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On the Applications of Robust PCA in Image and
Video Processing

Thierry Bouwmans, Sajid Javed, Hongyang Zhang, Zhouchen Lin, IEEE Fellow, and Ricardo Otazo

Abstract—Robust PCA (RPCA) via decomposition into low-
rank plus sparse matrices offers a powerful framework for a
large variety of applications such as image processing, video
processing and 3D computer vision. Indeed, most of the time
these applications require to detect sparse outliers from the
observed imagery data that can be approximated by a low-
rank matrix. Moreover, most of the time experiments show that
RPCA with additional spatial and/or temporal constraints often
outperforms the state-of-the-art algorithms in these applications.
Thus, the aim of this paper is to survey the applications of RPCA
in computer vision. In the first part of this paper, we review
representative image processing applications as follows: (1) low-
level imaging such as image recovery and denoising, image com-
position, image colorization, image alignment and rectification,
multi-focus image and face recognition, (2) medical imaging like
dynamic Magnetic Resonance Imaging (MRI) for acceleration
of data acquisition, background suppression and learning of
inter-frame motion fields, and (3) imaging for 3D computer
vision with additional depth information like in Structure from
Motion (SfM) and 3D motion recovery. In the second part, we
present the applications of RPCA in video processing which
utilize additional spatial and temporal information compared
to image processing. Specifically, we investigate video denoising
and restoration, hyperspectral video and background/foreground
separation. Finally, we provide perspectives on possible future
research directions and algorithmic frameworks that are suitable
for these applications.

Index Terms—Robust PCA, Image processing, Video process-
ing, 3D Computer Vision, Medical Imaging.

I. INTRODUCTION

PRincipal component analysis was introduced by Karl
Pearson in 1901 and was first widely used in statistics.

But its main limitation includes its sensitivity to outliers, its
high computation time and memory requirements, which make
the model unsuitable for high dimensional data as in computer
vision applications. The robustness of Principal Component
Analysis (PCA) methods was first addressed in statistics by
replacing the standard estimation of the covariance matrix with
a robust estimator [36],[128] or by using projection pursuit
techniques [56],[129]. On the other hand, in neural networks
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PCA was robustified by designing a neural network that relied
on self-organizing rules based on statistical physics [298].
But all these robust methods are still limited to relatively
low-dimensional data and thus they are not applicable for
computer vision applications with high dimensional data. In
a further work which appeared on arXiv in 2009, Candès et
al. [37] addressed the robustness by decomposition into low-
rank plus sparse matrices (also called L+S decomposition),
and practically provided by several ways a suitable framework
for many signal processing and computer vision applications.
Practically, Candès et al. [37] proposed a convex optimization
to address the robust PCA problem. The observation matrix A
is assumed represented as:

A = L + S (1)

where L is a low-rank matrix and S must be sparse matrix
with a small fraction of nonzero entries. The straightforward
formulation is to use l0-norm to minimize the energy function:

min
L,S

rank(L) + λ||S||0 subj A− L− S = 0 (2)

where λ > 0 is an arbitrary balanced parameter. But this
problem is NP -hard, typical solution might involve a search
with combinatorial complexity. This research seeks to solve
for L with the following optimization problem:

min
L,S

||L||∗ + λ||S||1 subj A− L− S = 0 (3)

where ||.||∗ and ||.||l1 are the nuclear norm (which is the l1-
norm of singular value) and l1-norm, respectively, and λ > 0
is an arbitrary balanced parameter. Usually, λ = 1√

max(m,n)
.

Under these minimal assumptions, this approach called Prin-
cipal Component Pursuit (PCP) solution perfectly recovers the
low-rank and the sparse matrices.

The main difference between robust PCA based either on
robust estimators and projection pursuit, and the L+S decom-
position model is that the first approaches assume outlying
data points in which entire row or column of the data matrix
is corrupted whilst the second approach assumes outliers that
are uniformly distributed. In addition, the classical approaches
on robust PCA focus mostly on estimators with excellent worst
case robustness but poor computational profiles because they
are NP hard to compute or they involve combinatorial search
making them unsuitable for computer vision applications with
high dimensional data. On the other hand, Candès et al.
[37] showed results with the L+S decomposition model in
computer vision applications like face images and background
modeling that demonstrated encouraging performance. This
original RPCA formulation suffices in applications (such as
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image denoising, and image alignment) where the information
of interest is in the low-rank L matrix. But, applying directly
this original RPCA formulation in applications in which there
is also information of interest in the sparse matrix S (such as
background/foreground separation) results that outliers con-
tains both the information of interest (moving objects that
is considered as sparse) and the noise. Thus, most of the
time, the stable RPCA formulation [344] is preferred for this
kind of computer vision applications. The stable formulation
PCP (also called L+S+E decomposition) assumes that the
observation matrix A is represented as follows:

A = L + S + E (4)

where E is a noise term (say i.i.d. noise on each entry of the
matrix) and ||E||F < δ for some δ > 0. To recover L and S,
Zhou et al. [344] proposed to solve the following optimization
problem, as a relaxed version to PCP:

min
L,S

||L||∗ + λ||S||1 subj ||A− L− S||F < δ (5)

where ||.||F is the Frobenius norm and λ = 1√
n

. Further-
more, to enhance the adequacy of the RPCA formulation for
computer vision, spatial and/or temporal additional constraints
need to be introduced by using specific regularization terms or
function applied on L, S and E. A general formulation of the
optimization problem suitable for a RPCA formulation applied
to a computer vision application can be written as follows:

min
L,S,E

||T (L)||∗ + λ1||Π(S)||1 + λ2||E||F︸ ︷︷ ︸
Constrained Stable RPCA Decomposition

+ δ1F (L) + δ2G(S)︸ ︷︷ ︸
Computer Vision Application

,

s.t. A = L + S + E, or A = W ◦ (L + S + E),
or A ◦ τ = L + S + E,

(6)
where T (·) and Π(·) are linear operators applied on L and S,
respectively. They allow to take into account spatial and tem-
poral constraints as well as the functions F (·) and G(·) that are
usually suitable norms for the specific constraints met in the
application. A weighting matrix W or a transformation τ can
also be used in the constraint of the minimization. In literature,
numerous publications used the robust PCA formulation by
improving its computational efficiency and its adequacy to the
concerned application in (1) signal processing applications like
in satellite communication [150], seismology [67],[53], speech
enhancement [125][290], Synthetic-Aperture Radar (SAR)
imaging [127],[307],[240],[159],[155],[329],[23],[24],[95] and
direction-of-arrival tracking [167],[61], (2) computer vision
applications like in image processing, video processing and
3D computer vision as developed in Bouwmans et al. [28],
(3) computer science applications such as the detection traffic
anomalies [191][216], and (4) astronomy for auroral substorm
detection [304] and exoplanet detection [101],[217]. A full
list of publications of RPCA in these different applications is
available at the DLAM website1.

Thus, even if PCA is a problem that has existed for
over a century, and also applied in computer vision since

1https://sites.google.com/site/robustdlam/

2000s [268],[269], the work of Candès et al. [37] is the
main reason why there has been a resurgence of interest
in robust PCA and extensions in computer vision since the
last six years. The other reasons concern two main points.
First, new Singular Value Decomposition (SVD) solutions
have been developed to make the iterations as efficient as
possible and to deal with the fact that the standard SVD
solution fails if the data are corrupted by anything other than
small noise. For example, approximated SVD solutions exist to
avoid full SVD computations in order to reduce computation
time such as partial SVD algorithms [170], linear time SVD
algorithms [303], limited memory SVD algorithms [178],
symmetric low-rank product-Gauss-Newton algorithms [179],
Block Lanczos with Warm Start (BLWS) algorithms [172], and
randomized SVD algorithms [83][335][145]. Moreover, a lot
of video data arrive sequentially over time and the subspace in
which the data lie can change with time. Motivated by these
reasons, there has been an array of papers using online or
streaming robust PCA (also called robust subspace tracking
[274]), and some of them specifically focused on online
dynamic robust PCA [182],[274] with performance guaran-
tees [181],[183],[201],[315] and memory efficient algorithms
[200]. This line of research allows its application in computer
vision such as background/foreground separation which re-
quires incremental and real-time computations. Furthermore,
robust PCA often outperforms previous state-of-the-art meth-
ods in several computer vision applications [38],[104],[169]
with rigorous theoretical analysis [19],[37],[318]. Indeed, as
this decomposition is non-parametric and does not make many
assumptions, it is widely applicable to large scale problems
ranging from image processing to video processing.

II. PRELIMINARY OVERVIEW

Many tasks in image and video processing present in the ob-
served data combination of (1) one information of interest and
perturbations, or (2) combination of two information of interest
and perturbations. Here, perturbations include both notion of
noise and errors than occur in computer vision systems. In
the first case, information of interest and perturbations present
low-rank and sparsity aspects, respectively. Thus, RPCA via
L+S decomposition offers a suitable framework for these
processing. Then, the low-rank component mathematically
contains the inliers (information of interest) and the sparse
components contains the outliers (noise). In the second case,
the first information of interest and the second information
of interest present low-rank and sparsity aspects, respectively.
Thus, the stable RPCA formulation is required to avoid the
matrix S to contain both the second information of interest
and the perturbations. Furthermore, the spatial aspects present
in images, and the temporal constraints in video sequences can
be used in the L+S decomposition and L+S+E decomposition
to enforce its adequacy to the concerned task.

A. Image processing

RPCA framework was applied with a great success in the
following imaging applications:
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• Low-level imaging and analysis: image restora-
tion and denoising [105],[149],[261],[280],[281], tex-
ture image denoising [166], hyperspectral image denois-
ing [50],[100],[285], image completion and inpainting
[39],[299], image composition for high-dynamic range
imaging [21], image decomposition for intrinsic im-
age computation [151],[313] and for structural image
decomposition [43], image alignment and rectification
[219],[231],[259],[293],[328], image stitching and mo-
saicking [163], image colorization [306], multi-focus im-
age [277],[278],[325],[326],[327], pansharpening [322],
change detection [51], face recognition [185],[289],[320],
partial-duplicate image search [302], image saliency de-
tection [147],[160],[161],[222],[228] and image analysis
[343],[173].

• Medical imaging: RPCA has become a powerful
tool to increase the performance of data acquisition
[89],[90],[210],[211],[270], image reconstruction
[215] and image analysis of brain images
[14],[89],[212],[213],[250],[13], cardiac images
[48],[49],[90],[210],[211],[270],[215],[296], vessels
images [143] and retina images [86]. A key initial
application was to reduce the number of measurements
in dynamic imaging (space + time), which resulted in
increased imaging speed for MRI [90],[210],[211],[270]
and radiation dose reduction for CT [89]. In addition, the
separation of the background in the low-rank component
performed automated background suppression for
angiography and contrast-enhanced studies. RPCA
can also perform a robust separation of common and
individual information when analyzing a group of
clinical datasets, such as functional and diffusion MRI
of the brain [14],[212],[213]. In an other way, RPCA can
also detect changes in the retina [86] and also aligned
image for speckle reduction of retinal OCT images [18].

• Imaging for 3D computer vision: This application
requires mechanical measurement of the camera positions
or manual alignment of partial 3D views of a scene.
Thus, RPCA can also be used to reduce outliers and
noise in algorithms such as Structure from Motion (SfM)
[177],[291],[9],[8], 3D motion recovery [283], and 3D
reconstruction [10].

B. Video processing

This application is the most investigated one. Indeed,
numerous authors used RPCA problem formulations in
applications such as background/foreground separation
[4],[208],[223], background initialization [255],[258], moving
target detection [241], motion saliency detection [47],
[300], [332], motion estimation [238], visual object tracking
[168][276], action recognition [126], key frame extraction
[60], video object segmentation [130],[153],[197],[317],[319],
video coding [45],[46],[110],[331], video restoration and
denoising [142],[334],[109],[318],[176], video inpainting
[142], hyperspectral video processing [96],[42], and video
stabilization [68].

In the following sections, we introduce how the RPCA
formulation is employed in these applications. Particularly, we
indicate how the observed image and video data are stacked
in the input matrix A, and the signification of the low-rank
L and sparse S matrices. Furthermore, several authors have
added specific constraints in the RPCA formulation to make
it suitably designed for the target applications. The rest of
this paper is organized as follows: Section III reviews the
applications of RPCA in image processing. Particularly, low-
level imaging is surveyed in III-A whilst the specific case
of medical imaging is then investigated in Section III-B.
We review the 3D computer vision applications in Section
III-C. Section IV review the applications of RPCA in video
processing. Finally, we present the conclusion with future
research directions.

III. IMAGE PROCESSING

In image processing, several tasks can be formulated into
low-rank and/or sparsity aspects. Thus, the L+S decomposition
presents a suitable framework for these different tasks. In
addition, the spatial aspects in images is exploited in the L+S
decomposition to enforce its use to the concerned task. In
the following sub-sections, we review these different tasks
categorized in low-level imaging, medical imaging and 3D
computer vision.

A. Low-level imaging

In low-level processing tasks, RPCA via L+S decomposition
is of interest in tasks in which (1) the observed image can
be viewed as the sum of a low-rank clean image and a
sparse perturbations like in image restoration and denoising,
hyperspectral image denoising and image composition,
(2) the observed image can be viewed as the sum of a
low-rank image and a sparse image like in intrinsic image
computation, (3) only the low-rank aspect is of interest like
in image alignement, image stitching, image colorization and
pan-sharpening, and (4) only the sparse aspect is of interest
like in multi-focus image fusion.

