
HAL Id: hal-01890878
https://hal.science/hal-01890878

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Engineering for Design-Runtime
Interaction in Complex Systems: Scientific Challenges

and Roadmap
Hugo Bruneliere, Romina Eramo, Abel Gomez, Valentin Besnard, Jean-Michel

Bruel, Martin Gogolla, Andreas Kästner, Adrian Rutle

To cite this version:
Hugo Bruneliere, Romina Eramo, Abel Gomez, Valentin Besnard, Jean-Michel Bruel, et al.. Model-
Driven Engineering for Design-Runtime Interaction in Complex Systems: Scientific Challenges and
Roadmap. MDE@DeRun 2018 workshop, co-located with the Software Technologies: Applications
and Foundations (STAF 2018) federation of conferences, Jun 2018, Toulouse, France. �10.1007/978-
3-030-04771-9_40�. �hal-01890878�

https://hal.science/hal-01890878
https://hal.archives-ouvertes.fr


Model-Driven Engineering for Design-Runtime
Interaction in Complex Systems:

Scientific Challenges and Roadmap?

Report on the MDE@DeRun 2018 workshop

Hugo Bruneliere1, Romina Eramo2, Abel Gómez3,
Valentin Besnard4, Jean Michel Bruel5, Martin Gogolla6, Andreas Kästner6,

and Adrian Rutle7

1 IMT Atlantique, LS2N (CNRS) & ARMINES, France
hugo.bruneliere@imt-atlantique.fr

2 University of L’Aquila, Italy
romina.eramo@univaq.it

3 Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC), Spain

agomezlla@uoc.edu
4 ERIS, ESEO-TECH, Angers, France

valentin.besnard@eseo.fr
5 IRIT (CNRS) & Université de Toulouse, France

bruel@irit.fr
6 University of Bremen, Germany

{gogolla|andreask}@informatik.uni-bremen.de
7 Western Norway University of Applied Sciences, Norway

Adrian.Rutle@hvl.no

Abstract. This paper reports on the first Workshop on Model-Driven
Engineering for Design-Runtime Interaction in Complex Systems (also
called MDE@DeRun 2018) that took place during the STAF 2018 week.
It explains the main objectives, content and results of the event. Based
on these, the paper also proposes initial directions to explore for further
research in the workshop area.

Keywords: Design time modeling · Runtime modeling · Interactions ·
Correspondences · Traceability · Feedback.

1 Introduction

Complex systems are now predominant in several domains such as automotive,
health-care, aerospace, industrial control and automation [2]. Such systems call

?
This workshop has been supported by the MegaM@Rt2 project. MegaM@Rt2 has received fun-
ding from the Electronic Component Systems for European Leadership Joint Undertaking under
grant agreement No. 737494. This Joint Undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and from Sweden, France, Spain, Italy, Finland &
Czech Republic.



2 H.Bruneliere et al.

for modern practices, such as Model-Driven Engineering (MDE), to tackle advan-
ces in productivity and quality of these now Cyber-Physical Systems (CPSs) [4].
However, the proposed solutions need to be further developed to scale up for
real-life industrial projects and to provide significant benefits at execution time.
To this intent, one of the major challenges is to work on achieving a more efficient
integration between the design and runtime aspects of the concerned systems:
the system behavior at runtime has to be better matched with the original sy-
stem design in order to be able to understand critical situations that may occur,
as well as corresponding potential failures in design. Methods and tools already
exist for monitoring system execution and performing measurements of runtime
properties. However, many of them do not rely on models and, usually, do not
allow a relevant integration with (and/or a traceability back to) design models.
Such a feedback loop from runtime is highly relevant at design time, the most
suitable level for system engineers to analyze and take impactful decisions ac-
cordingly. It might also be useful to let the final users have some sort of control
and manipulation possibilities over elements they would not be able to access
otherwise. This last benefit implies that the models at runtime might be quite dif-
ferent from those at design time, especially in terms of programming/engineering
background.

MDE@DeRun 20188 has been planned as a meeting point where both re-
searchers and practitioners on model-driven and model-based techniques and
architectures for complex systems can share their experiences and thoughts on
this area of work. Its main goal was to disseminate and exchange related ideas
or challenges, identify current and future key issues as well as explore possible
solutions. The potentially relevant topics include notably (but not only):

– Model-based techniques, methods and tools allowing any interaction between
design time and runtime, possibly resulting from heterogeneous engineering
practices.

