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Abstract

How to reconcile the classical Heston model with its rough counterpart? We introduce
a lifted version of the Heston model with n multi-factors, sharing the same Brownian mo-
tion but mean reverting at different speeds. Our model nests as extreme cases the classical
Heston model (when n = 1), and the rough Heston model (when n goes to infinity). We
show that the lifted model enjoys the best of both worlds: Markovianity, satisfactory fits
of implied volatility smiles for short maturities with very few parameters, and consistency
with the statistical roughness of the realized volatility time series. Further, our approach
speeds up the calibration time and opens the door to time-efficient simulation schemes.

Keywords: Stochastic volatility, implied volatility, affine Volterra processes, Riccati equa-
tions, rough volatility.
1 Introduction

Conventional one-dimensional continuous stochastic volatility models, including the renowned
Heston model [29]:

dS; = S/ VidBy, Sy > 0, (1.1)
dVy = MO — Vy)dt + v/VidWy, Vo >0, (1.2)

have struggled in capturing the risk of large price movements on a short timescale. In the
pricing world, this translates into failure to reproduce the at-the-money skew of the implied
volatility observed in the market as illustrated on Figure 1 below.

*abijaber@ceremade.dauphine.fr. T would like to thank Bruno Bouchard, Camille Illand, Mathieu Rosenbaum
and Sergio Pulido for very fruitful discussions and insightful comments. I would also like to thank two anonymous
referees for their careful reading and their suggestions.
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Figure 1: Term structure of the at-the-money skew of the implied volatility aUi%}?(k’:r” =0
for the S&P index on June 20, 2018 (red dots) and a power-law fit ¢ — 0.35 x t~94L. Here
k :=1n(K/Sy) stands for the log-moneyness and T for the time to maturity. (The appellation

skew is justified by the following relation %W| oo ™ ﬁ, where s is the skew of log ST,

see [9, (5.93) on p. 194].)

In view of improving the overall fit, several directions have been considered over the past decades.
Two of the most common extensions are adding jumps [13, 24] and stacking additional random
factors [8, 22], in order to jointly account for short and long timescales. While the two approaches
have structural differences, they both suffer, in general, from the curse of dimensionality, as more
parameters are introduced, slowing down the calibration process (one notable exception is the
Variance-Gamma model [32]). Recently, rough volatility models have been introduced as a
fresh substitute with remarkable fits of the implied volatility surface, see [5, 19, 26]. The rough
variance process involves a one-dimensional Brownian motion, keeps the number of parameters
small and enjoys continuous paths. However, the price to pay is that rough volatility models
leave the realm of semimartingale and Markovian models, which makes pricing and hedging a
challenging task, while degrading the calibration time. Here, the curse of dimensionality hits
us straight in the face in the non-Markovianity of the process. Indeed, the rough model can be
seen as an infinite dimensional Markovian model, as shown in [2, 15].

Going back to the standard Heston model (1.1)-(1.2), despite its lack of fit for short maturities,
it remains increasingly popular among practitioners. This is due to its high tractability, by
virtue of the closed form solution of the characteristic function, allowing for fast pricing and
calibration by Fourier inversion techniques [11, 20]. Recently, El Euch and Rosenbaum [18]
combined the tractability of the Heston model with the flexibility of rough volatility models,
to elegantly concoct a rough counterpart of (1.1)-(1.2), dubbed the rough Heston model. More
precisely, the rough model is constructed by replacing the variance process (1.2) by a fractional
square-root process as follows

dS; = St\/thBt, So > 0, (13)
_ 1 ! H-1/2
V;f - Vb + m /0 (t - 8) ()\(0 - Vs)ds + y\/VSdWS) s (14)

where H € (0,1/2] has a physical interpretation, as it measures the regularity of the sample
paths of V| see [6, 26], the case H = 1/2 corresponding to the standard Heston model. More
precisely, the sample paths of V' are locally Hélder continuous of any order strictly less than



H. As for the standard Heston model, the characteristic function of the log-price is known, but
only up to the solution of a certain fractional Riccati Volterra equation. Indeed, both models
belong to the tractable and unifying class of affine Volterra processes introduced in [3]. The
following table summarizes the characteristics of the two models.

Characteristics Heston Rough Heston
Markovian v X
Semimartingale v X
Simulation Fast Slow
Affine Volterra process v v
Characteristic function Closed  Fractional Riccati
Calibration Fast Slower
Fit short maturities X v

Regularity of sample paths H = 0.5 0< H<0.5

Table 1: Summary of the characteristics of the models.