1) Image Restoration and Denoising: Image restoration is
one of the most fundamental problems in image processing
and computer vision, especially in the current days with the
growing number of cameras and closed circuit monitors. Its
goal is to restore a clear image from degraded images. There
are two main kinds of degradations: geometric distortion and
blur. Lau et al. [149] addressed the degradation issues by
first optimizing a mathematical model to subsample sharp and
mildly distorted video frames, and then applying a two-step
stabilization to stabilize the subsampled video with Beltrami
coefficients, replacing blurry images with sharp ones by optical
flow and robust PCA. In particular, for every frame Isampk , Lau
et al. [149] calculated the deformation fields Vj

k from a fixed
frame Isampk to other ones. Define

Vk : = (vec(V1
k), vec(V2

k), ..., vec(Vn
k ))

= Vk,1 + iVk,2,
(7)
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Fig. 1: Image Restoration. From top to bottom: Ground truth image,
distorted and blurred image, Sobolev gradient-Laplacian method
[184], Centroid method [195] deblurred [248], Two-stage reconstruc-
tion method [206] and RPCA algorithm [149] (Images from Lau et
al. [149]).

where vec(V) indicates the vectorization of V and Vk,1 :=
Re(Vk) and Vk,2 := Im(Vk) contain the horizontal and ver-
tical displacement vectors, respectively. They applied robust
PCA to decompose each of {Vk,p | p = 1, 2} into low-rank
and sparse terms:

Vk,p = L∗k,p + S∗k,p,

(L∗k,p,S
∗
k,p) = argmin

L+S=Vk,p

‖L‖∗ + λ‖S‖1, for p = 1, 2.

(8)

where ‖L‖∗ =
∑
i σi(L) is the nuclear norm, i.e, sum of

singular values, ‖S‖1 =
∑
ij |Si,j | is the `1-norm, and the

sparse part S∗k,p corresponds to the outlier. Lau et al. [149]
then warped Isampk by a post-processing of low-rank part Lk
for each k to obtain the stabilized frames. Experiments on both
synthetic and real experiments demonstrate the effectiveness
of the proposed method in alleviating distortions and blur,
restoring image details and enhancing visual quality against
several state-of-art methods as can be seen in Fig 1.

Image denoising is a problem closely related to image
restoration, where the degradation is caused by noise. The
goal of image denoising is to effectively identify and remove
noise from the ground-truth image. To this end, many classic
image denoising algorithms assume a specific statistical model
of the noise, and apply the maximum likelihood estimator
to do the inference. However, the assumed statistical model,
e.g., the Gaussian white noise, cannot always hold true in
practice. This observation motivates some new ideas to the
problem of image denoising. The seminal work of [34] first
proposed the non-local self-similarity based methods for image
denoising. The idea is that the repeated local patterns across a
natural image may help reconstruct the similar local patches.
Inspired by this idea, Gu et al. [105] combined with the new
technique of weighted nuclear norm minimization to perform
image denoising. In particular, for a local patch yi in an image,
Gu et al. [105] searched for its non-local similar patches
by block matching methods. Then they stacked those non-
local similar patches into a matrix Yj and decomposed it as
Xj + Nj , where the subscript j indicates the j-th class of
patches. Intuitively, matrix Xj should be of low rank as it
is stacked by the similar local patches while Nj corresponds
to the noise. With this observation, Gu et al. [105] proposed
to minimize the following objective function with weighted

(a) (b) PSNR: 14.16dB (c) PSNR: 26.78dB (d) PSNR: 26.65dB

(e) PSNR: 26.77dB (f) PSNR: 26.65dB (g) PSNR: 26.63dB (h) PSNR: 26.98dB

Fig. 2: Image Denoising. From top to bottom: (a) Ground-truth
image, (b) noiy image, (c) BM3D [59], (d) EPLL [345], (e) LSSC
[190], (f) NCSR [64], (g) SAIST [63], and (h) RPCA algorithm called
WNNM [105] (Images from Gu et al. [105]).

nuclear norm regularization:

min
Xj

λ‖Yj −Xj‖2F + ‖Xj‖w,∗, (9)

where ‖ · ‖w,∗ is the weighted nuclear norm defined as
‖X‖w,∗ =

∑
iwiσi(X), in which σi(X) is the i-th largest

singular value of matrix X and w = [w1, ...,wn]T is the
nonnegative weight vector. To set an appropriate weight vector
w, Gu et al. [105] chose wi to be inversely propositional to
σ(Yi), thus encouraging low-rank solutions more effectively
than the usual nuclear norm. Extensive experiments show
that the proposed method called Weighted Nuclear Norm
Minimization (WNNM) is able to recover more details,
generate much less artifacts, and preserves much better edges
against the following state-of-art methods BM3D [59], EPLL
[345], LSSC [190], NCSR [64] and SAIST [63] as can be
seen in Fig. 2.The main drawback to the above approach is
that iteratively reweighted algorithms can only approximate
either the low-rank component or the sparse one with a non-
convex surrogate. One important reason for this is that it is
difficult to solve a problem whose objective function contains
two or more nonsmooth terms. In this context, Wang et al.
[281] employed a Schatten-p norm and `q-norm regularized
Principal Component Pursuit (p, q-PCP) to approximate the
low rank and sparse functions with non-convex surrogates
with few iterations. Experiments show that p, q-PCP achieves
the best image recovery performance. Liang [166] considered
the restoration of a low rank texture contaminated by both
Gaussian and salt-and-pepper noise. The algorithm formulates
texture image denoising in terms of solving a low rank matrix
optimization problem.

2) Hyperspectral Image Denoising: Traditional RGB
images capture light in the red, green, and blue portions
of the visible light spectrum. Each band represents the
amount of energy emitted at a particular wave length. Images
having more than three bands are referred to as multispectral
or hyperspectral images. These images can involve light
that is outside the visible spectrum, such as infrared (IR)
and UV (ultra-violet) light. Hyperspectral images have a
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higher spectral resolution compared to multispectral images
while being limited to a narrow spectral bandwidth. By
imaging the light that is absorbed and reflected in high detail
within a certain region of the electromagnetic spectrum, it
is possible to identify particular materials present in the
image. Thus, hyperspectral images contain rich spectral
information which facilitates lots of computer vision tasks.
But, hyperspectral data are easily affected by different factors
such as noise, missing data, etc., which degrades the image
quality and makes hyperspectral data incomplete. Wei et al.
[285] addressed hyperspectral data denoising in the RPCA
formulation by taking advantage of hyperspectral unmixing
and modeling it probabilistically. Let X be an observed
3D hyperspectral image with X ∈ Rnr×nc×nb where nr,
nc and nb are the height, width and the number of bands,
respectively. For convenience, X is rearranged in a 2D matrix
A by reshaping the image of each band as a vector of
A ∈ Rnp×nb with np = nr × nc which corresponds to the
number of pixels. Suppose that a noisy hyperspectral image
A can be decomposed into a noiseless/clean hyperspectral
image L ∈ R np×nb and a noise image S ∈ Rnp×nb . rank(S)
is always full with rank(A) ≈ rank(S) = min(np, nb). L can
be represented as a multiplication of a matrix L1 ∈ Rnp×ne

with a matrix L2 ∈ Rne×nb , called endmember matrix
and abundance matrix, respectively. ne is the number
of endmembers and rank(L) is no larger than ne (i.e
rank(L) ≤ ne). Because ne is far smaller than np and nb,
rank(L)� rank(A). Thus, L is effectively a low-rank matrix
and we have A = L + S. Experimental results show that
RPCA algorithms outperforms the standard approach based
on wavelet as can be seen in Fig. 3 on the Washington DC
Mall dataset which contains hyperspectral images of size
1208 × 307 pixels. Each has 191 spectral channels and a
subimage of size 256 × 256 × 191 is cropped from this
dataset. Even if this RPCA based method outperforms the
state-of-the-art methods, real noise in hyperspectral date often
exhibits very complex statistical distributions, rather than
simply being sparse. So the noise cannot be easily described
by a simple norm like the `1-norm. From the probabilistic
perspective, the low-rank part Land the noise part S can be
modeled more directly and flexibly with a generative model
using a mixture of Gaussians model as in the MOG-RPCA
model [333], or using a Mixture of Exponential Power
(MoEP) distributions as in the penalized MoEP (PMoEP)
model [40]. Experiments show that this probabilistic method
can denoise noisy incomplete hyperspectral data more
effectively when compared with previous denoising methods.

3) Image Composition: Image composition is the problem
of combining multiple images captured by a camera or multi-
ple cameras to generate a desired image of a scene. A typical
example is a high-contrast scene captured by a low-dynamic
range (LDR) camera. It has many important applications in
computational photography, such as High Dynamic Range
(HDR) imaging and flash/no-flash imaging. Classic techniques
for this problem suffer from issues caused by defocus blur and

1http://lesun.weebly.com/hyperspectral-data-set.html

Fig. 3: Hyperspectral image denoising results of band 100 for
Washington DC Mall dataset1. From top to bottom: Original
band, noisy band, wavelet based result, GoDec [339], and
RPCA algorithm [285] (Images from Wei et al. [285]).

dynamic objects which typically results in ghosting artifacts.
Bhardwaj and Raman [21] addressed the above-mentioned

issues by the robust PCA framework. Specifically, they first
modelled the camera response function by a gamma correction
function to linearize the intensity values. This operation is
applied to all n images and a matrix A is constructed by
stacking each image as a column of A. They then applied
robust PCA to A:

min
L,S
‖L‖∗ + λ‖S‖1, s.t. A = L + S, (10)

which is solved by the Alternating Direction Method of
Multipliers (ADMM) [171]. Next, they used the inverse of
the gamma correction to the columns of L to obtain the
high-contrast LDR images which are free from defocus
blur and ghosting artifacts. Finally, they fused the obtained
high-contrast LDR images into a high-quality HDR image
by an existing method. The motivation here is that the static
part of the scene imaged in all images should be of low-rank
(L) as they are similar to each other. This RPCA technique
penalizes the lower singular values while retaining the higher
singular value. Experiments on multi-exposure images and
multi-aperture images show that the proposed method can
capture better contrast details and have less defocus blur and
specularities as can be seen in Fig. 4.

4) Intrinsic Image Computation: Intrinsic image computa-
tion aims at separating a given input image into its material-
related properties, such as reflectance or albedo, and its light-
related properties, e.g., shading and shadows. It is probably
one of the most important preprocessing steps for photometric
computer vision and image based modeling.

The seminal work by Candès et al. [37] first proposed to
apply robust PCA to compute the intrinsic image of face
images. The idea is simple: by stacking multiple facial images
from the same person taken under different lightings as the
columns of a matrix A, A should be decomposed as L + S
with a low-rank matrix L and a sparse matrix S. This idea
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Fig. 4: Image Composition (HDR). From left to right: Tone
mapped [87], and multi-exposed images obtained with the
RPCA based approach [21]. The differences are noticeable
within the regions delimited by a circle. (Images from Bhard-
waj and Raman [21]).

utilizes the fact that the intrinsic image, which reflects the
light reflectance properties of a face, is common for the face
images taken under different lightings. The decomposition can
thus be done by solving the robust PCA problem (10).

However, inappropriate choice of the regularization param-
eter λ between the low-rank and the sparse matrices in the
classic robust PCA problem often results in an L with a rank
greater than one, while for intrinsic image computation the
rank of L should be one as there should be only one intrinsic
image. To resolve this issue, Yu [313] proposed the rank-
constrained PCA (RCPCA) model, by explicitly enforcing the
rank of L to be one:

min
L,S
‖S‖1, s.t. rank(L) = 1, A = L + S. (11)

The above model can also be easily solved by ADMM
[171]. Experiments on the MIT intrinsic image dataset and
the Yaleface dataset (see Fig. 6) show that the proposed
fixed rank model in Equation (11) enjoys a lower local mean
squared error than the prior methods for intrinsic image
computation. Similarly, Leow et al. [151] used a different
norm, the Frobenius norm, for the matrix S in Equation (11)
and reasonably good intrinsic images were obtained.

