoring with piezoelectric wafer active sensors*. Amsterdam:
 526 Academic Press/Elsevier, 2008.
- [14]H. Sohn, H. J. Lim, C. M. Yeum, and J.-B. Ihn, *Reference free inconsistency detection system*.
 Google Patents, 2015.
- [15]Y.-K. An and H. Sohn, "Instantaneous crack detection under varying temperature and static loading
 conditions," *Struct. Control Health Monit.*, vol. 17, no. 7, pp. 730–741, Nov. 2010.
- [16] C. M. Yeum, H. Sohn, J. B. Ihn, and H. J. Lim, "Instantaneous delamination detection in a composite
 plate using a dual piezoelectric transducer network," *Compos. Struct.*, vol. 94, no. 12, pp. 3490–
 3499, Dec. 2012.
- [17] C. M. Yeum, H. Sohn, H. J. Lim, and J. B. Ihn, "Reference-free delamination detection using Lamb
 waves" *Struct. Control Health Monit.*, p. n/a-n/a, Aug. 2013.
- [18] C. M. Yeum, H. Sohn, and J. B. Ihn, "Lamb wave mode decomposition using concentric ring and circular piezoelectric transducers," *Wave Motion*, vol. 48, no. 4, pp. 358–370, Jun. 2011.
- [19]H. Sohn and S. B. Kim, "Development of dual PZT transducers for reference-free crack detection
 in thin plate structures," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 57, no. 1, pp. 229–240, Jan. 2010.
- [20]H. J. Lim, H. Sohn, C. M. Yeum, and J. M. Kim, "Reference-free damage detection, localization, and quantification in composites," *J. Acoust. Soc. Am.*, vol. 133, no. 6, pp. 3838–3845, Jun. 2013.
- [21]S. R. Anton, A. Butland, M. Carrión, M. Buechler, and G. Park, "Instantaneous Structural Damage
 Identification Using Piezoelectric-Based Lamb Wave Propagation," *Proc. IMAC-XXV Febr.*, pp.
 19–22, 2007.
- [22]S. R. Anton, D. J. Inman, and G. Park, "Reference-Free Damage Detection Using Instantaneous
 Baseline Measurements," *AIAA J.*, vol. 47, no. 8, pp. 1952–1964, Aug. 2009.
- 548 [23]B. Alem, A. Abedian, and K. Nasrollahi-Nasab, "Reference-Free Damage Identification in Plate 549 Like Structures Using Lamb-Wave Propagation with Embedded Piezoelectric Sensors," *J. Aerosp.* 550 Eng., p. 04016062, Jul. 2016.
- [24] A. Bagheri, K. Li, and P. Rizzo, "Reference-free damage detection by means of wavelet transform
 and empirical mode decomposition applied to Lamb waves," *J. Intell. Mater. Syst. Struct.*, vol. 24, no. 2, pp. 194–208, Jan. 2013.
- [25]H. Sohn, H. Woo Park, K. Law, and C. R. Farrar, "Combination of a Time Reversal Process and a
 Consecutive Outlier Analysis for Baseline-free Damage Diagnosis," *J. Intell. Mater. Syst. Struct.*,
 Dec. 2006.
- 557 [26]Sohn, "Damage Detection in Composite Plates by Using an Enhanced Time Reversal Method."
 558 2007.
- [27] H. W. Park, H. Sohn, K. H. Law, and C. R. Farrar, "Time reversal active sensing for health monitoring of a composite plate," *J. Sound Vib.*, vol. 302, no. 1–2, pp. 50–66, Apr. 2007.
- [28]Z. Liu, X. Zhong, T. Dong, C. He, and B. Wu, "Delamination detection in composite plates by
 synthesizing time-reversed Lamb waves and a modified damage imaging algorithm based on
 RAPID," *Struct. Control Health Monit.*, p. n/a-n/a, Jan. 2016.
- 564 [29]H. W. Park, S. B. Kim, and H. Sohn, "Understanding a time reversal process in Lamb wave 565 propagation," *Wave Motion*, vol. 46, no. 7, pp. 451–467, Nov. 2009.
- [30]S. B. Kim and H. Sohn, "Instantaneous crack detection using dual PZT transducers," 2008, p.
 693509.
- [31]K. Worden and A. P. Burrows, "Optimal sensor placement for fault detection," *Eng. Struct.*, vol. 23, no. 8, pp. 885–901, Aug. 2001.