In the present paper, we study a conventional multi-factor continuous stochastic volatility model:
the lifted Heston model. The variance process is constructed as a weighted sum of n factors,
driven by the same one-dimensional Brownian motion, but mean reverting at different speeds,
in order to accommodate a full spectrum of timescales. At first glance, the model seems over-
parametrized, with already 2n parameters for the mean reversions and the weights. Inspired by
the approximation results of [1], we provide a good parametrization of these 2n parameters in
terms of one single parameter H, which is nothing else but the Hurst index of a limiting rough
Heston model (1.3)-(1.4), obtained after sending the numbers of factors to infinity.

The lifted model not only nests as extreme cases the classical Heston model (when n = 1) and
the rough Heston model (when n goes to infinity), but also enjoys the best of both worlds: the
flexibility of rough volatility models, and the Markovianity of their conventional counterparts.
Further, the model remains tractable, as it also belongs to the class of affine Volterra processes.
Here, the characteristic function of the log-price is known up to a solution of a finite system of
Riccati ordinary differential equations. From a practical viewpoint, we demonstrate that the
lifted Heston model:

e reproduces the same volatility surface as the rough Heston model for maturities ranging
from one week to two years,

e mimics the explosion of the at-the-money skew for short maturities,

e calibrates twenty times faster than its rough counterpart,

e is easier to simulate than the rough model,

e tricks the human eye as well as statistical estimators of the Hurst index.

All in all, the lifted Heston model can be more easily implemented than its rough counterpart,
while still retaining the precision of implied volatility fits of the rough Heston model. Further,
the lifted Heston model is able to generate a volatility surface, which cannot be generated



by the classical Heston model, with only one additional parameter. The lifted lifted Heston
model is also consistent with the statistical roughness of realized volatility times series across
different timescales. Finally, the stock price and the variance process enjoy continuous paths
and only depend on a two-dimensional Brownian motion, leading to simple and feasible hedging
strategies.

The lifted Heston model appeared for the first time in [1] as a multi-factor approximation of the
rough Heston model, with hundreds of factors. In the present paper, we take the lifted Heston
model as our starting model and we argue that few factors are sufficient in practice. In addition,
we provide a thorough numerical study for calibration, robustness, simulation and estimation.
This constitutes a crucial step towards the implementation of rough volatility models in practice
that can be easily extended to other models than the Heston model. We mention [7, 25, 27, 30]
for several numerical algorithms for rough volatility models.

The paper is outlined as follows. In Section 2 we introduce our lifted Heston model and pro-
vide its existence, uniqueness and its affine Fourier-Laplace transform. Exploiting the limiting
rough model, we proceed in Section 3 to a reduction of the number of parameters to calibrate.
Numerical experiments for the model, with n = 20 factors, are illustrated in Section 4, for cali-
bration, simulation and statistical estimation of the roughness. Finally, some technical material
is postponed to Appendices A-C.

2 The lifted Heston model

We fix n € N and we define the lifted Heston model as a conventional stochastic volatility model,
with n factors for the variance process:

ds® = S*\/VrdB,, ST >0, (2.1)

Vit =gh(t) + > U, (2.2)
=1

AU = (—x? i AVt”) dt + v\ VAW, UM =0, i=1,...,n, (2.3)

with parameters the function gf, A\,v € Ry, ',z > 0, for ¢ = 1,...,n, and B = pW +
V1= p2W, with (W, W) a two dimensional Brownian motion on a fixed filtered probability
space (Q, F,F := (F1)i>0,Q), with p € [-1,1].

We stress that all the factors (U™%);<;<y, start from zero' and share the same dynamics, with
the same one-dimensional Brownian motion W, except that they mean revert at different speeds
(x1")1<i<n. Further, the deterministic input curve g¢ allows one to plug-in initial term-structure
curves. More precisely, taking the expectation in (2.2) leads to the following relation

n t
BV +AS el [ e IRV s = gi(e), ¢ 20
i=1 70

In practice, the forward variance curve, up to a horizon 7' > 0, can be extracted from vari-
ance swaps observed in the market and then plugged-in in place of (E[V;"])i<7 in the previous
expression. For a suitable choice of continuous curves g, for instance if

go is non-decreasing such that g;(0) > 0, (2.4)

!Notice that the initial value of the variance process V" is g (0).



or

n t
gyt — Vo + ZCIL/ e =9 (s)ds, with Vp,0 > 0, (2.5)
=1 70

there exists a unique continuous F-adapted strong solution (S™, V™ (U™")1<;<,) to (2.1)-(2.3),
such that V;* > 0, for all ¢ > 0, and S™ is a F-martingale. We refer to Appendix A for more
details and the exact definition of the set of admissible input curves gg.