5) Image Alignment and Rectification: Image alignment
refers to the problem of transforming different images into
the same coordinate system. It is a critical pre-processing
step for multiple applications, such as background modeling,
where the frames of a video are assumed to be aligned in
order to obtain a low-rank background. Practically, robust
and efficient image alignment remains a challenging task, due
to the massiveness of images, great illumination variations
between images, partial occlusion and corruption. Peng et
al. [219] first proposed Robust Alignment by Sparse and Low-
Rank (RASL) to solve the problem based on the assumption
that a batch of aligned images should form a low-rank matrix
L. The sparse component S models local differences among
images. Let A be the matrix which stacks each frame as its one
column, the mathematical model of RASL is similar to robust
PCA but with a characterization of geometric deformation τ :

min
τ,L,S

‖L‖∗ + λ‖S‖1, s.t. A ◦ τ = L + S, (12)

(a) RPCA (b) RCPCA (c) RPCA (d) RCPCA

Fig. 5: Intrinsic Image Computation on two subsets of the
Extended Yale B database. From left to right (by group of
6 images=: (a) RPCA results on the subset 18, (b) rank-
constrained RPCA results on the subset 18, (c) RPCA results
on the subset 22, and (b) rank-constrained RPCA results on the
subset 22. Note that the reflectance image remains the same
for the rank-constrained RPCA (Images from Yu [313]).

where A◦τ refers to applying frame-wise geometric deforma-
tion τ to each frame. For efficient solution, Peng et al. [219]
converted the non-convex problem to a computable convex
optimization by iteratively linearizing τ locally and updating
with the increment ∆τ of τ :

min∆τk,L,S ‖L‖∗ + λ‖S‖1, s.t. A ◦ τk + J∆τk = L + S,

τk+1 ← τk + ∆τk,

k ← k + 1.
(13)

Here J is the Jacobian of A ◦ τ w.r.t. the parameters
of deformation τ . The above convex optimization problem
can also be efficiently solved by ADMM [171], and the
solution of Equation 13 converges to solution of Equation
12. An improved optimization method for RASL can be
found in [231], where ∆τk is cancelled first. Such a local
linearization algorithm can be viewed as a Gauss-Newton
method for minimizing the composition of a non-smooth
convex function with a smooth, nonlinear mapping. The con-
vergence behavior of such algorithms has been established
in the literature [219]. There are many generalizations of
RASL. For example, Wu et al. [293] proposed a method
for Online Robust Image Alignment (ORIA) by employing
a fixed-rank model along with a basis update scheme and
by assuming that the aligned image without corruption is
a linear composition of well-aligned basis. Although quite
efficient on large datasets, the heuristic basis updating scheme
using thresholding and replacement reduces the robustness
of image alignment. Motivated by online robust PCA, Song
et al. [259] took advantage of closed-form solutions and a
Stochastic Gradient Descent (SGD) updating scheme, which
have better convergence performance. However, as well as
RASL, ORIA [293] and SGD [259] all assume that large
errors such as occlusion and corruption among the images are
sparse and separable with respect to intensity, which may fail
in aligning images with severe intensity distortions. To address
this limitation, Zheng et al. [337] employed an online image
alignment method via subspace learning from Image Gradient
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(a) Original (b) Result

Fig. 6: Image Alignement. From left to right: (a) Original
images from the LFW dataset [124], (b) Result obtained by
Online Robust Image Alignment (ORIA) [293] (Images from
Wu [293]).

Orientations (IGO). Fig. 6 shows alignment of faces from the
Labeled Faces in the Wild (LFW) dataset [124].

Image rectification is a similar task as image alignment, both
of which are to deform (one or more) images into a “standard”
coordinate system. However, the difference is that, instead of
transforming multiple images into the same coordinate system
as in the alignment problem, image rectification has only
access to one image, which is more challenging. Transform
Invariant Low-Rank Textures (TILT) [328] provides a possible
solution to this problem. The intuition is as follows: an image,
viewed as a matrix, should be of approximately low-rank if
it is in its regular status, e.g., being symmetric or periodic.
Interestingly, TILT has the same mathematical model (12) as
RASL, and the solution methods of TILT and RASL are also
identical. The only difference is on the interpretation of matrix
D. In TILT D consists of an image patch of a single image,
while in RASL D consists of a collection of images, stacked
in columns. Therefore, RASL and TILT are complementary
to each other in that they try to capture temporal and spatial
correlation among image(s), respectively.

There are some other generalizations and improvements
of TILT. For example, Zhang et al. [330] considered
the parameterized transformations of TILT, in particular
generalized cylindrical transformations, which can be
conveniently applied to unwrapping textures from buildings.
Zhang et al. also applied TILT to text rectification [323] and
text detection [324].

6) Image Stitching: Image stitching refers to the problem
of aligning and stitching multiple images. It has many ap-
plications in computer vision and computer graphics, such
as video stabilization and augmented reality. Despite signif-
icant progress on this problem, many methods have limited
robustness to occlusions and local object motion in different
captures. In order to remove this obstacle, Li and Monga [163]
formulated the alignment problem as a low-rank and sparse
matrix decomposition problem with incomplete observations,
and the stitching problem as a multiple labeling problem that

(a)

(b) (c) (d)

Fig. 7: Image Stiching. First row: (a) Input images from the
Shanghai dataset. Second row: (b) Brown and Lowe [33], (c)
Gao et al. [91], and (d) SIASM [163] (Images from Li and
Monga [163]).

utilizes the sparse components. Their model is

min
τ,L,S

‖S‖1, s.t. A◦τ = PΩ(L+S), rank(L) ≤ r, (14)

where A is constructed by stacking each image as one
column, τ models the geometric transformation on each
image, and PΩ is the standard projection operator on the
observed set Ω due to the fact that each image is a partial
observation of the underlying mosaics in terms of pixels
values. Thus the columns of the output matrix L are the
desired aligned images. Problem (14) can also be solved by
ADMM [171]. With a few postprocessing steps the multiple
images can be stitched together. Experiments on the Shanghai
dataset (See Fig. 7) and the Windows dataset show that the
proposed method creates much less ghosting artifacts and
blur than the prior methods.

7) Image Colorization: Image colorization is the problem
of recovering the original color of a monochrome image from
only a few user-provided color pixels. A strategy to solve
this problem is by matrix completion, which assumes that the
underlying color image is of low rank. Though it is shown that
many images can be modeled by low-rank matrices, the low-
rank assumption is typically untrue for the coloring of global
image but holds true for local similar patches of the images.
With this observation, Yao and Kwok [306] achieved image
colorization by Patch-based Local Low-Rank (PaLLR) matrix
completion. In particular, instead of assuming the whole m×n
image to be low-rank, they first extracted groups of similar
image patches, each of which has its own low-rank structure.
The extraction of similar patches is by the similarity measure

‖Pi,j − Pi′,j′‖2F + β

(
1

m2
(i− i′)2 +

1

n2
(j − j′)2

)
(15)

between the patch Pi,j at position (i, j) and the patch Pi′,j′ at
position (i′, j′), where β > 0 is a trade-off parameter. For each
image patch, denote by G the matrix that contains the k most
similar patches including itself. Yao and Kwok [306] proposed
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to minimize the local low-rank approximation problem:

min
L

1

2
‖LT−G‖2F︸ ︷︷ ︸

consistency with gray values

+
λ

2
‖Ω� (L−O)‖2F︸ ︷︷ ︸
sparse labeled errors

+ µ |L|∗︸ ︷︷ ︸
local low-rank

,

(16)
where � is the dot product which is the sum of the products
of the corresponding entries and returns a single number,
T is the color-to-monochrome linear transform, L is the
target colorization of G. O and Ω indicate the values and
positions of the color pixels in the k patches, respectively.
The effectiveness of PaLLR is guaranteed by the observation
that the singular value spectrum of a typical patch group
decays quickly, i.e., the patch is low-rank. Finally, the color
of a pixel is obtained by averaging the color values in patches
that contain the pixel.

8) Multi-Focus Image Fusion: Robust PCA has important
applications in multi-focus image fusion as well. Existing
imaging devices, such as auto-focus cameras, have limited
focus range: only objects around a particular depth are clear
while other objects are blurry. Multi-focus image fusion aims
at resolving this issue: it creates a single image in which all
scene objects appear sharp. It has many applications in digital
photography and computer vision.

Wan et al. [277],[278] formulated the problem of multi-
focus image fusion as choosing the most significant features
from a sparse matrix which is obtained by robust PCA to
form a composite space of features. They then integrated
the local sparse features that represent the salient regions
of the input images to construct the desired fused images.
Their method consists of five steps: (1) Stack the images
with different focuses as columns of matrix A; (2) Perform
robust PCA decomposition (10) on matrix A so as to obtain
the low-rank matrix L and the sparse matrix S. Unstack
each column of S into multiple matrices, each of which
corresponds to one source image; (3) Divide the resultant
matrices into small blocks. Choose the blocks with lager
standard deviations to construct the fused image, with a
sliding window technique; (4) Record the feature comparison
results; (5) Apply a consistency verification process to refine
the decision map by a majority filter. In a further work, Zhang
et al. [325],[326],[327] proposed to use the Pulse-Coupled
Neural Network (PCNN) to record the feature comparison
results. The advantage is that the biological characteristics of
PCNN is able to take full use of the local features obtained
from sparse matrices and improve the accuracy of determining
in-focus objects.

9) Pan-sharpening: With the development of optical sen-
sors, more and more remote sensing images are collected, with
numerous applications in environment monitoring, battlefield
reconnaissance, etc. Unfortunately, due to the uncontrolled
environments and some physical limitations of sensors, images
from a single sensor typically have low spatial and spectral
resolution. The technique of pan-sharpening is designed to
resolve the issue: it fuses the panchromatic (PAN) image with
the low-resolution multi-spectral (LRMS) images to generate

the synthetic high-resolution multi-spectral (HRMS) images
with high spatial and spectral resolutions.

Yang et al. [322] proposed to apply low-rank decomposi-
tion to the problem of pan-sharpening with spatial-spectral
offsets. The idea is that the spatial redundancy and spectral
correlation among the multi-spectral images naturally imply
the inherent low-rank property of the matrix formed by
stacking HRMS images together. To be more specific, denote
by A = [A1,A2, ...,An] the matrix by stacking the bands
of n LRMS images, each being a column of A, and let
L = [L1,L2, ...,Ln] be the matrix of stacking the n HRMS
images. Yang et al. [322] decomposed A as the sum of L and
two offset matrices S1 and S2:

A = L + S1 + S2. (17)

The spatial offset matrix S1 counteracts the spatial details in
HRMS images while the spectral offset matrix S2 contains
the information of spectral changes between the LRMS and
the HRMS images, both of which should be sparse. The
matrix L should be of low-rank due to the spatial and spectral
correlations among the HRMS images. Besides, the PAN
image P can be viewed as the spectral degradation of HRMS
images. Therefore, the PAN image can be represented by the
HRMS image: P = LW for some representation coefficient
matrix W. So the pan-sharpening problem can be formulated
as the optimization problem:

min
L,S1,S2,W

‖L‖∗ + α‖S1‖1 + β‖S2‖1,

s.t. A = L + S1 + S2, LW = P,
(18)

where α and β are the regularization parameters. With
additional physical constraints on S1 and S2 and solving
problem (18) by ADMM [171], extensive experiments show
that the calculated spatial and spectral offsets S1 and S2 are
able to approach the reference differences well, implying that
the fused images by the two offsets are of high quality.

10) Face Modeling and Recognition: Robust face modeling
under uncontrolled conditions is crucial for the face recog-
nition systems, and it is a pre-step before face recognition.
Common objects, such as sunglasses and scarves, cause facial
features partially occluded. Fig. 8 shows an example with
face images of size 84× 60 pixels the AR dataset [193]. For
example, Luan et al. [185] used 15 images for an individual
that are stacked in the observed matrix A. The first row of
Fig. 8 shows 8 images of the same individual with varied
facial expression and contiguous occlusion (sunglasses). The
low-rank components L among different images look very
similar, even if in the presence of expressions and occlusion.
The sparse errors S depict the difference between original and
corresponding low-rank face images. In the case of sunglasses
occlusion, nothing but a pair of sunglasses can be seen from
the error image. In a probabilistic approach, Cao et al. [40]
modeled the low-rank part L and the noise part S with a gen-
erative model using a Mixture of Exponential Power (MoEP)
distributions. This model called penalized MoEP (PMoEP)
outperforms both Gaussian model (RPCA-MOG [196]) and
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Fig. 8: Face Modeling: Removal of facial occlusion using
RPCA. First row: Original face images with facial expression
and occlusion. Second row: Low-rank images. Third row:
Sparse error images (Images Luan et al. [185]).

Laplacian model (RegL1ALM [338]) on the Extended Yale B
database.

Robust face recognition, i.e., automatically recognizing hu-
man faces from views with varying expression and illumina-
tion as well as disguise and occlusion, is one of the most
important problems in computer vision and pattern recogni-
tion. The basic problem in face recognition is to use labeled
training data from k distinct classes to correctly identify the
class of a new test sample. The challenge is that the disguise
and occlusion may heavily degrade the performance of the
traditional methods.

To robustify the existing methods, Wright et al. [289]
proposed to use sparse representation to perform face recog-
nition. The intuition is based on a simple observation that
the test samples are approximately representable by a linear
combination of those training samples from the same class.
Therefore, the representation should be sparse, involving only
a small fraction of samples in the same class, and is robust
to outliers/disguise/occlusions. Pursuing the sparsest represen-
tation naturally discriminates between various classes by the
following convex optimization problem:

x̂ = argmin
x
‖x‖1, s.t. Ax = y. (19)

Here, as usual A is the matrix formed by stacking each
training sample as a column of the matrix and y is a column
vector corresponding to the test image. Finally, the given test
image is assigned to the class with the smallest reconstruction
error by the representation coefficient x̂.