– Model-based techniques, methods and tools for inferring design deviations
and identifying affected elements over a possibly large spectrum of runtime
system configurations or conditions.

– Methods and techniques allowing to practically integrate, possibly in diffe-
rent ways, any feedback collected at runtime into design level models.

– Integrated model-based methods and techniques for runtime analysis and de-
sign artifacts input collection, e.g. based on probes injection to some runtime
artifacts.

– Validation and verification mechanisms for linking results of runtime analy-
sis, e.g. from execution traces, with design models expressing systems’ both
functional and non-functional requirements.

– (Industrial) case studies, experience reports, literature reviews or visionary
positions related to any of the previously mentioned topics.

The remainder of this paper is structured as follows. Section 2 briefly introduces
the different papers accepted and presented during the workshop. Possible future

8 https://megamart2-ecsel.eu/mde-derun-2018/



MDE for Design-Runtime Interaction in Complex Systems 3

challenges on design/runtime interactions in the MDE context are then discussed
in Section 3, before we finally conclude this paper in Section 4.

2 Contribution Summary

In what follows, we list the 5 papers (4 short papers and 1 long paper) that have
finally been accepted and presented during the workshop. A short summary is
provided for each one of them.

Aliya Hussain, Saurabh Tiwari, Jagadish Suryadevara and Eduard
Enoiu: From Modeling to Test Case Generation in the Industrial
Embedded System Domain — This short paper presents an on-going in-
vestigation being carried out at Volvo CE9 to improve testing processes by
using a Model-based testing (MBT) approach. The goal has been to investi-
gate the use of MBT and the evidence on how modeling and test generation
can improve the current way of manually creating test cases based on natu-
ral language requirements. The authors used the Conformiq Creator tool to
model the behavior and structure of a function controlling the accelerator
pedal provided by Volvo CE. The authors automatically created test cases
covering the model, and compare these test cases in terms of test goal co-
verage and number of test cases to assess the applicability of MBT in this
context. The approach has shown encouraging results.

Saurabh Tiwari, Emina Smajlovic, Amina Krekic and Jagadish Surya-
devara: A System Modeling Approach to Enhance Functional and
Software Development — This short paper presents a SysML-based mo-
deling approach to enhance functional and software development process
within Volvo CE. The increased complexity of embedded software demands
for new development methodologies to address flexible functional develop-
ment, enhance communication among development teams, and maintain tra-
ceability from design concepts to software artifacts. The discussed approach
has been experimented in the context of developing a new transmission sy-
stem (partially electrified) and its features. While the underlying modeling
approach is still work-in-progress, both initial success and existing gaps have
been highlighted.

Daniel Zimmermann: Automated Consistency Preservation in Elec-
tronics Development of Cyber-Physical System — This short paper
presents an automated strategy to ensure consistency between two widely
used categories of software tools in electrical engineering: an Electronic De-
sign Automation application (EDA) for designing Printed Circuit Boards
(PCBs) and an electronic circuit simulator tool to predict system behavior
at runtime. Coupling these two types of tools provides the developers with
the ability of efficiently testing and optimizing the behavior of the electric
circuit during the PCB design process; to avoid the disadvantages of ambi-
guous heuristic matching methods, a strategy ensuring a reliable assignment

9 Volvo Construction Equipment AB, Sweden



4 H.Bruneliere et al.

of these model elements is needed. The approach has been implemented by
using Eagle CAD as the PCB software and Matlab/Simulink with the Sim-
scape extension as the simulation tool.

Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov
and Philippe Dhaussy: Embedded UML Model Execution to Bridge
the Gap Between Design and Runtime — This long paper proposes
a solution to bridge the gap between design and runtime aspects in model-
based software development. In fact, with classical model-driven develop-
ment techniques, developers start by building design models before produ-
cing actual code. Although various approaches can be used to validate models
and code separately, models and code are however separated by a seman-
tic gap. This gap typically makes it hard to link runtime measures (e.g.,
execution traces) to design models. The approach presented in this paper
avoids this semantic gap by making it possible to execute UML design mo-
dels directly on embedded microcontrollers. Therefore, any runtime measure
is directly expressed in terms of the design model.

