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IMAGE FILTERING WITH ADVECTORS

Vincent Jaouen, Laurent Gaubert, Julien Bert, Mathieu Hatt, Dimitris Visvikis

LaTIM, INSERM, UMR 1101, IBSAM, UBO, UBL, Brest, France

ABSTRACT

We propose to consider linear and nonlinear image diffusion
processes as the result of the transport of image values in ex-
ternal advection fields. Linear diffusion is seen as the con-
tinuous transport of particles in fields of random orientations,
while non-linear behavior is obtained by modulating the mag-
nitude of these fields according to local edge strength. Edge
sharpening can be achieved by biasing fields towards image
edges using e.g. Gradient Vector Flow. This point of view,
closely related to discrete random walks and other stochastic
interpretations of diffusion processes, allows for simple, sta-
ble and surprisingly efficient filters that can be implemented
using a few lines of code only.

Index Terms— filtering, denoising, edge-enhancement,
stochastic filtering, shock filter

1. INTRODUCTION

Diffusion processes have been applied with great success to
image processing for more than 30 years. Koenderink first
noted the equivalence between Gaussian filtering and the
isotropic heat partial differential equation (PDE) [1], upon
which Witkin built the scale-space theory [2]. In the early
1990s Perona and Malik paved the way for a new class of
successful edge preserving denoising filters using nonlin-
ear heat PDEs, in which the diffusion coefficient depend on
the local edge content [3]. Nonlinear filters demonstrated
state of the art denoising results during 15 years. They were
then outperformed in the middle of the last decade by non-
local, patch-based approaches for the additive white gaussian
noise (AWGN) degradation model. State of the art include, in
chronological order, non-local means (NLM) [4], K-SVD [5],
BM3D [6], graph Laplacian regularization [7] and DnCNN
[8]. It has been suggested that the very good performances
attained by these new filters could be close to approaching
theoretical limits in terms of maximization of the signal-to-
noise ratio (SNR) [9].

Local PDE-based filters still possess many advantages
nevertheless, among which is modularity: different filters can
be coupled under the same equation to yield different desired
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effects on the image. For example, denoising and edge sharp-
ening can be coupled using diffusion PDEs and shock filter
operators [10]. PDE-based methods are also well understood,
do not require large training datasets and intensive learning
procedures, and generally benefit from efficient numerical
schemes and mathematical guarantees in terms of stability
[11]. For all these reasons, they remain popular today in
many applications such as medical image denoising [12] and
enhancement [13], inpainting [14] or computer vision [15]

It is well-known that diffusion of heat in a material is due
to the random agitation of particles known as Brownian mo-
tion [16]. On discrete lattices like images, the analogue of
Brownian motion is the random walk. This particle point of
view has seldom been explored in image processing. Smolka
and Wojciechowski considered the random walk of pixels in
the image domain using Markov processes, where the walk
is controlled by a probability of transition (PT) [17]. The
authors obtained linear isotropic smoothing using equal PT
between all neighbours, and edge-preserving smoothing by
deriving the PT from a Gibbs distribution dependent on the
intensity difference between pixels, similarly to the range ker-
nel of the bilateral filter [18]. Unal, Krim and Yezzi reformu-
lated the geometric heat flow as a stochastic Itô process for
shape and image smoothing [19]. In a subsequent paper, Bao
and Krim proposed a detailed analysis of the relationship be-
tween random walks and diffusion [20]. In particular, they
showed that numerical implementations of the isotropic heat
flow and of the Perona-Malik (PM) equation can be under-
stood in terms of discrete random walks, where the PM case is
handled by varying the PT depending on local edge strength.

In this paper, we propose an alternative stochastic point
of view to image diffusion. Instead of discrete random walks,
we consider the transport of image values subjected to ex-
ternal advection fields in the continuous image domain. We
approximate linear diffusion by iteratively transporting image
values using advection fields of random orientations, and non-
linear diffusion by tuning the magnitude of the fields depend-
ing on local edge strength. Sub-pixel transport is achieved
by interpolating image values in the direction of the field. In
this context, edge-enhancement can also be obtained by bias-
ing advection towards edges using edge-based fields normally
used in image segmentation.

The proposed filters are stable and very simple to imple-
ment in a few lines of code. We show preliminary denoising



results on the BSD68 dataset for the AWGN model, which
we compared to more elaborated state of the art techniques.
We provide a link to a minimal companion implementation of
the method in Matlab/Octave [21] to reproduce all the results
presented in this paper1.

2. METHODS

We first consider the problem of the progressive denoising
of an image I(x, y, t = 0) degraded by AWGN of constant
variance σ, where t is filter evolution time:

I(x, y, t = 0) = I0 + nσ. (1)

In the following, we start by reinterpreting linear diffusion
as the transport of I by random advectors. We then consider
the case of nonlinear diffusion and finally present a strategy
for edge-enhancement within the proposed framework.

2.1. Linear filtering with advectors

(a) Noisy (σ = 30) (b) n = 100

(c) n = 200 (d) n = 500

Fig. 1. Example result obtained by linear advection filtering
on the cameraman image, for different number of iterations n
(with τ0 = 0.05).