However, the sparsest representation (19) is not robust
to large contiguous occlusion such as scarf and sunglasses.
To mitigate the issue, rather than minimizing the sparse
representation model (19), Luan et al. [185] proposed an
approach for robust face recognition by exploiting the sparse
term obtained by robust PCA (10). In particular, they first
constructed a matrix of normalized (training and testing)
samples by stacking all facial images as the columns of
the matrix. Their algorithm then applies robust PCA to the
constructed matrix. Focusing on the sparse term obtained by
robust PCA, Luan et al. [185] combined sparsity descriptor

Fig. 9: Face Recognition: Low-rank and sparse error images
of a given test image. (a) Test image. (b) Training images of
6 individuals. (c) Low-rank images of the test image under
6 individuals. (d) Corresponding sparse error images (Images
from Luan et al. [185]).

and smoothness descriptor to characterize the similarity
between a testing image and any given class. The testing
image is finally assigned to the class with the highest
similarity. Practically, RPCA is employed for removal of
facial specularities and shadows, and for removal of facial
occlusion. Experiments show that the associated sparse term
by robust PCA exhibits more discriminative information for
face identification, being more robust to varying illumination
and pixel corruption on both synthetic and real datasets (Yale
Face Database2, Extended Yale Face Database B3 and AR
face database4 [193]). As an illustration, Fig. 9 shows the
decomposition of a test face image under different subjects
using RPCA.

11) Partial-Duplicate Image Search: Partial-duplicate
image search refers to the problem of searching images
from a database containing the same contents as the query
image. The challenge is that the retrieved images might be
modified versions of the query image, such as the changes in
color, scale, rotation and contrast, having partial occlusions
and different viewpoints, etc. Traditional methods, e.g., the
bag of visual words, suffer from low retrieval precision
and recall as they only consider the local features and the
feature quantization error may easily lead to false matches
among images. To remedy these issues, Yang et al. [302]
introduced the global geometric consistency to detect the

2http://vision.ucsd.edu/content/yale-face-database
3http://vision.ucsd.edu/content/extended-yale-face-database-b-b
4http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2018 10

false matches by a low-rank model. They noticed that the
rank of the squared Euclidean distance matrix between the
feature points is at most 4 when the matchings are correct. In
contrast, when there are false matches between feature points,
the stacked squared distance matrix should be of higher
rank. Applying robust PCA to the stacked squared Euclidean
distance matrices, false matches can be detected effectively.

12) Saliency Detection: Saliency detection in still image
is a crucial step for improving visual experience, which has
many applications such as image cropping, image collection
browsing, video compression, etc. The goal of image saliency
detection is to find the image regions in which one or more
features differ significantly from their surroundings. In other
words, if we use other regions to “predict” the selected salient
region, the representation error should be large. Based on this
observation, Lang et al. [147] proposed a method called Multi-
Task Sparsity Pursuit (MTSP) which decomposes the feature
matrix A of image patches into a highly-correlated low-rank
component AZ and a sparse salient component S:

(Z∗,S∗) = argmin
Z,S

‖Z‖∗ + λ‖S‖2,1, s.t. A = AZ + S.

(20)
The idea is that by breaking an image into patches with the
extracted features A (stacked by columns as usual), the salient
regions should correspond to those with large sparse noise in S.
Lang et al. [147] then defined the score function S(Pi) for the
i-th patch Pi by S(Pi) = ‖S∗:i‖2. The salient regions are then
identified by a threshold which is set to discard small S(Pi)’s.
Fig. 10 shows that MTSP obtained competitive results against
state-of-the-art methods even if a standard approach named FT
[1] offers the best overall performance.

Note that the model in Equation (20) is actually called
Low-Rank Representation (LRR) [175],[174]. It also has wide
applications in image processing, such as motion segmenta-
tion [175],[174], image segmentation [52], and image tag com-
pletion and refinement [123]. More thorough investigations on
LRR can be found in [173].

Instead of working on all the image, Li and Haupt
[161],[160] estimate the saliency map directly from
compressive samples in applications where the goal is
to identify regions of anomalous behavior rather to image the
entire scene. Furthermore, saliency detection is also addressed
as anomaly detection in spectral images [222],[228]. Thus,
anomaly detection is viewed as a matrix decomposition
problem with the minimum volume constraint for the multi-
modular background and sparsity constraint for the anomaly
image pixels.

In summary, the RPCA formulation provides better or
similar performances than previous state-of-art methods over
these twelve low-level processing tasks.

B. Medical Imaging

In medical imaging, the L+S decomposition was used for
applications in which the observed image can be considered as

Fig. 10: Saliency Detection: Comparison on images from
MSRA dataset [1]. The rows for top to bottom are: original
images and saliency maps produced by GBVS [116], CSD
[99], FT [1], and the RPCA algorithm (MTSP) [147], respec-
tively. The last row is the ground truth. (Images from Lang et
al. [147]).

the sum of a low-rank clean image and a sparse perturbations
like in background suppression in accelerated dynamic [211]
and in change detection [86]. In the application of joint image
reconstruction and registration, only the low-rank aspect is of
interest as it concerned image alignment [215].

1) Accelerated Dynamic MRI with Automated Background
Suppression: Dynamic MRI techniques acquire a time-series
of images that encode physiological information of clinical
interest, such as organ motion [12], contrast agent uptake
[11],[146], signal relaxation [242], among others. The ac-
quisition of each time point needs to be short relative to
the dynamic process to obtain an instantaneous snapshot.
However, MRI hardware is not fast enough to sample k-
space (Fourier space of the image) for each time point at the
Nyquist/Shannon rate, particularly if the required spatial and
temporal resolution is high and/or volumetric coverage is large.
As a consequence, spatial resolution and/or volumetric cover-
age are usually sacrificed for temporal resolution. Dynamic
MRI has a real need for speed.

Given the extensive spatio-temporal correlations in the
series of images of dynamic MRI, acquiring fully-sampled
images at each time point is a wasteful process since the
information that is common to all frames is sampled over
and over again. Not surprinsingly, a number of methods
have been developed to acquire undersampled k-space data
at each time point and exploit spatiotemporal correlations in
order to reconstruct a time-series of images without aliasing
artifacts [271]. For example, the application of compressed
sensing to dynamic MRI [189],[209] exploits temporal sparsity
along with incoherent sampling to reduce the number of
measurements needed at each time point without information
loss. RPCA or low-rank plus sparse (L+S) decomposition
can be applied in the context of compressed sensing to
replace the pulse sparsity model by a L+S model, where L
would represent the common background among all frames
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and S the frame-by-frame innovation. L+S reconstruction of
undersampled dynamic MRI data is performed by solving
[211]:

[L,S] = argmin
L,S

1
2 ‖E(L + S)− d‖22

+λL ‖L‖∗ + λS ‖T (S)‖1 , (21)

here, T is a linear sparsifying transform for S, E is the
encoding operator and d is the undersampled k-t data. L and
S are defined as space-time matrices, where each column
is a temporal frame, and d is defined as a stretched-out
single column vector. We assume that S has a sparse
representation in some transformed domain (e.g. temporal
frequency domain, temporal finite differences), hence the
idea of minimizing ‖T (S)‖1 and not ‖S‖1 itself. For a
single-coil acquisition, the encoding operator E performs
a frame-by-frame undersampled spatial Fourier transform.
For acquisition with multiple receiver coils, E is given
by the frame-by-frame multicoil encoding operator, which
performs a multiplication by coil sensitivities followed by an
undersampled Fourier transform. The multicoil reconstruction
case enforces a joint multicoil L+S model, which presents
improved performance over enforcing a coil-by-coil L+S
model due to the exploitation of inter-coil correlations, as
demonstrated previously for the combination of compressed
sensing and parallel imaging based on joint multicoil sparsity
[165],[209]. L+S reconstruction aims to simultaneously
(a) remove aliasing artifacts in the space-time domain (or
equivalently to estimate the value of nonsampled points in k-t
space) and (b) separate the resulting spatiotemporal low-rank
and sparse components. Fig. 11 shows the application of
L+S reconstruction for 4D contrast-enhanced liver MRI
(3D+time), where L+S presented improved spatiotemporal
resolution with respect to compressed sensing (sparsity
alone) and the automatic background suppression in
the S component improved the visualization of contrast
enhancement. L+S compares favorably to CS, which suffers
from spatiotemporal blurring. Moreover, the S component, in
which the background has been suppressed, offers improved
visualization of contrast-enhancement.

2) Joint Image Reconstruction and Registration: The su-
perposition of organ motion with the physiological process
of interest (e.g., contrast enhancement) introduces significant
challenges for reconstruction of undersampled data based on
spatio-temporal sparsity [144],[214],[272] (including the L+S
reconstruction approach). Organ motion causes misalignment
among temporal frames, which reduces the degree of temporal
correlations; consequently, the low-rank and sparsity assump-
tions break down. Under these conditions, L+S reconstruction
introduces temporal blurring, leading to non-diagnostic infor-
mation, or even worse, information that can lead to a false
diagnosis. Using ideas from computer vision RPCA techniques
such as TILT [328] and RASL [219], the L+S model can
be modified to include a inter-frame motion operator W that
describes the deformation between consecutive frames, this is,
M = W(L + S). Optical flow [122] can be used to estimate

Fig. 11: CS (sparsity-only) and L+S reconstruction of 4D
dynamic contrast-enhanced abdominal data acquired with
golden-angle radial sampling (8 spokes/frame, undersampling
factor is 48 and temporal resolution is 0.94 seconds per 3D
volume) corresponding to a representative slice and three
contrast-enhancement phases (aorta, portal vein, liver).

motion between consecutive frames. For frames Mt−1 and Mt,
the optical flow constraint is:

0 = Mt−1 −Mt +
∂Mt

∂x
wx,t +

∂Mt

∂y
wy,t,

0 = Mt +∇MtWt, (22)

where Wt =

(
wx,t
wy,t

)
is the unknown motion field for the

frame Mt. This linear system is undetermined since there are
two unknowns and only one equation. We follow the solution
proposed by Thirion [265], also known as the demons method,
which corresponds to a second order gradient descent on the
sum of squares difference between Mt−1 and Mt:

Wt =
∇Mt ·Mt

‖∇Mt‖2 + ‖Mt‖2
. (23)

Motion-guided L+S reconstruction [215] aims to estimate
L, S and W from undersampled data only. The dependency
between L+S and W makes the optimization problem non-
convex and alternating optimization was employed to update
L and S with fixed W, and vice-versa, update W with fixed
M + L + S, as follows:

[Lk+1,Sk+1] = argmin
L,S

1
2 ‖EWk(L + S)− d‖22

+λL ‖L‖∗ + λS ‖TS‖1 , (24)

Wk+1 =
∇(Lk+1 + Sk+1) ·mk+1

‖∇(Lk+1 + Sk+1)‖2 + ‖mk+1‖2”
, (25)

where mk+1 is a vector that concatenates the differences
between consecutive frames from Lk+1 + Sk+1. Here, the
first step reconstructs and registers the dynamic image using
the previous update on the motion fields, and the second
step updates the motion fields based on the current dynamic
image update using the demons algorithm. Motion-guided
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Fig. 12: Standard and motion-guided L+S reconstruction of
8-fold accelerated free-breathing cardiac perfusion MRI for a
representative contrast phase and slice. The arrows indicate
temporal blurring artifacts in standard L+S caused by mis-
alignment among frames, which are significantly removed by
motion-guided L+S. In addition, motion-guided L+S enables
access to motion fields between consecutive frames.

L+S exploits an inherent self-consistency between the L+S
model and image registration, this is, the rank of L will be
lowest and the sparsity of S will be highest when temporal
frames are registered, and vice versa, to perform image
reconstruction and registration jointly. Fig. 12 shows the
application of motion-guided L+S to free-breathing 8-fold
accelerated cardiac perfusion MRI data, where in addition
to improved reconstruction, motion-fields that describe inter-
frame motion are estimated as additional piece of information.

3) Change Detection: Change detection between at least
two images of the same scene at different time is of widespread
interest in many applications including medical imaging, re-
mote sensing and so on [229]. Fu et al. [86] presented a change
detection method based on RPCA for retinal fundus images.
After alignment and illumination correction, each considered
couple of temporal images is expanded into an image serial
through linear interpolation between the grey image and
the normalized one to progressively decrease the intensity
variation between two frames. Then, the linear interpolation
images between the grey image and the normalized one are
used for the RPCA decomposition to obtain the change mask.
Suppose that the given interpolated longitudinal retinal fundus
images are of N frames of size M = m × n, and each
frame Ai with i = 1, ..., N . Vectorizing these frames and
concatenating them together, one can obtain an image matrix
A of size M × N . The matrix A is then decomposed as
L+S. The decomposition can thus be done by solving the
robust PCA problem (10). The sparse component contains the
changes between the two images, that are lesion. Extensive
experimental results are made on clinical medical show that
this method is of lower complexity and higher effectiveness
compared to the conventional change detection image, and it is
more robust to noise and the registration error. Fig. 13 shows
an example of results obtained on retina fundus images.

C. 3D Computer Vision

In 3D computer vision, several tasks need to avoid outliers
to obtain a reliable 3D reconstruction like in Struture from
Motion and 3D motion recovery in which the information of
interest is in the low-rank matrix L.

Fig. 13: From left to right: Original image, the low-rank
component, and the sparse component (Images from Fu et
al. [86]).