Andreas Kästner, Martin Gogolla, Khanh-Hoang Doan and Nisha De-
sai: Sketching a Model-Based Technique for Integrated Design and
RunTime Description — This short paper sketches a UML- and OCL-
based technique for the coherent description of design time and runtime as-
pects of models. The basic idea is to connect a design model and a runtime
model with a correspondence model. The authors show two simple examples,
one for structural modeling and one for behavioral modeling, that introduce
the underlying principles. As all three models are formulated in the same
languages—UML and OCL—one can reason about the single models and
their relationships in a comprehensive way.

3 Discussion: Challenges and Roadmap

Although many contributions could be achieved in the last decade in the MDE
community, there are still several open challenges towards a complete and rele-
vant integration between runtime and design aspects in complex systems. Firstly,
explicit correspondences and/or traceability links are needed between runtime
and design models. Secondly, a better understanding of the nature of the availa-
ble runtime information (and its possible impacts on the design information) is
required. Thirdly, the objectives and benefits of leveraging such correspondences
and information need to be defined. We foresee a set of challenges that can be
used as a research roadmap. They are introduced in what follows.

Correspondences/traceability between runtime and design models —
The aim to match the system behavior at runtime with the original system
design can be achieved in several ways. This is mainly related to the concept
of traceability. As widely treated in the literature, traceability relationships
may help designers to understand the associations and dependencies that
exist among heterogeneous models and their correspondences [5, 6].



MDE for Design-Runtime Interaction in Complex Systems 5

In MDE, a trace link is a relationship between one or more source model
elements and one or more target model elements, whereas a trace model is a
structured set of trace links, e.g., between source and target models. Trace
links may be defined between entire artifacts (e.g., a requirements document
and a design model) or between parts of artifacts.
The correspondence between runtime and design models might also take
advantage of the MDE capabilities. For instance, in the case of (automated)
model transformations, the traceability links are not only obvious but also
allow some syntactic adaptation (e.g., different levels of abstraction) as well
as some semantic adaptation (e.g., different viewpoints) on the way.
In order to integrate runtime and design aspects of the system several aspects
need to be considered.

1. Types of correspondences — Correspondences between models could be
defined through the following means: (a) traceability link, (b) consis-
tency specification, (c) (bidirectional) model transformation, (d) model
viewpoints and views. (e) megamodeling.

2. Approaches — Correspondences between models can be defined by me-
ans of the following approaches: (a) by integrating correspondences in-
side models, that implies a modification of the original models, or (b)
by defining external correspondences between models, in this case the
consistency of the original models is preserved (no modifications).

3. How correspondences are produced — Correspondences can be defined
both in a manual manner, requiring engineers and domain experts, or
automatically, starting from executable correspondence specifications.
There can also exist mixed approaches where correspondences are auto-
matically initiated/proposed and refined manually.

4. When correspondences are produced — Correspondences can be produ-
ced (a) at design-time (e.g., when creating the design model), between
design-time and runtime phases (e.g., by applying some processes/trans-
formations on the design model), (b) at system initialization (e.g., by
creating all traceability links), or (c) on the fly at runtime (e.g., by cre-
ating a new trace link for each new runtime object created/used).

Runtime information — Runtime information can be considered as any soft-
ware, architectural information or model of the runtime system that can be
obtained during the system execution. For instance, through observation and
instrumentation, logs and metrics (that can be also considered as kinds of
runtime traces), runtime information can be collected to enable comprehen-
sion of the inner workings of already deployed software system [3].
Such models containing runtime information should not be confused with
models@run.time [1] that, in general, aims at applying model-driven techni-
ques for adapting and evolving software behavior while it is executing. On
the contrary, we are interested in exploiting information collected only at
runtime. This information can then be used offline to improve the initial sy-
stem design through trial and error, eventually with the help of verification
and validation tools (for instance).
In the following, we describe several aspects we believe important to consider.



6 H.Bruneliere et al.

1. Types of runtime information — Runtime information can be of different
types, such as simulation models, executable models, model representing
logs/traces, model representing states or configurations of the system,
models expressing dynamic information or runtime measures on design
models, test models.

2. How they are obtained — Runtime information can be collected by me-
ans of various mechanisms, such as simulation, monitoring, execution,
debugging, profiling, verification.

