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1 INTRODUCTION

A system is considered to be safety-critical when its failure may lead to unacceptable consequences
[17]. One failure of particular interest in safety-critical systems is fraud, understood as abusing a
position of trust to get illegal advantage and/or cause losses by false suggestions or suppression of
the truth. Although some safety-critical systems are protected by design against known threats,
innovative exploitation of latent vulnerabilities remains a possibility. Fraud has multiple conse-
quences on provision of services, management of organizations, and operational infrastructure,
causing damage to human lives, production processes, and the natural environment.

Paradoxically, in fraud situations, compliance to fitness for use seems to be appropriate, while
conformity to procedures is cleverly bypassed. Also, even if automatic procedures continuously
check for potential fraud, legitimate users may commit fraud inside organizations or maliciously
manipulated applications can have significant unknown repercussions on a system. Besides, volu-
minous heterogeneous data and information are exchanged in and between systems. For these rea-
sons, quality evaluation in fraud situations is very complex. The automobile industry [14], banks
[7], health institutions [21], and government [2] are some examples of organizations affected by
frauds. Taking into account that the quality assessment of procedures and processes is still an
open problem [1] [5], this proposal focuses on data and information quality within those proce-
dures. This article discusses why quality assessment in fraud contexts is a challenging problem
and argues for a longitudinal quality meta-analysis, relying on contextual cumulative indicators.
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2 CHALLENGE

A unique unexplored quality research challenge stems from the dynamics of fraud. We hypothe-
size that fraudulent transactions can be detected examining their quality differences, inconsistent
timeliness, inherent coherence, partial regularity, and questionable believability. All these char-
acteristics are strongly related to the context on which operations are carried out. We consider
that the combination of these multiple weak indicators though time might make fraud evidence
emerge. As a result, frauds could be detected by identifying known patterns of variability among
these indicators.

The general research challenge is therefore enounced as: How can quality evaluation and analysis

reveal pertinent contextual cumulative indicators of fraud life cycle in an information system?

Numerous research implications arise from this comprehensive challenge. Our proposal is
focused on contextual quality meta-analysis through time. Context ubiquity [6]—prior, historical,
relative, behavioral, operational, applicative—is fundamental to determine the validity of rich
evolving aspects like the limits of trust and credibility, as well as the pertinence of concerned
quality dimensions. Moreover, longitudinal evaluation deployment entails tracking activities
through time to identify anomalies in operational patterns, making use of variable observation
time windows [23]. Meta-analysis consists of detecting relevant activity indicators in traced fin-
gerprints of individuals and groups, according to the acceptance of quality variability depending
on context [16].

3 RESEARCH DIRECTIONS

Among multiple possible research directions that derive from investigating quality evaluation in
fraud situations, the definition of suitable quality dimensions, acceptable quality variability, and
understanding of the fraud cycle seem to be fundamental to address this challenge.

3.1 Quality Dimensions

The evaluation of quality dimensions is considered essential in data fusion [11] and decision sup-
port [9] [5]. Yet, current definitions of quality dimensions do not meet fraud detection needs. Two
objective dimensions, timeliness and coherence, may provide some of the answers.

Timeliness: Refers to the chronological patterns of transactions commonly observed in data and
information exchanges between subsystems [18]. The contextual analysis of these quality pat-
terns might prove helpful to address the differences between incompatible timeliness generated
by doubtful transaction sequences and system malfunctions [10].

Coherence: Examines the agreement of relationships between information streams [15]. Research
about the quality coherence of fraudulent operations components—e.g., type of anomalies and er-
rors, unusual high or low scores, recursive modifications of steps, data fabrication, sudden deci-
sion changes, involved system nodes, differences with respect to working standards, and degree
of similarity—should be conducted to differentiate these operations from normal ones.

Conversely, subjective quality measurements carried out by humans are often useful because
of the evaluator’s experience, and should be therefore adapted to fraud detection. Man-machine
collaboration can take, in this case, the form of active learning to provide complementary signif-
icant operational observations [20]. Dimensions that contribute to represent evaluations done by
humans are believability, consistency, and interpretability.

Believability: Serves to complete the understanding of gathered evidence to decide if further
inquiries are appropriate. It is required to assess, for instance, the complexity and pertinence of
transactions, omissions, misrepresentation, over and under statements, fictitious claims, and com-
pliance with regulations [24].



Consistency: Examines the global regularity of activities, their types, media formats, sequences
of actions, interactions, contacts, preferences, and volume of operations, among others. Group
and individual descriptions can be built integrating these elements to define activity summaries
associated to roles and responsibilities [3].

Interpretability: Represents the explanation of system traces left by operators’ activities. It per-
mits us to explain the pertinence of suspect imbalances, which appear when one or various trans-
action elements are disregarded, or when anomalous traces are found [12].

3.2 Quality Variability

Most of data quality analysis has been circumscribed to fitness for use. However, in fraud scenarios,
data are likely to be of sufficient quality to meet this requirement and pass undetected through
controls. Hence, one possible way to detect fraud is to determine acceptable variable quality states
[4], in agreement with actual contextual representative quality of data and information. To this
end, context provided by metadata (e.g., operator, location, time stamps, transaction type, file or
stream size, transmission changeability, involved system modules, etc.) and indicators like operator
status (e.g., hire, resign, laid off, promotion, assignments, vacations, etc.) can serve to outline the
appropriate quality variability [8]. Not being totally available to the fraudster, context could permit
us to identify potentially conflicting elements of quality evaluation.

3.3 Fraud Cycle

Single anomalies do not expose unambiguously a fraud situation. Globally, it takes more than one
year to detect a fraud, after the first consequences are noticed and the respective modus operandi
deciphered [13]. Fraud cycles are composed of multiple indicators, which could be estimated ac-
cording to variable quality and described dimensions to elicit irregularities. Hence, continuous
metadata collection can be synthesized as fingerprints of relevant activities, to be analyzed by
means of quality measurements during time periods of variable length. Such analysis considers
that each operator and group have a metadata profile related to specific contexts, for which vari-
ations in the quality pattern can be identified in the form of anomalies. Besides, depending on
the severity of anomalies, quality variations propagate through a system with different impacts
on subsystems [22]. Collected quality indicators also represent cumulative behavior patterns of
multiple procedures and individuals, at different spatial and temporal resolutions. Repetitive or
articulated quality anomalies through time could thus represent questionable differences to be ex-
amined [19], implying that, if identified, the analysis should be further adjusted to detected fraud
characteristics.

4 CONCLUSION

To recognize risk patterns, fraud detection in information systems should examine numerous
quality-related potential warning signs. The global approach requires us to consider contextual
quality variability and propagation, according to objective and subjective dimensions. Open re-
search issues concern the definition and articulation of multi-dimensional context-based quality
measures, relying on temporal profiling meta-analysis.
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