1) Structure from Motion: Structure from Motion (SfM)
refers to the process of automatically generating a 3D
structure of an object by its tracked 2D image frames.
Practically, the goal is to recover both 3D structure, namely
3D coordinates of scene points, and motion parameters,
namely attitude (rotation) and position of the cameras,
starting from image point correspondences. Then, finding
the full 3D reconstruction of this object can be posed as a
low-rank matrix recovery problem [9],[177],[291]. Suppose
that the object is rigid, there are N frames and M tracked
points L0 = [X,Y ]2M×N , and the intrinsic camera parameters
are fixed, then the trajectories of the feature points all lie
in a linear subspace of R2M×N with rank(L0) ≤ 4. L0

can be factorized as L0 = PQ where P ∈ R2M×4 contains
the rotations and translations whilst the first three rows of
Q ∈ R4×M represent the relative 3D positions for each feature
point in the reconstructed object. But, when there exists errors
due to occlusion, missing data or outliers, the feature matrix
is no longer of rank 4 and can be viewed as A0 = L0 + S0

where S0 corresponds to the noise. Then, recovering the full
3D structure of the object can be a low-rank matrix recovery
problem in the RPCA formulation. Practically, Liu et al. [177]
employed an `1- filtering approach to solve the decomposition
while Wu et al. [291] used the augmented Lagrange multiplier
(ALM) method [170]. Experiments on 43344 tracked points
over 1001 frames show that this approach provides the best
compromise between time and accuracy in comparison with
RSL [268] and the original RPCA-ALM [291]. In an other
work, Arrigoni et al. [8], [9] employed the RPCA and the
Robust Matrix Completion (RMC) formulations that are
robust to outliers and missing data, respectively. Thus, A
is decomposed into L + S1 + S2 + E where S1 is a sparse
matrix over a sampling set Ω representing the outliers in
the measurements, and S2 has a support on ΩC and it is an
approximation of PΩC (L), representing the completion of the
missing entries. Then, a modified version of GoDec [339]
called R-GoDec in [9] and dubbed R-GoDec in [8] is used
to solve this decomposition. Extensive experiments show that
this method outperforms in accuracy as compared to previous
state-of-the-art methods.

2) 3D Reconstruction: In robotics, the optical sensor
begins by capturing points of objects that exist in robots field
of vision but the acquired 3D point clouds are usually noisy
and they also have misalignment. To remedy these problems,
Arvanitis et al. [10] employed RPCA for removing outliers
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and noise of 3D point clouds. Let’s assume that the captured
3D point cloud A consists of m points represented as a
vector v = [x, y, z] in a 3D coordinate space x, y, z ∈ Rm×1

and v ∈ Rm×3. Then, some of these points are considered
as outliers and A is considered to be equal to L+S. L is a
low-rank matrix representing the space of real data while
S is a sparse matrix representing the space where outliers
lie. Once RPCA is applied, the number of vertices decrease
due to the removal of the outliers, so the number of the
remaining vertices are mr where mr < m. Because the
acquired 3D point cloud is unorganized in L, meaning
that the connectivity of its points is unknown, Arvanitis et
al. [10] used a triangulated model based on the k nearest
neighbors (k-NN) algorithm. The triangulation process allows
to specify the neighbors of each point so that the bilateral
filtering method can be used efficiently as the denoising
technique. At the end, a smoothed 3D mesh is obtained which
has a exploitable form to be used by other applications or
processing tasks.

3) 3D Motion Recovery: Skeleton tracking is a useful and
popular application of Microsoft Kinect but it cannot provide
accurate reconstructions for complex motions like in the pres-
ence of occlusion. Indeed, the human skeleton is represented
by a collection of joints, which are easily influenced by noises
and have drifting problems. To address this issue, Wang et
al. [283] developed a 3D motion recovery based on the time
coherence in a skeleton. Thus, this approach used a low-rank
matrix analysis to correct invalid or corrupted motions. Let the
captured skeleton sequence be stored in an observation matrix
A ∈ Rm×n which is obtained by stacking the 3D positions of
all the joints together, where m = 3 × nf with nf being the
number of frames of the input skeleton sequence, and n is the
number of joints (21 in [283], ignoring the finger joints). Then,
A is decomposed into L + S. L contains the clean motions
and S contains the noise. Experiments [283] with Microsoft
Kinect V2.0 show that this method accurately recovers high
quality skeletons from the invalid corrupted motion data in
high efficiency.

IV. VIDEO PROCESSING

As well as in image processing, video processing tasks
present either or both low-rank and sparsity aspects but
with the temporal information in addition of the spatial
information. Thus, both spatial and temporal aspects present
in video sequences can be exploited in the L+S decomposition
to enforce its adequacy to the concerned task. In practice,
RPCA via L+S decomposition is suitable for video processing
tasks in which (1) the observed video can be viewed as
the sum of a low-rank clean video without perturbation
and a sparse perturbations like in video restoration and
denoising, background/foreground separation, motion saliency
detection, video object segmentation and hyperspectral video
processing, (2) the observed video can be viewed as the
sum of a low-rank video and a sparse video like in key
frame extraction and UHD super resolution video, and (3)
only the low-rank aspect is if interest like in background

initialization, motion estimation, action recognition and video
summarization.

A. Background-Foreground Separation

Background-foreground separation in a video taken
by a static camera is a crucial step for detecting
moving objects in the video surveillance systems
[25],[26],[29]. Before the work of Candès in 2009,
this task was usually addressed by statistical modeling
[244],[251],[260], fuzzy modeling [15],[16],[17],[27]
and conventional subspace learning model either
reconstructive [65],[66],[162],[239],[207],[253],[282],[321]
and discriminative [84],[85],[192]. However, RPCA methods
immediately provided a very promising solution towards
moving object detection. However, because of the well-
known challenges such as dynamic backgrounds, illumination
conditions, color saturation, shadows, etc., the state-of-the-art
RPCA methods do not often provide accurate segmentation
[69],[72],[73],[74],[112],[113],[114],[115],[264],[297].

In RPCA, the background sequence is modeled by the low-
rank subspace that can gradually change over time, while
the moving foreground objects constitute the correlated sparse
outliers. Thus, A contains the observed video in which the
frames are stacked into column vectors and further decom-
posed as L+S. The decomposition is then solved via the
minimization problem (10). Fig. 14 shows original frames
of synthetic sequences from the BMC 2012 dataset [273]
and its decomposition into the low-rank matrix L and sparse
matrix S. We can see that L corresponds to the background
whereas S corresponds to the foreground. The fourth image
shows the foreground mask obtained by thresholding the
matrix S. The rank(L) influences the number of modes of the
background that can be represented by rank(L): if rank(L) is
too high, the model will incorporate the moving objects into
its representation whereas if rank(L) is too low, the model
tends to be uni-modal and then the multi-modality which
appears in dynamic backgrounds will not be captured.The
quality of the background-foreground separation is directly
related to the assumption of the low-rank and sparsity of
the background and foreground, respectively. However, as the
matrix S could contain both the moving objects and noise, the
stable decomposition A = L + S + E (with E is the noise) is
more suitable to separate moving objects from noise such as
those proposed by Zhou et al. [344].

This application of RPCA is the most investigated one
in the literature [31] because it is the most representative
challenging and demanding application as it needs to take into
account both spatial and temporal constraints with incremental
and real-time constraints [30],[32]. We summarize the main
solutions, a comparative evaluation on the CD.net 2012
dataset [102] and the extension of background/foreground
separation for moving cameras in the following sub-sections.
More details can be found in Bouwmans et al. [31],[32], and
Namrata et al. [274].
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Fig. 14: Background/foreground separation. From left to right:
Original images, low-rank matrix L (background), sparse
matrix S (foreground), and foreground mask (Sequences from
BMC 2012 dataset [273]).

1) Adding spatial and temporal constraints: In the liter-
ature, spatial and/or temporal constraints are mainly added
in the minimization problem. A general formulation can be
expressed as follows [31]:

min
L,S,E

||T (L)||p1norm1
+ λ1||Π(S)||p2norm2

+ λ2||E||p3norm3︸ ︷︷ ︸
Decomposition

+λ3||L||2,1 + δ1||grad(S)||1 + δ2TV (S) + δ3Ω(S)︸ ︷︷ ︸
Application

,

s.t. A = L + S + E, or A = W ◦ (L + S + E), or
A ◦ τ = L + S + E,

(26)
where p1, p2 and p3 are power in the set {1, 2}. λ1, λ2, λ3,
δ1, δ2 and δ3 are regularization parameters. norm1, norm2

and norm3 are norms which are used in the loss functions
to enforce the low-rankness, sparsity and noise constraints
on L, S, and E, respectively. norm1 is taken to provide
the following loss functions: `0-loss function (|| · ||0), `1-loss
function (||·||1), `2-loss function (||·||2), nuclear norm function,
Frobenius loss function, and log-sum heuristic function [62].
Other loss functions can be used such as `σ-loss function
[305], Least Squares (LS) loss function (|| · ||2F ), Huber loss
function [7], M -estimator based loss functions [121], and
the generalized fused Lasso loss function [294],[295]. norm2

is usually taken to force spatial homogeneous fitting in the
matrix S, that is for example the norm `2,1 with p2 = 1
[69],[72],[73],[74],[112],[113],[115],[114],[264]. It is impor-
tant to note that the first part of (26) concerns mainly the de-
composition into low-rank plus sparse and noise matrices and
second part concerns mainly the application of background-
foreground separation. The terms associated with background-
foreground separation can be described as follows:
• The function T (·) is a set of invertible and independent

transformations processed on L like in incPCP-TI [236],
[252] to tackle translational and rotational camera jitter.

• The function Π(·) is a linear operator processed on S to
enforce spatial and/or temporal constraints. Π(·) weights
its entries according to their confidence of correspon-
dence to a moving object such that the most probable
elements are unchanged and the least are set to zero. Π(·)

can be computed with optical flow [208] and with salient
motion detection [256].

• The term λ3||L||2,1 ensures that the recovered L has exact
zero columns corresponding to the outliers.

• ||grad(S)||1, TV (S), and Ω(S) are the gradient
[113],[114],[115],[287], the total variation
[41],[111],[113],[114],[288] and the static/dynamic
tree structured sparsity norm [70],[71],[74],[180],[267]
applied on the matrix S to enforce the spatial and/or
temporal constraints, respectively.

• A weighting matrix W [256],[301],[308] or a transforma-
tion τ [68],[69],[70],[71],[72],[73],[74],[119],[120],[219]
can also be used as a constraint in (26) to enforce
the recovery of the background that appears at only
a few frames and to eliminate the influence of light
conditions, camouflages, and dynamic backgrounds, and
to model potential global motion that the foreground
region undergoes, respectively.

2) Online/incremental and real-time algorithms:
Even if fast solvers [35],[158],[164],[314],[336] were
developed to make the iterations as few as possible as
well as SVD algorithms [83],[145],[335] were designed
to make the iterations as efficient as possible, batch
algorithms can not reach the requirement of real-time
computation for background/foreground separation. Thus,
to update the model when a new data arrives, several
online/incremental algorithms can be found and they
can be classified in the following categories [274]: (1)
dynamic RPCA algorithms such as the Recursive Projected
Compressive Sensing (ReProCS) algorithm and its variants
[107],[107],[108],[106][224],[226] provided with performance
guarantees, (2) incremental PCP algorithms such as incPCP
and its variants [232],[233],[234],[235],[236],[252], (3)
online deomposition algorithms [140], (4) subspace tracking
algorithms such as the Grassmannian Robust Adaptive
Subspace Tracking Algorithm (GRASTA) [117], the `p-
norm Robust Online Subspace Tracking algorithm (pROST)
[243], the Grassmannian Online Subspace Updates with
Structured-Sparsity algorithm (GOSUS) [297], Fast Adaptive
Robust Subspace Tracking algorithm (FARST) [3], and (5)
life-long learning algorithm [20]. As it is expected that
background-foreground separation also needs to be achieved
in real-time, several strategies have been developed which
are generally based on compressive sensing algorithms
[188],[218],[279],[221],[187],[186], sub-matrices computation
[220] and GPU implementations [6],[232].

3) Dealing with the challenges: Several challenges appear
in a video because of the type and locations of the camera,
and its environments. Thus, several authors designed RPCA
formulation for videos taken by a fixed color CCD camera
(in most of the cases), but also by hyperspectral camera
[257], by camera trap [97],[98],[246] and by aerial camera
[79],[80],[81],[82]. Furthermore, dedicated methods also exist
for infrared cameras [241] and RGB-D cameras [267],[132].
For the environments which present dynamic backgrounds,
illumination changes, camera jitter, etc., many modified
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RPCA approaches have been designed according to the
following very popular background modeling challenges:

• Noisy images: To cope with noisy videos in the presence
of rainy or snowy conditions, Javed et al. [131] used a
real time Active Random Field (ARF) constraints using
a probabilistic spatial neighborhood system. After that,
Online Robust PCA (OR-PCA) is used to separate the
low-rank and sparse component from denoised frames. In
addition, a color transfer function is employed between
the source and input image for handling global illumi-
nation conditions which is a very useful technique for
surveillance agents to handle the nighttime videos.

• Bootstrapping: In clutter scenes, where background is
always occluded by heavy foreground objects, Javed et
al. [136] developed a Motion-Aware Graphs Regularized
RPCA (MAGRPCA).