Let v(x, y, t) = [u(x, y, t), v(x, y, t)] be an advection
vector field whose components u and v are given by:

u =cos θ(x, y, t) (2)
v =sin θ(x, y, t), (3)

1http://stockage.univ-brest.fr/˜vjaouen/
icip2018/

where angles θ(x, y, t) are independent realizations of a uni-
form process on [0, 2π] at iteration time t. A smoothed ver-
sion of I is obtained by iteratively transporting image values
along the flow lines of v during a time step τ0 or, equivalently,
along the flow lines of τ0v during a unit time step, where τ0
is seen as the magnitude of the field. A pseudo-code of the
approach is provided below:

Algorithm 1 Linear Advection Filter (LAF)
1: function LAF(I, n, τ0)
2: for n iterations do
3: θ(x, y, t)← rand(0, 2π)
4: [u, v]← [cos θ, sin θ]
5: I ← advect (I, τ0u, τ0v)
6: end for
7: return I
8: end function

From this perspective, noise reduction is obtained through
local averaging by repeated interpolation of the values of I in
random directions. The strength of smoothing depends on
both field magnitude τ0 and number of iterations n. Fig. 1
shows results for the cameraman image at σ = 30 for 100,
200 and 500 iterations of the approach with τ0 = 0.05. A
smoothing behavior similar to linear Gaussian filtering is ob-
tained, that we call linear advection filtering (LAF) by anal-
ogy with PDE-based diffusion processes.

2.2. The non-linear case

We now consider the more interesting case of edge-aware
smoothing. Edge-preserving behavior can be achieved by re-
ducing the magnitude τ of the advection field according to the
local edge content. Similarly to the nonlinear Perona-Malik
diffusion, we make the magnitude τ(x, y) dependent on the
norm of the gradient ‖∇Iρ‖:

τ(x, y) = τ0 ·

(
1 +
‖∇Iρ‖
κ

2
)−1

, (4)

Algorithm 2 Nonlinear Advection Filter (NAF)
1: function NAF(I, n, τ0, κ, ρ)
2: for n iterations do
3: θ(x, y, t)← rand(0, 2π)
4: [u, v]← [cos θ, sin θ]
5: ‖∇Iρ‖ ← gradient magnitude(I, ρ)

6: τ ← τ0 ·
(
1 +

(
‖∇Iρ‖
κ

)2)−1
7: I ← advect (I, τu, τv)
8: end for
9: return I

10: end function

http://stockage.univ-brest.fr/~vjaouen/icip2018/
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(a) Linear advection (b) κ = 0.10

(c) κ = 0.15 (d) κ = 0.20

Fig. 2. Nonlinear advection filtering of the cameraman image
for different values of κ at [τ0 = 0.05, n = 100; ρ = 0] (no
gradient smoothing).

where Iρ is a Gaussian smoothed version of I of scale ρ and κ
is a parameter controlling edge sensitivity. Other types of de-
creasing functions of ‖∇Iρ‖, or diffusivity functions, can nat-
urally be considered. This way, local averaging through inter-
polation is performed in a smaller neighborhood near edges,
thereby preserving them. Pursuing the same analogy, we call
this method nonlinear advection filtering (NAF), for which a
pseudo code is given in Algorithm 2.

Fig. 2 shows NAF results for different values of κ in a
closeup view of the cameraman image. We observe different
edge preserving properties depending on the value of κ, as
expected in PM diffusion. NAF however does not rely on any
PDE and is therefore not subject to stability issues.

2.3. Edge-enhancement with biased advection

We finally address the common requirement of simultane-
ous edge-enhancement and noise suppression. An associated
degradation model is:

I = I0 ∗Hρ0 + nσ, (5)

where Hρ0 is a Gaussian kernel of scale ρ0 and ∗ denotes
convolution.

A typical PDE-based strategy for performing edge-
enhancing denoising is to couple nonlinear diffusion and
shock filtering (SF) [10]. Recently, an unconditionnally sta-
ble approximation of SF in terms of advection was proposed

(a) Degraded (b) [κ = 0.5, n = 250
τ = 0.05, ρ = 0]

Fig. 3. Simultaneous denoising and edge sharpening by bi-
ased advection filtering of the cameraman image degraded by
model of eq. (5), with ρ0 = 2 pixels and σ = 30.

by Prada and Kazhdan, which inspired the present paper [22].
They demonstrate that SF can be rewritten as the advection
of the image values along the flow lines of the vector field:

w =
1

2
∇‖∇I‖2. (6)

In the context of fast processing of surface meshes, this new
formulation is used to approximate SF for any Euler time t by
back-tracing image values along the flow lines of w.

In the light of these observations, in the present context,
we propose to bias the stochastic advection field v by sim-
ply adding to it a deterministic field f = [uf , vf ] oriented
towards edges. This way, we perform simultaneous denoising
(resp. edge-enhancement) using the stochastic (resp. deter-
ministic) components of the field. We call this method Biased
Advection Filtering (BAF).