- [32]K. Dogancay and H. Hmam, "On optimal sensor placement for time-difference-of-arrival localization utilizing uncertainty minimization," in *Signal Processing Conference, 2009 17th European*, 2009, pp. 1136–1140.
- [33]H. Gao and J. L. Rose, "Ultrasonic Sensor Placement Optimization in Structural Health Monitoring
 Using Evolutionary Strategy," *AIP Conf. Proc.*, vol. 820, no. 1, pp. 1687–1693, Mar. 2006.

- [34]Eric B. Flynn and Michael D. Todd, "Optimal Placement of Piezoelectric Actuators and Sensors for
 Detecting Damage in Plate Structures," *J. Intell. Mater. Syst. Struct.*, vol. 21, no. 3, pp. 265–274,
 Feb. 2010.
- [35] E. B. Flynn and M. D. Todd, "A Bayesian approach to optimal sensor placement for structural health
 monitoring with application to active sensing," *Mech. Syst. Signal Process.*, vol. 24, no. 4, pp. 891–
 903, May 2010.
- [36]C. Fendzi, J. Morel, M. Rébillat, M. Guskov, N. Mechbal, and G. Coffignal, "Optimal Sensors
 Placement to Enhance Damage Detection in Composite Plates," in *7th European Workshop on Structural Health Monitoring*, 2014, pp. 1–8.
- [37] M. Thiene, Z. S. Khodaei, and M. H. Aliabadi, "Optimal sensor placement for maximum area
 coverage (MAC) for damage localization in composite structures," *Smart Mater. Struct.*, vol. 25, no. 9, p. 095037, Sep. 2016.
- [38] M. S. Salmanpour, Z. Sharif Khodaei, and M. H. Aliabadi, "Transducer placement optimisation
 scheme for a delay and sum damage detection algorithm," *Struct. Control Health Monit.*, vol. 24, no. 4, p. n/a-n/a, Apr. 2017.
- 590 [39] H. Lamb, "On waves in elastic plates," 1917.
- [40] A. Marzani and P. Bocchini, "www.guiguw.com," *GUIGUW Guided Waves made easy*. [Online].
 Available: http://www.guiguw.com/. [Accessed: 08-Jun-2018].
- 593 [41] J. L. Rose, Ultrasonic Waves in Solid Media. Cambridge University Press, 2004.
- [42] A. Raghavan and C. E. S. Cesnik, "Finite-dimensional piezoelectric transducer modeling for guided
 wave based structural health monitoring," *Smart Mater. Struct.*, vol. 14, no. 6, pp. 1448–1461, Dec.
 2005.
- 597 [43]E. Balmes, J. Bianchi, and J. Leclere, "Structural Dynamics Toolbox 6.2 (for use with MATLAB),
 598 SDTools, Paris, France.," 2009. [Online]. Available: http://www.sdtools.com/. [Accessed: 12-Dec599 2017].
- [44]M. Gresil and V. Giurgiutiu, "Prediction of attenuated guided waves propagation in carbon fiber
 composites using Rayleigh damping model," *J. Intell. Mater. Syst. Struct.*, vol. 26, no. 16, pp. 2151–
 2169, Nov. 2015.
- [45] E. Balmès, M. Guskov, and J.-P. Bianchi, "Validation and verification of FE models of piezo based
 SHM systems," in *ISMA International Conference on Noise and Vibration Engineering*, Leuven,
 Belgium, 2016, p. ID 807.
- [46]C. Fendzi, M. Rébillat, N. Mechbal, M. Guskov, and G. Coffignal, "A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves," *Struct. Health Monit. Int. J.*, vol. 15, no. 5, pp. 525–540, Sep. 2016.
- [47]Z. Su and L. Ye, "Selective generation of Lamb wave modes and their propagation characteristics
 in defective composite laminates," *Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl.*, vol. 218, no.
 2, pp. 95–110, Apr. 2004.
- [48] Y.-H. Kim, D.-H. Kim, J.-H. Han, and C.-G. Kim, "Damage assessment in layered composites using
 spectral analysis and Lamb wave," *Compos. Part B Eng.*, vol. 38, no. 7–8, pp. 800–809, Oct. 2007.
- 614 [49]P. Cawley, "Structural health monitoring: Closing the gap between research and industrial
- 615 deployment," *Struct. Health Monit. Int. J.*, p. 147592171775004, Jan. 2018.
- 616