• Camera motion: Several strategies are used in literature
to deal with camera motion: (1) transformation based
methods in which a transformation τ(·) is applied to
the data matrix A [68],[70],[72],[74],[120],[219],[259] or
to the low-rank matrix L [236],[252], (2) compensation
based methods in which the motion due to the camera
is compensated in the pre-processing step like in Tian
et al. [267] and Javed et al. [136], and (3) endoge-
nous convolution based methods in which convolutional
sparse representations model the effects of non-linear
transformations such as translation and rotation, thereby
simplifying or eliminating the alignment pre-processing
task [286].

• Illumination changes: To be robust to illumination
changes, Javed et al. [136] incorporated spectral graph
regularization in the RPCA framework while Newson et
al. [204] used a weighted cluster graph. In the case of
time-lapse videos and low-frame rate videos, Shakeri and
Zhang [246] proposed a Low-rank and Invariant Sparse
Decomposition (LISD) method where a prior illumination
map is incorporated into the main objective function.

• Dynamic backgrounds: Zhou and Tao [340],[341]
tracked multiple sparse object flows (motions) in video
by using a Shifted Subspaces Tracking (SST) strategy in
order to segment the motions and recover their trajectories
by exploring the low-rank property of background and
the shifted subspace property of each motion. Thus, SST
allows the model to separate the motions of the moving
objects of interest and the motions of background objects
such as trees and waves. Javed et al. [139],[141] used
Markov Random Field (MRF) in OR-PCA. In RPCA
based on Salient Motion Detection (SMD-RPCA), Chen
et al. [47] defined a saliency clue over the sparse matrix
S to filter out the dynamic backgrounds globally. In an
other work, Wu et al. [292] employed a Multi-Component
Group Sparse RPCA in which the observed matrix is
decomposed into a low-rank static background L, a group
sparse foreground S1, and a dynamic background S2.
Moreover, each images iis over-segmented into 80 super-
pixels using the Simple Linear Iterative Clustering (SLIC)

[2] to take into accoun the spatial constraint.
• Intermittent motion of foreground objects: In MAGR-

PCA, Javed et al. [136] used an optical flow algorithm
between consecutive frames to generate the binary mask
of motion. This motion mask allows to remove the mo-
tionless video frames and create a matrix comprising only
dynamic video clips. Thus, MAGRPCA incorporates the
motion message and encodes the manifold constraints and
is very efficient because motionless frames are removed
in order to handle large outliers in the background model.
In SMD-RPCA, Chen et al. [47] leveraged the previously
detected salient motion to guide the update of the current
low-rank prior. Newson et al. [204] used a weighted
cluster graph.

• Ghost suppression: Rodriguez and Wohlberg [237] pro-
posed an algorithm called gs-incPCP which can suppress
the ghost by using two simultaneous background esti-
mates based on observations over the previous N1 and N2

frames with N1 � N2 in order to identify and diminish
the ghosting effect. Ebadi et al. [70], [71] proposed a
tandem algorithm which involves an initialization step
before the optimization takes place. It is different from
algorithms that require a two-pass optimization [92],[93],
where the optimization is twice performed to refine
results. Introducing a prior knowledge of the spatial dis-
tribution of the outliers to the model, Ebadi et al. further
proposed methods for faster convergence [70],[71].

• Shadows: Li et al. [154] designed a box constraint RPCA
(BC-RPCA) to separate the moving objects and the
shadows. So BC-RPCA models the input video as three
parts which are low rank background, sparse foreground
and moving shadows. Experiments on several scenes
show that BC-RPCA works well on shadow and varying
lighting condition challenges.

All these aforementioned key limitations need to be addressed
in the RPCA formulation for background/foreground
separation. Furthermore, the evaluation needs to be conducted
with a large scale dataset such as the CD.net 2012/2014
dataset5 [102][103] or the BMC 2012 dataset6 [273] to allow
full and fair comparisons.

4) Comparative Evaluation: In this part, we show the per-
formance of the current state-of-the-art RPCA-based methods
for background/foreground separation using the CD.net 2012
dataset [102], and a more detailed analysis can be found in
Namrata et al. [274]. This dataset contains almost 31 video
sequences which are divided into six different video categories
comprising ‘Baseline’, ‘Dynamic Backgrounds’ (DB), ‘Inter-
mittent Object Motion’ (IOM), ‘Thermal’, ‘Camera Jitter’,
and ‘Shadows’ presenting the different challenges previously
enumerated. The resolution of the videos also varies from
320 × 240 to 480 × 720 with hundred to thousand number
of frames. We compared a total of 25 existing methods
comprising 15 batch algorithms and 10 online algorithms. The
implementation of all these algorithms is also available in

5http://changedetection.net/
6http://bmc.iut-auvergne.com/
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the LRSLibrary. These methods are classified into three main
categories:

• Provable methods: Principal Component Pursuit (PCP)
[37], non-convex Alternating Projections based RPCA
(AltProj) [203], Near Optimal RMC (NO-RMC)[54],
RPCA via Gradient Descent (RPCA-GD) [309], Recur-
sive Projected Compressive Sensing (ReProCS-provable)
[201],[315], and Modified-PCP [316].

• Heuristic methods: Recursive Projected Compressive
Sensing (ReProCS) [106], Grassmannian Robust Adap-
tive Subspace Tracking Algorithm (GRASTA) [118],
Three Term Decomposition (3TD) [208], Two-Pass
RPCA (2PRPCA) [92], Go Decomposition (GoDec)
[339], Online RPCA (OR-PCA) [139], [134], `p Robust
Online Subspace Tracking (pROST) [243] and Probabilis-
tic Robust Matrix Factorization (PRMF) [284] .

• Heuristic methods with application specific con-
straints: incremental Principal Component Pursuit (in-
cPCP) [235], Motion-assisted Spatiotemporal Cluster-
ing of Low-rank (MSCL) [138], Detecting Contiguous
Outliers in the LOw-rank Representation (DECOLOR)
[342], Low-rank Structured-Sparse Decomposition (LSD)
[180], Total Variation RPCA (TVRPCA) [41], Spa-
tiotemporal RPCA (SRPCA) [137], Robust Motion As-
sisted Matrix Restoration (RMAMR) [301], Generalized
Fussed Lasso [294], Grassmannian Online Subspace Up-
dates with Structured-sparsity (GOSUS) [297], Contigu-
ous Outliers Representation via Online Low-rank Ap-
proximation (COROLA) [245], and Online Mixture of
Gaussians for Matrix Factorization with Total Variation
(OMoGMF+TV) [310], respectively.

For qualitative evaluation, visual results were reported using
15 challenging sequences which contained two sequences
namely ‘highway’ and ‘office’ from ‘Baseline’ category,
three sequences ‘canoe’, ‘boats’, and ‘overpass’ from DB
category, two sequences ‘traffic’ and ‘badminton’ from
‘Camera Jitter’ category, three sequences ‘winterDriveway’,
‘sofa’, and ‘streetLight’ from IOM category, three sequences
‘backdoor’, ‘copyMachine’ and ‘cubicle’ from ‘Shadows’
category, and two sequences ‘library’ and ‘lakeside’ from
‘Thermal’ category. Fig. 15 provides qualitative results
and comparisons of 22 current state-of-the-art RPCA-based
methods on 15 sequences. The execution times required by
all of the algorithms were compared on a machine with
a 3:0 GHz Intel core i5 processor and 4GB of RAM. For
quantitative evaluation, the used metrics come from the
CD.net 2012 dataset [102] such as the recall, the precision,
and the F1-measure score. Recall gives the percentage of
corrected pixels classified as background when compared with
the total number of background pixels in the ground truth.
Precision gives the percentage of corrected pixels classified
as background as compared at the total pixels classified as
background by the algorithm. A good performance is obtained
when the detection rate also known as recall is high without
altering the precision. Based on these metrics, the F1-measure
is computed as F1 = 2×Recall×Precision

Recall+Precision . The F-measure
characterizes the performance of classification in precision-

recall space. The aim is to maximize F1-measure closed to
one. Table I shows the quantitative results in terms of average
F1 measure score as well as the computational time in seconds
for all of the compared algorithms applied on the large video
sequence known as boats from DB category. On average,
among all algorithms that do not use extra constraints,
PRMF, 2PRPCA, ReProCS-provable, ReProCS had the best
performance with F1 scores of 74-78%. On average for all
datasets, only two of the methods that use extra constraints
that are MSCL and GOSUS were better and only by a little by
achieving 83 and 81% scores, respectively. For computational
time, ReProCS, ReProCS-provable are the fastest methods
in provable methods category, while from the heuristic
methods category, OR-PCA and GRASTA are even faster but
have worse performance. COROLA and OMoGMF+TV in
heuristic methods with additional constraints category are top
performing methods in terms in computation time in seconds.
Practically speaking, these results testify the fact that a RPCA
method for background/foreground should take into account
both spatial and temporal constraints as well as it should be
incremental to be effectively usable in real applications.

5) Extension to moving cameras: Background-foreground
separation is also needed in video taken by moving cameras
such as PTZ cameras and handheld cameras [194]. This
issue is actually less investigated than the static case. Unlike
strategies [71],[119],[219],[236],[252] for small camera jitter
which used affine transformation model that describes the
motion of the frames in the quasi-static cameras case, Gao
et al. [88],[198] produced a panoramic low-rank component
that spans the entire field of view, automatically stitching
together corrupted data from partially overlapping scenes.
Practically, the algorithm proceeds by registering the frames
of the raw video to a common reference perspective and then
it minimizes a modified RPCA cost function that accounts
for the partially overlapping views of registered frames and
includes TV regularization to decouple the foreground from
noise and sparse corruption. The augmented RPCA problem
formulation is then expressed as follows:

min
L,S1,S2

1

2
||PM (A− L− S1 − S2)||2F + λ1||L||∗

+ λ2||S1||1 + λ3TV (S2),
(27)

where L, S1, and S2 represent the background (low-rank
component), the sparse corruptions (sparse component), and
the foreground (smoothly-varying matrix), respectively. TV (.)
is the total variation regularizer [114]. The low-rank compo-
nent is obtained via the optimal low-rank matrix estimator
(OptShrink [199]) that requires no parameter tuning. Exper-
iments show that this algorithm is robust to both dense and
sparse corruptions of the raw video and yields superior back-
ground/foreground separations compared to the original RPCA
[37] and total variation regularized RPCA [41]. For slowly
moving cameras in the case of anomaly detection in videos,
Thomaz et al. [266] employed an algorithm that computes the
union of subspaces that best represents all the frames from a
reference video as a low-rank projection plus a sparse residue.
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Fig. 15: Comparison of the qualitative results of the 15 input images from ChangeDetection.net dataset. From left to right: (a)
set of 15 input images. (b) the ground truth of foreground objects. (c) background subtraction estimated by RPCA via PCP
method. (d) GoDec. (e) RPMF. (f) RPCA-GD. (g) 3TD. (h) pROST. (i) incPCP. (j) RMAMR. (k) GRASTA. (l) ReProCS. (m)
TVRPCA. (n) SRPCA. (o) NO-RMC. (p) LSD. (q) GOSUS. (r) OMoGMF+TV. (s) COROLLA. (t) OR-PCA. (u) 2PRPCA. (v)
DECOLOR. (w) GFL. (x) MSCL. From to bottom: Rows (1)-(2): Sequences ‘Highway’ and ‘office’ from category ‘Baseline’.
Rows (3)-(5): Sequences ‘canoe’, ‘boat’, and ‘overpass’ from category DB. Rows (6)-(7): Sequences ‘badminton’ and ‘traffic’
from category ‘Camera Jitter’. Rows (8)-(10): Sequences ‘sofa’, ‘winter Driveway’, and ‘streetLight’ from category IOM. Rows
(11)-(13): Sequences ‘BackDoor’, ‘cubicle’, and ‘copyMachine’ from category ‘Shadow’. Rows (14)-(15): Sequences ‘library’
and ‘lakeside’ from category ‘Thermal’ (Images from Namrata et al. [274]).

The intrinsic structure of the sparse decomposition is used
in order to detect the anomalies without requiring previous
video synchronization. Because the original RPCA is able to
project the data onto a single subspace only, Thomaz et al.
[266] designed an algorithm based on the Robust Subspace
Recovery (RoSuRe [22]) which is able to project a data
onto a union of subspaces of lower dimensions. The moving-
camera RoSuRe (mcRoSuRe) provides good detection results
while at the same time avoiding the need for previous video
synchronization. For moving and panning cameras, Chau and
Rodriguez [44] designed an incremental PCP algorithm called
incPCP-PTI which continuously aligns the low-rank compo-
nent to the current reference frame of the camera. Based on the
translational and rotational jitter invariant algorithm incPCP-
TI [236], incPCP-PTI continuously estimates the alignment
transformation T (·) in order to align the previous low-rank
representation with the observed current frame. Furthermore,
instead of using iterative hard threshold as in incPCP-TI, the
low-rank approximation problem is solved in the reference
frame by applying an adaptive threshold to the residual.
Further research might focus on other types of distortions like

perspective changes, zooming in/out of the camera, and the
reduction of the time for high frame rate real-time applications.