Rather than directly relying on the image gradient to per-
form shocks as in eq. (6), we use regularized external force
fields designed for active contour segmentation [23, 24] that
were previously applied with success to PDE-based shock fil-
tering [25, 13]. We chose vector field convolution (VFC)
fields because of their low computational complexity [24].

Algorithm 3 Biased Advection Filter (BAF)
1: function BAF(I, n, τ0, κ, ρ)
2: for n iterations do
3: θ(x, y, t)← rand(0, 2π)
4: ‖∇Iρ‖ ← gradient magnitude(I, ρ)
5: [uf , vf ]← external field(‖∇Iρ‖)

6: τ ← τ0 ·
(
1 +

(
‖∇Iρ‖
κ

)2)−1
7: [u, v]← [cos(θ) + uf , sin(θ) + vf ]
8: I ← advect (I, τu, τv)
9: end for

10: return I
11: end function



This allows us to recompute fields after each advection step.
Doing so, we refine shock locations and directions in each it-
eration, improving edge enhancement. Algorithm 3 shows the
pseudo-code of the proposed BAF approach. Fig. 3 shows an
example BAF processing result for the cameraman image de-
graded by the model of eq. (5). Edges are visibly sharpened
while noise is reduced. Such a preprocessing can for example
be useful for facilitating edge-based segmentation strategies.

3. EXPERIMENTS AND RESULTS

To illustrate the interest of the proposed NAF denoising
method, we show preliminary results obtained for AWGN de-
noising of the BSD68 grayscale dataset at low SNR (σ = 50),
for which the behavior of NAF can be better appreciated. We
compared our PSNR scores to NLM, K-SVD, BM3D and
DnCNN. For NLM, BM3D and K-SVD, we used the C++
peer-reviewed implementations from the IPOL online journal
[26, 27, 28]. For DnCNN, we used the Matlab implementa-
tion and trained network of the authors [29]. All comparative
methods take as input a noisy image and the standard devi-
ation of the AWGN. For our method, in these preliminary
experiments, we considered the following set of parameters:
[κ = 0.1, τ0 = 0.1, n = 250, ρ = 3], which provided satis-
fying results on average on the dataset, although they are
certainly not optimal and could perhaps be automatically es-
timated on a case-by-case basis. In addition to the NAF result
at fixed iteration time, we provide scores attached to the best
NAF iteration for each image by letting the method evolve
between 1 and 500 iterations with the same parameters, listed
as NAFmax. Naturally, in a real scenario, appropriate stop-
ping time must be determined without a ground truth e.g.
using decorrelation criteria [30]. This value is shown here for
completeness only.

Fig. 4 shows example processing results on a closeup
view of the test008 image for the three best performing meth-
ods. In this image, the proposed NAF performed better than
BM3D, but was nevertheless outperformed by DnCNN. Qual-
itatively, NAF reduced noise while preserving image sharp-
ness, at the expense of appearing less smooth. Conversely,
the output of BM3D, and to a lesser extent DnCNN, appear
slightly oversmoothed.

Table 1 summarizes the average PSNR scores obtained
for all methods on the BSD68 dataset. NAF beat NLM and
KSVD on a majority of the images (respectively in 58 and
37 cases), while it beat BM3D on 2 cases only, including the
one presented in Fig. 4 and was outperformed by DnCNN on
all images. We nevertheless underline the simplicity of the
proposed method compared to the competing approaches and
the qualitative difference in the results obtained, as well as
the potential improvements that could be incorporated, such
as ad-hoc diffusivity functions, non-uniform advection direc-
tions, or automatic stopping time determination. Mean pro-
cessing time per BSD68 image was less than 4s with a single

(a) Noisy, PSNR= 15.37dB (b) BM3D, PSNR= 21.65dB

(c) DnCNN, PSNR= 21.91dB (d) NAF, PSNR= 21.75dB

Fig. 4. NAF processing results for the test008 image of the
BSD68 test set for the three best methods

core implementation of the code on a Intel Core i7 desktop
computer.

Table 1. PSNR values for the BSD68 dataset at σ = 50

Method PSNR Method PSNR
Noisy 15.01±0.31 NLM 22.55±2.33

K-SVD 23.12±1.88 BM3D 24.05±2.55
DnCNN 24.17±2.56 NAF 23.19±2.27

NAFmax 23.48±2.25

4. CONCLUSION

We have proposed a series of filters based on a reintepretation
of diffusion and shock filter processes as the transport of con-
tinuous image values in advection flow fields. Denoising is
obtained by stochastic transport, while edge-enhancement can
be achieved through deterministic advection towards edges
using edge-based force fields. Promising preliminary results
have been obtained, especially when considering the simplic-
ity, stability and low computational cost of the approach.

Further experiments and analysis will be conducted in the
future to better understand the properties of advection filter-
ing and their connection with related works on stochastic im-
age denoising. Optimization of the parameters will be inves-
tigated. Potential application of the proposed method to med-
ical imaging will be explored.
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