Since our main objective is to compare the lifted model to other existent models, we will restrict
to the case of input curves of the form

n t
a et Vot )\920?/ e~ =) s, with Vo, 0 > 0. (2.6)
i=1 70

Settingn =1, ¢l =1 and l’% = 0, the lifted Heston model degenerates into the standard Heston
model (1.1)-(1.2). So far, the multi-factor extensions of the standard Heston model have been
considered by stacking additional square-root processes as in the double Heston model® of [12]
and the multi-scale Heston model of [21], or by considering a Wishart matrix-valued process as
in [16]. In both cases, the dimension of the driving Brownian motion for the variance process,
along with the number of parameters, grows with the number of factors. Clearly, the lifted
Heston model differs from these extensions, one can compare (2.1)-(2.3) for n = 2 with (2.7)-
(2.8).

Just like the classical Heston model, the lifted Heston model remains tractable. Specifically, fix
u € C such that Re(u) € [0,1]. By virtue of Appendix B, the Fourier-Laplace transform of the
log-price is exponentially affine with respect to the factors (U™")1<;<p:

E [exp (ulog 7) | 7] = exp (wt,n +ulog S{ + 3 elymI(T - t>Uz“'> L (29)
=1

for all t < T, where (¢™%)1<;<, solves the following n-dimensional system of Riccati ordinary
differential equations

(P8 = —gtyp™ 4 F (u chw”’f) . YM(0)=0, i=1,...,n, (2.10)
j=1
with
F(u,v) = = (u® —u) + (pru — Nv + —v? (2.11)

and
T—t

(1) = |

0

F (u, Zc?d;"’z(s)) g0 (T —s)ds, t<T.
=1

2The double Heston model is defined in [12] as follows
S, = S, (\/UtldBtl + MUEdBf) 7 @2.7)
dU} = X\i(0; — Ud)dt + vin/UdWY,  U§ >0, i€ {1,2}, (2.8)

where B* = p,W' + /1 — p2W"L with p; € [~1,1] and (W, W2, W+ W) a four-dimensional Brownian

motion.



In particular, for ¢ = 0, since U} =0 for i = 1,...,n, the unconditional Fourier-Laplace
transform reads

E [exp (ulog Si')] = exp <u log Sp + /OT F (u En: c?w"»i(s)> 90(T — S)ds> : (2.12)
=1

A similar formula holds for the Fourier-Laplace transform of the joint process (log S™, V") with
integrated log-price and variance, we refer to the Appendix B for the precise expression.

Consequently, the Fourier-Laplace transform of the lifted Heston model is known in closed-form,
up to the solution of a deterministic n-dimensional system of ordinary differential equations
(2.10), which can be solved numerically. Once there, standard Fourier inversion techniques can
be applied on (2.12) to deduce option prices. This is illustrated in the following sections.

3 Parameter reduction and the choice of the number of factors

In this section, we proceed to a reduction of the number of parameters to calibrate. Our
inspiration stems from rough volatility. In a first step, for every n, we provide a parametrization
of the weights and the mean reversions (c', z}')1<i<p in terms of the Hurst index H of a limiting
rough volatility model and one additional parameter r,. Then, we specify the number of
factors n and the value of the additional parameter r,, so that the lifted model reproduces the
same volatility surface as the rough Heston model for maturities ranging from one week up
to two years, while calibrating twenty times faster than its rough counterpart. Benchmarking
against rough volatility models is justified by the fact that one of the main strengths of these
models is their ability to achieve better fits of the implied volatility surface than conventional
one-dimensional stochastic volatility models. This has been illustrated on real market data in
[5, 19]. Finally, for the sake of completeness, we provide a comparison with the standard Heston
model.

3.1 Parametrization in terms of the Hurst index

For an initial input curve of the form (2.6), the lifted Heston model (2.1)-(2.3) has the same five
parameters (Vp, 0, \,v, p) of the Heston model, plus 2n additional parameters for the weights
and the mean reversions (¢, z%)1<i<n.® At first sight, the model seems to suffer from the
curse of dimensionality, as it requires the calibration of (2n + 5) parameters. This is where
the exciting theory of rough volatility finally comes into play. Inspired by the approximation
result [1, Theorem 3.5], we suggest to use a parametrization of (¢}, 2} )i<i<n in terms of two
well-chosen parameter. By doing so, we reduce the 2n additional parameters to calibrate to
only two effective parameters.