B. Motion Saliency Detection
Motion saliency detection is crucial for video processing

tasks, such as video segmentation, object recognition and
adaptive compression. Different from image saliency, moving
objects catch human being’s attention much easier than static
ones. Xu et al. [300] used the low-rank and sparse decomposi-
tion on video slices along X−T and Y−T planes to achieve the
separation of foreground moving objects from backgrounds.
Naturally, the low-rank component L corresponds to the back-
ground and the sparse component S captures the motion ob-
jects in the foreground. Then, the motion matrices, i.e., abs(S)
obtained from the X−T(Y−T) slices are integrated together
as ScubeXT (ScubeYT) along X − Y − T. The initial saliency
map cube is obtained by computing norm(ScubeXT ∗ScubeYT)
where ∗ is the element-wise product operator, and norm()
represents normalization processing. The size of T equals the
size of the video and it can also be defined as the size of a sub-
video. In addition, a spatial information refinement preserve
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TABLE I: Average F1 score of provable methods, heuristic methods, and heuristic methods with specific constrains for
background/foreground separation. Time is shown for a video having 320 × 240 resolution of 8, 000 frames. The best and
second best performing methods are shown in bold and bold italic, respectively.

Provable Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time (secs/frame)
PCP (batch) Fig. 15 (c) [37] 0.75 0.69 0.62 0.73 0.65 0.48 0.65 4.19

AltProj (batch) [203] 0.78 0.71 0.60 0.76 0.69 0.58 0.68 2.38
NO-RMC (batch) Fig. 15 (o) [54] 0.71 0.64 0.64 0.66 0.71 0.50 0.64 2.85

RPCA-GD (batch) Fig. 15 (f) [309] 0.74 0.62 0.68 0.75 0.66 0.49 0.65 2.46
ReProCS-provable (online) [201], [315] 0.77 0.77 0.69 0.71 0.74 0.70 0.73 0.74

Mod-PCP (online) [316] 0.75 0.64 0.70 0.65 0.69 0.70 0.68 0.44
Heuristic Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time

ReProCS (online) Fig. 15 (l) [106] 0.80 0.76 0.72 0.75 0.77 0.69 0.74 0.61
GRASTA (online) Fig. 15 (k) [118] 0.66 0.35 0.43 0.52 0.42 0.35 0.45 1.16

3TD (batch) Fig. 15 (g) [208] 0.88 0.75 0.72 0.68 0.78 0.55 0.72 2.17
2PRPCA (batch) Fig. 15 (u) [92] 0.92 0.79 0.81 0.80 0.76 0.65 0.78 1.63
GoDec (batch) Fig. 15 (d) [339] 0.77 0.58 0.48 0.51 0.62 0.38 0.55 1.56

OR-PCA (online) Fig. 15 (t) [139] 0.86 0.75 0.70 0.74 0.76 0.56 0.72 0.22
pROST (online) Fig. 15 (h) [243] 0.79 0.59 0.79 0.70 0.58 0.48 0.65 2.03

PRMF (batch & online) Fig. 15 (e) [284] 0.92 0.77 0.85 0.88 0.83 0.48 0.78 2.40
Heuristic Methods with Specific Constraints Baseline DB Camera Jitter Shadow Thermal IOM Average Time

incPCP (online) Fig. 15 (i) [235] 0.81 0.71 0.78 0.74 0.70 0.75 0.74 0.41
MSCL (batch) Fig. 15 (x) [138] 0.87 0.85 0.83 0.82 0.82 0.80 0.83 1.68

DECOLOR (batch) Fig. 15 (v) [342] 0.92 0.70 0.68 0.83 0.70 0.59 0.73 1.88
LSD (batch) Fig. 15 (p) [180] 0.92 0.71 0.78 0.81 0.75 0.67 0.77 1.43

TVRPCA (batch) Fig. 15 (m) [41] 0.84 0.55 0.63 0.71 0.69 0.57 0.66 1.48
SRPCA (batch) Fig. 15 (n) [137] 0.82 0.84 0.78 0.77 0.79 0.80 0.80 0.59
RMAMR (batch) Fig. 15 (j) [301] 0.89 0.82 0.75 0.73 0.75 0.66 0.76 1.32

GFL (batch) Fig. 15 (w) [294] 0.83 0.74 0.78 0.8 2 0.76 0.59 0.75 2.40
GOSUS (online) Fig. 15 (q) [297] 0.90 0.79 0.82 0.84 0.80 0.74 0.81 0.89

COROLA (online) Fig. 15 (s) [245] 0.85 0.86 0.82 0.78 0.80 0.71 0.80 0.39
OMoG+TV (online) Fig. 15 (r) [310] 0.85 0.76 0.78 0.68 0.70 0.71 0.74 0.19

(a) (b) (c) (d) (e) (f)

Fig. 16: Motion Saliency Detection. From left to right: (a)
Original images, (b) consecutive frame difference, (c) MOG
[260], (d)Temporal Spectrum Residual (TSR) [57], (e) Raw
saliency map [57], and (f) final result obtained by the RPCA
algorithm [57] (Images from Xu et al. [300]).

the completeness of the detected motion objects. From Fig. 16,
we can see that the RPCA algorithm outperforms a standard
approach called Temporal Spectrum Residual (TSR) [57]as
well as background subtraction algorithms like Consecutive
Frame Difference (CFD) and Mixture of Gaussians (MoG)
[260].

C. Motion Estimation

Motion estimation concerns the process of determining
motion vectors for the transformation from one 2D image
to another which is usually done from adjacent frames in a
video sequence. Ros et al. [238] addressed this problem with
a modified formulation of RPCA in the special case of camera-
pose recovery and visual odometry. Practically, Ros et al. [238]
considered the estimation of motion models Mi

N
i=1 between

pair of stereo frames Fi,Fi+1 along a given sequence of N
frames {Fi}Ni=1. Each frame Fi = (Vli,V

r
i ) consists of two

images taken from the left and right cameras at the same time
instant ti. This formulation is suitable for the stereo visual
odometry problem with a rigid 3D transformation [94]. When
estimating the transformation Mi, one should account for the
presence of noise and outliers in the observations in order to
avoid a biased solution. Thus, Ros et al. [238] exploited the
rank constraints present in rigid 3D motions to identify out-
liers. Practically, the information resultant from the low-rank
and sparse decomposition is used to make a binary decision
on each tuple of point matches (column) about its pertinence
to the outlier set. Despite the impossibility of performing an
exact recovery of every element of the observation matrix,
the resultant information is enough to make this set of binary
decisions. Thus, a Robust Decomposition with Constrained
Rank (RD-CR) is employed and is formulated as follows:

min
L,S

1

2
||A− L− S||2F + λ||S||1, s.t. rank(L) ≤ r, (28)

This formulation enables solving problems in harder condi-
tions, i.e., higher ranks and greater proportions of outliers.
However, in motion estimation problems, the rank is still too
high to achieve an exact estimation of L and S. For this reason,
the problem is addressed by using the residual matrix S to infer
which columns (point matches) are outliers. From the results,
this approach is competitive against state-of-the-art methods
on the KITTI dataset7 [94] in terms of accuracy and is more
efficient in terms of computation.

D. Tracking

Tracking in computer vision refers to a problem which
allows to track an object from a temporal sequence, and then

7http://www.cvlibs.net/datasets/kitti/eval-odometry.php
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allows to estimate the trajectory of an object in the image
plane when it moves around a scene. Object detection and
tracking are two independent processes in video sequences.
But, object detection can be improved by using a tracking
feedback. Thus, Lin et al. [168] introduced tracking feedback
in the RPCA formulation as follows:

min
L,Gi,j∈{0,1}

1

2
||PG⊥(A− L)||2F + λ1||L||∗

+ λ2||f(G)||1 + λ3||t(G)||1 + γ||B · vec(G)||1,
s.t. rank(L) ≤ r,

(29)

where G ∈ {0, 1}n×m denotes the foreground support and its
value is 0 if (i, j) is background and 1 if (i, j) is foreground.
PG(X) is the orthogonal projection of the matrix X onto the
linear space of matrice supported by G, and PG⊥(X) is the
complementary projection. f(G) is the fractal dimension of
the object support G and B and it is the node-edge incidence
matrix. t(G) is the object tracking process of support G. As
the objective function of (29) is non-convex, an alternating
method is to separate the energy minimization over L and G
into two steps, respectively. L-step is a convex optimization
problem using the RPCA algorithm, and G-step can be solved
by a Graph Cut algorithm. This algorithm called Group Ob-
ject Detection and Tracking (GODT) outperforms DECOLOR
[342] on the I2R dataset [156].
Shan and Chao [247] designed an improved `1-tracker in a
particle filter framework using RPCA and random projection.
Practically, three target templates and several background
templates are employed into a template set:
• The target templates are obtained as follows: (1) a fixed

template obtained from a manually selected target in the
first frame, (2) a dynamic template updated via RPCA
which builds a stable appearance model for long-time
tracking, and (3) a dynamic template which is frequently
reinitialized based on the stable template and is updated
rapidly to represent the fast appearance change of the
target. First, a dataset A0 is constructed based on the
tracking results in the former N frames. For the similarity
of the tracking results, a low-rank matrix is recovered
from the dataset by removing the gross corruption and
even outlier. Each column of A0 is a reduced dimensional
feature vector from one normalized tracking result. When
a next N+ tracking results are available in A+, they are
used to update the data matrix A0. So,

[
A0A+

]
is cleaned

by RPCA as follows:

min
[L0L+],[S0S+]

∥∥[L0L+
]∥∥
∗ + λ

∥∥[S0S+
]∥∥

1
,

s.t.
[
A0A+

]
=
[
L0L+

]
+
[
S0S+

]
,

(30)

where
[
L0L+

]
denotes the new cleaned matrix, and[

S0S+
]

is the new sparse error matrix. The j-th column
of matrix A0 is then replaced by the i-th column of matrix
A+ to be used when the next N+ tracking results arrive.

• The background templates consist of several background
image patches cropped from the background regions of

the former frames in order to strengthen the algorithms
ability of distinguishing the background and foreground.
These templates combined with the three target templates
are then used to represent the candidate image patches
sparsely.

Finally, the candidate with the minimum distance to its
linear combination corresponding to only the target templates
is selected as the tracking target. Experiments show that
this RPCA based `1-tracker outperforms in certain critical
situations as compared to several state-of-the-art algorithms.
In another work, Elnakeeb and Mitra [78] considered the
incorporation of a line constraint for structured estimation.
Practically, multiple forms of structure on matrices are
extended from low-rank and sparsity. The line constraint is
introduced via a rotation that yields a secondary low rank
condition. Then, Elnakeeb and Mitra [78] applied this method
to single object tracking in video wherein the trajectory can be
parameterized as a line. Noticeable performance improvement
is obtained over previous background subtraction methods
that do not exploit the line structure.

E. Action Recognition

Motion representation is an important task in human action
recognition and most traditional methods usually require in-
termediate processing steps such as actor segmentation, body
tracking, and interest point detection, making these methods
sensitive to errors due to these processing steps. To remedy this
limitation, Huang et al. [126] designed a motion representation
method for action recognition by extracting refined low-rank
features of RPCA. After extensive experiments, Huang et al.
[126] determined the optimal λ for extracting the discrim-
inative information of motion. Then, the RPCA algorithm is
applied on the all action image sequences with the appropriate
parameter λ to obtain the low-rank images and sparse error
images. The low-rank images of all the action image sequences
are very similar and represent the discriminative information
of motion, while the sparse error images are different and
represent the individual differences of each action image.
Thus, the low-rank images are kept to perform action recog-
nition, and the sparse error images are discarded. To represent
the characteristic of the obtained low-rank images, Huang et
al. [126] employed the Edges Distribution Histogram (EDH)
and Accumulative Edges Distribution Histogram (AEDH) to
encode the statistical distribution of the low-rank images into
a feature vector. Finally, the Support Vector Machine (SVM)
is applied to recognize human actions represented by EDH or
AEDH feature. Experiments on the KTH action dataset8 [148]
show that this algorithm outperforms previous approaches with
an average accuracy of 96.16%.

F. Key Frame Extraction

Key frame extraction concerns the problem of selecting
a subset of the most informative frames from a video to
summarize its content such as in video summarization, search,

8http://www.nada.kth.se/cvap/actions/
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indexing, and prints from video. Most state-of-the-art methods
work directly with the input video dataset, without considering
the underlying low-rank structure of the dataset. Other meth-
ods exploit the low-rank component only but they ignored the
other key information in the video. On the other hand, Dang
et al. [60] developed a Key Frame Extraction (KFE) algorithm
based on RPCA which decomposes the input video data into
a low-rank component which reveals the information across
the elements of the dataset, and a set of sparse components
each of which containing distinct information about each
element. Then, Dang et al. [60] combined the two information
types into a single `1-norm based non-convex optimization
problem to extract the desired number of key frames. Extensive
experiments on a variety of consumer and other types of videos
show that RPCA-KFE with the ground truth and with related
state-of-the-art algorithms clearly illustrates its viability.