3. How they are represented — Runtime information can be represented
by: (a) specific models representing runtime information (i.e., using a
common and/or a general metamodel); or (b) measures that are directly
expressed in terms of the design model.

4. How are they visualized — Runtime information can be visualized over
sequence diagrams, graphical diagrams of the design model (e.g., with
particular tools like Papyrus), state-space graphs, or various textual re-
presentations (using some DSLs). These models give either a snapshot of
the system execution, a representation of the current execution trace, or
a representation of the whole execution history (i.e., a part of the system
state-space corresponding to all explored execution traces).

5. Who uses runtime information — Runtime information should take into
account the users; e.g., end-users, architects, designers, developers of the
system, and also “test engineers” in charge of verifying and validating
the system. This will have a strong impact on the type of chosen runtime
models.

6. Viewpoints — A same runtime information can take on different roles
depending on the context/perspective from which it is analyzed (e.g.,
business, system, technology). In the same vein, some software artifacts
(or parts of them) can be considered as design time or runtime ones
depending on the specific viewpoint from which they are observed.

Objectives — The vision underlying the integration of design and runtime
models is to create awareness of problems in design or critical situations that
may occur. The understanding of this class of problems can be exploited for
different purposes.

1. Using/Analyzing correspondences — Correspondences (i.e., traceability
relationships) between elements in models can be exploited to perform
operations on models. Some of the key operations are: (a) match, that
takes two models and returns a mapping between them; (b) compose, that
composes a pair of correspondences; (c) merge, that uses correspondences
between two models to create a new model that is the merge of them;
and (d) set operations on models, such as union, intersection, difference.

Such correspondences can also be used to build views combining together
several models that can possibly conform to different metamodels. This
can be realized according to corresponding viewpoints specifying the
nature/type of these correspondences at metamodel-level.



MDE for Design-Runtime Interaction in Complex Systems 7

Furthermore, correspondences can be used to feed both functional (e.g.,
consistency, requirement traceability) and non-functional analysis (e.g.,
performance, reliability, availability, security).

2. Inference capabilities — Correspondence between design and runtime
information can be used to achieve inference capabilities, discovering the
system properties deviations and affected design components based on
trace analysis. For instance, inference methods offer a control loop across
the whole design chain between runtime and design time of the system,
including non-functional aspects. This way, additional information from
runtime models can be used to enhance system/design models.

3. Requirements — Correspondences can be used to reconcile the require-
ments and the systems runtime behavior in case of system deviations
from the initial requirement specification.

4. Reverse engineering — Going backwards through the development cycle,
correspondences can be used in reverse engineering guiding the specifi-
cation of the system design from the runtime behavior.

4 Conclusion

Achieving an efficient integration between the design and runtime aspects of
complex systems proves to be a relevant challenge for MDE methods and tools.
The International Workshop on Model-Driven Engineering for Design-Runtime
Interaction in Complex Systems (MDE@DeRun 2018) aims at providing a place
for the community to share ideas and results in this research area we believe
important. This paper summarized the main objectives and contributions of
this first edition. Furthermore, it discussed and proposed some first directions
for further research in this area, which we plan to explore in the future in our
respective works.

Acknowledgements

We would like to thank everyone who took part in the success of this first edi-
tion of the workshop, including the program committee members, the paper
authors and everyone who attended the workshop or took part in the interesting
discussions we had.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(Oct 2009). https://doi.org/10.1109/MC.2009.326

2. Boccara, N.: Modeling Complex Systems. Graduate Texts in Comtemporary Phy-
sics, Springer (2004)

3. Cito, J., Leitner, P., Bosshard, C., Knecht, M., Mazlami, G., Gall, H.C.: Perfor-
mancehat: augmenting source code with runtime performance traces in the IDE. In:
Proceedings of the 40th International Conference on Software Engineering: Compa-
nion Proceeedings, ICSE 2018. pp. 41–44 (2018)



8 H.Bruneliere et al.

4. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyberphysical systems. In: Procee-
dings of the IEEE. pp. 13–28 (2012)

5. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous identification and encoding of trace-links in model-driven
engineering. Software and System Modeling 10(4), 469–487 (2011)

6. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development 9(4), 529–565