Qualitatively, we choose the weights and mean reversions (¢}, z}')i<i<n in such a way that
sending the number of factors n — oo would yield the convergence of the lifted Heston model
towards a rough Heston model (1.3)-(1.4), with parameters (Vp,0,\, v, p, H). The additional
parameter H € (0,1/2) is the so-called Hurst index of the limiting fractional variance process
(1.4), and it measures the regularity of its sample paths. This is possible by virtue of an infinite-
dimensional Markovian representation of the limiting rough variance process (1.4) due to [2],
which we recall in the following remark.

3If one chooses gi to match the forward variance curve, then, the parameters (Vj,6) can be eliminated from
both models.



Remark 3.1 (Representation of the limiting rough process). The fractional kernel appearing
in the limiting rough process (1.4) admits the following Laplace representation

(H=1/2 p—H-1/2

T(H+1/2) /() e plde),with pldr) = S T 1)

so that the stochastic Fubini theorem, after setting Vo =0 in (1.4), leads to
Vi = /Ooo Ui(z)p(dz), x>0,
where, for all x > 0,
Up(x) := /Ot e~ o(t=s) ()\(0 — Vs)ds + I/\/Vdes)

This can be seen as the mild formulation of the following stochastic partial differential equation

i) = (~aUi(w) + A (0~ [~ Uiwutay) ) ) de + \/ [ vtntapaws, @
Up(z) =0, x>0. (3.2)

Whence, the rough process can be reinterpreted as a superposition of infinitely many factors
(U(z))z>0 sharing the same dynamics but mean reverting at different speeds x € (0,00). We
refer to [2] for the rigorous treatment of this representation. One makes the following observa-
tions:

e multiple timescales are naturally encoded in rough volatility models, which can be a plau-
sible explanation for their ability to achieve better fits than conventional one-dimensional
models,

e the largest mean reversions going to infinity characterize the factors responsible of the
roughness of the process.

More precisely, for a fixed even number of factors n, (2.3) corresponds to a discretization of
(3.1) in the z-variable, after approximating p by a sum of diracs > ;- ; ¢i'0zn. We fix r, > 1 and
we consider the following parametrization for the weights and the mean reversions

_ —1)(14n/2 _
cl = (™" = 1)7“7(? e )r 1) and 2} = L—ar - 1ri_1_”/2 1 n, (3.3)
’ I'()l(2 - a) " o 2—apie—1 " ’ o

where o := H + 1/2 for some H € (0,1/2).*
If in addition, the sequence (ry,),>1 satisfies

rp,d1 and nlnr, — oo, asn— oo, (3.4)

then, Theorem A.2 in the Appendix ensures the convergence of the lifted model towards the
rough Heston model, as n goes to infinity. We refer to Appendix A.1 for more details.

In order to visualize this convergence, we first generate our benchmark implied volatility surface,

for 9 maturities T' € {1w, 1m, 2m, 3m, 6m, 9m, ly, 1.5y, 2y}, (3.5)
with up to 80 strikes K per maturity, (3.6)
“This corresponds to equation (3.6) in [1] with the geometric partition 7" = ri 2 for i = 0,...,n, which is

in the spirit of [10] for the approximation of the factional Brownian motion.



with a rough Heston model with parameters ©g := (Vp, 0, A\, v, p, H) given by
Vo=0.02, 6=0.02, A=03, v=03, p=-07 and H=0.1. (3.7)
We recall that the implied volatility surface can be computed by Fourier inversion techniques.

Indeed, it follows from [3, 18] that the Fourier-Laplace transform of the log-price in the rough
Heston model (1.3)-(1.4) is of the form

T
Elexp (ulog St)] = exp (u log So +/0 F(u,¢(s,u))go(T — s)ds> ,

where F' is given by (2.11),

t  gH-1/2
go(t) = Vo + A0 /O ST
and 1 solves the following fractional Riccati equation
Wtu) = —— / "t — ) HV2F (u, (s, u))ds. (3.8)
’ T(H+1/2) Jo T

One then solves (3.8) numerically and computes the implied volatilities by Fourier inversion
techniques. Here the Adams Predictor-Corrector scheme [17] is used with 200 time steps for
the discretization of the fractional Riccati equation (3.8), we refer to [19, Appendix A] for a
complete exposition of this discretization scheme. Then, call prices are computed via the cosine
method [20] for the inversion of the characteristic function.” The generated implied volatility
is kept fixed and is denoted by oo (K, T;©y), for every pair (K,T) in (3.5)-(3.6).