G. Video Object Segmentation

Video segmentation concerns the partition of a video into
several semantically consistent spatio-temporal regions. It is a
fundamental computer vision problem in several applications
like video analytics, summarization and indexing. But, its
computational complexity and inherent difficulties such as
the large intra-category variations and the large inter-category
similarities make this task very challenging. For streaming
video segmentation, Li et al. [152],[153] employed a Sub-
Optimal Low-rank Decomposition (SOLD) algorithm which
tracks the low-rank representation by exploiting the low-
rank structure of low-level supervoxel features. Since the
supervoxel feature matrix is often noisy or grossly corrupted,
the low-rank representation can be formulated as follows:

A = AL + S + E, s.t. rank(Z) ≤ r, (31)

where r is the desired rank and r � n. Then, Li et
al. [152],[153] integrated the discriminative replication prior
based on internal video statistics into SOLD based on the
observation that small-size video patterns within the same ob-
ject. An inference algorithm is employed to perform streaming
video segmentation in both unsupervised and interactive sce-
narios. Extensive experiments show that SOLD outperforms
other video segmentation approaches in both accuracy and
efficiency.

H. Video Coding

Video coding aims to generate a content representation
format for storage or transmission. Due to the growing needs
for public security, traffic surveillance and remote healthcare
monitoring, efficient compression and fast transmission of
large amount of surveillance videos are required in practice.
Surveillance videos are usually with a static or gradually
changing background. The state-of-the-art block-based codec,
H.264/AVC, is not sufficiently efficient for encoding surveil-
lance videos since it cannot exploit the strong background
temporal redundancy in a global manner. First, Chen et al. [45]
applied the RPCA formulation called Low-Rank and Sparse
Decomposition (LRSD) to decompose a surveillance video
into the low-rank component (background) and the sparse

component (moving objects). Then, the Go Decomposition
(GoDec) algorithm [339] which is a randomized algorithm for
low-rank and sparse matrix decomposition in noisy case is em-
ployed to separate the components of A, so that A = L+S+E,
where L is a rank-r matrix. Then, different coding methods
for the two different components were designed. The frames
of the background are representing by very few independent
frames based on their linear dependency, which significantly
removes the temporal redundancy. Experimental results show
that LRSD significantly outperforms H.264/AVC, up to 3 dB
PSNR gain, especially at relatively low bit rate. But, LRSD
cannot handle high-resolution or long-time videos due to its
high memory requirement. To remedy to these limitations,
Chen et al. [46] designed an incremental LRSD (ILRSD) algo-
rithm that can effectively handle large-scale video sequences
without much performance loss. Guo et al. [110] employed
a dictionary approach based on a small number of observed
frame. With the trained background dictionary, every frame
is separated into the background and moving object via the
RPCA formulation. As in LRSD, GoDec [339] is also used
for the decomposition. Then, the compressed motion are stored
together with the reconstruction coefficient of the background
corresponding to the background dictionary. The decoding is
carried out on the encoded frame in an inverse procedure. This
algorithm outperforms H.264/AVC codec in terms of both file
size and PSNR for surveillance videos.
For surveillance video coding, the rate-distortion analysis
shows that a larger penalty λ needs to be used if the back-
ground in a coding unit had a larger proportion. To address
this problem, Zhao et al. [331] performed an analysis on the
relationship between the optimal penalty and the background
proportion, and then designed a penalty selection model to
obtain the optimal coding performance for surveillance video.

I. Hyperspectral Video Processing

Chang and Gerhart [42],[96] employed the RPCA decom-
position for the detection of gaseous chemical plumes in
hyperspectral video data. These video sequences are typically
very large in size due to the fact that the images themselves
are of high resolutions. An algorithm which decomposes a
hyperspectral video sequence into a low-rank and sparse repre-
sentation A = L+S is then used and applied to the detection of
chemical plumes. As the problem is the same as background-
foreground separation, the input frames are stacked as columns
in the matrix A. But, the memory requirement of this problem
is typically more challenging than in the color case. Let each
frame of a dataset be a nr×nc×nb (128×320×129) data cube,
then by concatenating along the spectral dimension it produces
a vector of length nr×nc×nb (5, 283, 840). The data matrix A
with N frames is of size nr×nc×nb×N (5, 283, 840×100). In
practice, pre-processing techniques are used to make the task
computationally feasible. For example, one can select a subset
of the spectral bands based on noise or performing dimension
reduction on each frame of the video sequence. Experiments
show that the low rank approximation captures the background
very well. After the plume is released, the sparse component
captures the movement of the plume through each band of the



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2018 21

video sequence. Applying this method to the original (non-
reduced) video sequence results in the background matrix
approximating stationary signals and the sparse component
showing moving signals and noise.

J. Video Restoration and Denoising

Video restoration concerns the recovery of the original one
from the degraded video data. It is one of the fundamental
problems in video processing, especially in the current days.
Indeed, old films which need to be restored present noise
contamination, image blurring and missing data. Second, with
the prevalence of webcams and camera phones, the problem
of video restoration has become even more important than
before. Practically, there are two main kinds of restoration:
video denoising in the presence of random-valued noise in
the data acquisition and transmission due to faulty sensor
or transmission, and video inpainting for archived film to
repair videos corrupted by line scratches, hairs and dust. Ji
et al. [142] grouped similar patches in the spatio-temporal
domain and formulated the video restoration problem as a
joint sparse and low-rank matrix approximation problem. First,
for each reference patch p, similar patches are found in the
spatio-temporal domain by using a patch matching algorithm.
Assume that m match patches are found and denoted as
{pi}

m
i=1. If each patch pi is represented by a vector pi ∈ Rn×n

by concatenating all columns of the patch into a column vector,
the resulting patch stack is then a matrix A ∈ Rn2×m with
A = (p1,p2, ...p3). As the matrix A can be corrupted by noise
and/or outliers, A is then decomposed with the stable RPCA
formulation A = L + S + E, where L is the original patch
matrix for recovery, S is the matrix of outliers and E is the
random image noise:

min
L,S
||L||∗ + λ||S||1 +

1

2µ
||A− L− S||2F , (32)

with µ defined with an empirical parameter. Experiments show
that this method compares favorably against many existing
algorithms on both video denoising and video inpainting. This
method can effectively remove the noise, but must transform
two-dimensional samples to one-dimensional vectors and the
input matrix should be approximatly low rank matrix. To
remedy this limitation, Zhao et al. [334] used an extended
RPCA algorithm called Low Rank Approximations of Matri-
ces (GLRAM) to obtain better performance than RPCA. As
Ji et al. [142], Guo and Vaswani [109] also considered that
many noisy or corrupted videos can be split into three parts
but they used the notion of layers instead of patches. Thus,
PCP are first used to initialize the low-rank layer, the sparse
layer, and the small residual which is small and bounded.
After, ReProCS [106] is used overtime to quickly separate
the layers in videos with large-sized sparse components and/or
significantly changing background images. This video-layering
step is followed by VBM3D [58] on each of the two layers.
Thus, VBM3D exploits the specific characteristics of each
layer and is able to find more matched blocks to filter over,
resulting in better denoising performance. Practically, very
noisy videos becomes easier if the denoiser is applied to

each layer separately or to only the layer of interest. Fig.
17 shows an examples of videos denoising and enhancement,
respectively. For video denoising, we compare RPCA-VBM3D
[109] with VBM3D [58]. For video enhancement, we show
the comparison between the RPCA algorithm called ReProCS
[106] to the histogram equalization which is the standard
approach for such low light data. In each case, the RPCA
algorithms outperform the classical state-of-the-art method.
The code for this experiment is downloadable from http:
//www.ece.iastate.edu/∼hanguo/ReLD Denoising.zip.

K. Video Summarization
Video summarization is a quick way to overview its content

and is a challenging problem because finding important or
informative parts of the original video requires to understand
its content. Furthermore, the content of videos is very diverse,
ranging from home videos to documentaries, which makes
video summarization much more difficult as prior knowledge
is almost unavailable. To tackle this problem, Ramani and Atia
[230] employed a scalable column/row subspace pursuit algo-
rithm based on the RPCA formulation that enables sampling in
challenging scenarios in which the data are highly structured.
The idea consists of searching for a set of columns whose the
low-rank component can cancel out the low-rank component
of all the columns. Thus, informative columns are employed
for video summarization. For face sampling, Ramani and Atia
[230] tested this algorithm on the Yale Face Database B which
consists of face images from 38 human subjects. For each
subject, there are 64 images with different illuminations. A
containing the vectorized image is built with the images of
6 human subjects (384 images in total, so A ∈ R32,256×384.
Experiments [230] show that this sampling algorithm is robust
in the presence of corrupted data.

L. UHD Super Resolution Video
The recovery of high-resolution (HR) images and videos

from low-resolution (LR) content is a topic of great interest
in digital image processing. The global super-resolution (SR)
problem assumes that the LR image is a noisy, low-pass
filtered, and downsampled version of the HR image. Recent
approaches are sparsity-based techniques which assume that
image patches can be well-represented as a sparse linear
combination of elements from an appropriately chosen over-
complete dictionary. In order to fully utilize the spatio-
temporal information, Ebadi et al. [75] employed a multi-
frame video SR approach that is aided by a low-rank plus
sparse decomposition of the video sequence. First, Ebadi et
al. [75] defined Group of Pictures (GOP) structure and saught
a rank-1 low-rank part that recovers the shared spatio-temporal
information among the frames in the GOP. Then, the low-rank
frames and the sparse frames are super-resolved separately.
This algorithm results in significant time reduction as well as
surpassing state-of-the-art performance, both qualitatively and
quantitatively.

V. CONCLUSION

The RPCA formulation has been successfully applied in
the last seven to ten years in computer vision applications,
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original noisy RPCA-VBM3D VBM3D
(PSNR=30dB) (PSNR=25dB)

(a) Denoising a very noisy video. PSNR shown in parenthesis

original RPCA Hist-Eq

(b) Video enhancement: “Seeing” in the dark

Fig. 17: Video denoising and enhancement: (a) Denoising a very noisy video with Gaussian noise of standard deviation σ = 70
and hence PSNR is 11dB. From left to right: Original videos, noisy videos, RPCA-VM3D [109] results, VBM3D [58] results.
Note that VBM3D gives a much more blurred denoised image. Peak Signal to Noise Ratio (PSNR) is noted below each figure
too. (b) Video enhancement. From left to right: Original videos, RPCA algorithm (ReProCS [106]) results and histogram
equalization (Hist-Eq) results (Images from Namrata et al. [274]).

outperforming previous state-of-the-art techniques. This suc-
cess is due to its robustness to outliers and its flexibility to
be applied in different types of outliers due to its ability
to allow specific additional constraints such as spatial and
temporal ones. In the early times, its memory and time
requirements limited its applications in online and/or real-time
applications. But, dynamic RPCA [182],[274] has received
significant attention much more recently, reducing these lim-
itations with performance guarantees [183],[181],[201],[315]
and memory efficient algorithms [200], and thus allowing to
consider its uses in very challenging applications such as
background/foreground separation in videos taken static or
moving cameras.

However, there are still many important issues which need
to be solved to allow the RPCA formulation to be fully
and broadly employed in image and video processing and
3D computer vision. The first issue concerns the guarantee
for dynamic RPCA under even weaker assumptions. Second,
even if robust matrix completion and undersampled robust
PCA have been well studied, their dynamic extensions have
received almost no attention. It is an important question for
very long image or video datasets where a changing subspace
assumption is a more appropriate one. Third, simple and
provable RPCA or dynamic RPCA solutions that are streaming
are required in several computer vision applications. Even if a
streaming RPCA solution has been developed in recent work
[205], it works only for one-dimensional RPCA. On the other
hand, ReProCS [225] is a nearly memory optimal solution to
dynamic RPCA, but it requires more than one pass through
the data.

An open question is how can the RPCA formulation be
successfully adapted to solve other more general computer
vision problems. One such problem is subspace clustering
which involves clustering a given image or video dataset into
one of K different low-dimensional subspaces. This can be

viewed as a generalization of PCA which tries to represent a
given dataset using a single low-dimensional subspace. There
has been a lot of work on the subspace clustering problem,
developed in the frameworks of both sparse representation
[76][77] and low-rank representation [175],[174], where each
sample is represented by other samples and the representa-
tion matrix is regularized by either sparsity [76][77], low-
rankness [175],[174], or both [76]. Other works also con-
cern scalable subspace clustering [275] which can be solved
using algorithms [275],[312],[311] that are provably correct
when subspaces are sufficiently separated and data are well
distributed within each subspace. A complete review can be
found in [173]. Then, given that subspace clusters have been
computed for a given dataset, if more data vectors come in
sequentially, how can one incrementally solve the clustering
problem, i.e., either classify the new vector into one of the K
subspaces, or decide that it belongs to a new subspace? There
has been sporadic work on this problem. For example, Shen et
al. proposed an online version of low-rank subspace clustering
[249].

Another open question is whether one can solve the phase-
less RPCA or L+S problem. Indeed, one can only acquire
magnitude-only measurements in applications like ptychog-
raphy, sub-diffraction imaging or astronomy. If the unknown
image sequence is well modeled in the RPCA formulation, the
main question is how this model can be exploited to recover
it from under-sampled phaseless measurements.

Finally, this article does not review the literature on the
recent works on RPCA for tensor data. Interested readers
may refer to the works in [55],[157],[262],[263] for appli-
cation to background/foreground separation, to the works in
[5],[133],[135],[202],[254],[227],[257] for online/incremental
tensor algorithms, and to the works of Lin et al. [173] for
some recent results. All of above are active research topics
with many open questions.
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