Then, we define the following sequence
rn=14+10n"% n>1, (3.9)

which clearly satisfies (3.4). For each n € {10, 20, 50, 100, 500}, we generate the implied volatility
surface of the lifted Heston model® with n-factors, with the same set of parameters G as in (3.7),
and (3.9) plugged in (3.3). For each n, the generated surface is denoted by o, (K, T';ry,, Oq), for
every pair (K,T) in (3.5)-(3.6).

Because the sequence (7,),>1 defined in (3.9) satisfies condition (3.4), as n grows,

Un(K, T;7n, @0) — Uoo(K7T§ 90)7

by virtue of Theorem A.2 in the Appendix. This convergence phenomenon is illustrated on
Figure 2 below for two maturity slices, one week and one year.

5We note that other Fourier inversion techniques can be used for the second step, for instance, the Carr-
Madan method [11], as done in [19]. As illustrated in [20], for the same level of accuracy, the cosine method is
approximately 20 times faster than the Carr-Madan method, and needs drastically less evaluation points of the
characteristic function (E [exp (u;log S7')])icz (JZ] = 160 for the cosine methods and |Z| = 4096 for the Carr-
Madan method). This latter point is crucial in our case since, for every ¢ € Z, evaluation of E [exp (u; log St")]
requires a numerical discretization of the corresponding Riccati equation.

5The implied volatility surface is generated by first solving numerically the n-dimensional Riccati equations
(2.10) with the explicit-implicit scheme (C.2) detailed in the Appendix with a number of time steps N = 300.
As before, the call prices are then computed via the cosine method [20] for the inversion of the characteristic
function.
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Figure 2: Convergence of the implied volatility surface of the lifted model oy, (k, T’; 1y, ©p), with
rn = 14+ 10079 towards its rough counterpart oo (k,T;©y), illustrated on two maturities
slices T' € {1 week, 1 year}. Here k := In(K/Sp) stands for the log-moneyness.

In view of assessing the proximity between the implied volatility surface oy, (K, T; 7y, ©g) of the
lifted Heston model and that of the rough Heston model o (K,T;©g), we compute the mean
squared error (MSE) between the two volatility surfaces defined as follows

1
Z(K T)U)(K’ T/) Z w(K, T)(O'n(KvT; Tn,@o) —UOO(K,T; @0))2’
/’ !/ 3 (K’T)

where we sum over all pairs (K,T) as in (3.5)-(3.6). Here, w stands for a matrix of weights,

where we put more weight on options near the money and with short time to maturity (one
could also set w(K,T) =1 for all (K,T)).

The corresponding mean squared errors of Figure 2 are reported in Table 2 below, along with
the computational time’ for generating the whole volatility surface, for all pairs (K,T) as in
(3.5)-(3.6), that is, for 9 maturities slices with up to 80 strikes per maturity.®

TAll cpu times are computed on a laptop with Intel core i7 processor at 2.2GHz and 16GB of memory. The
code, written in R, is far from being optimized.

80ne cannot draw definite quantitative conclusions regarding the comparison between the computational times
of the lifted surface and the one of the rough surface. Indeed, one needs a more careful study of the discretization
errors of the corresponding Riccati equations before comparing the computational times needed to reach the same
level of accuracy. We omit to do so here. However, even if one reduces the number of time steps from 200 to
150 in the Adams scheme, it still takes 67.2 seconds to compute the rough surface. Recall that we used N = 300
time steps for the n-dimensional Riccati equation of the lifted model. In any case, it should be clear that solving
the 20-dimensional Riccati equations is considerably faster then solving the fractional Riccati equation.



n rn=14+10n"%" Time (seconds)  MSE

Lifted Heston 10 2.26 3.9 1.20e-03
20 1.67 4.4 1.85e-04
50 1.3 5.2 6.81e-05
100 1.16 6.6 2.54e-05
500 1.04 17.4 3.66e-06
Rough Heston n — oo rnd 1 106.8

Table 2: Convergence of the lifted model towards its rough counterpart for r,, = 1 4+ 100799,
with the corresponding computational time in seconds for generating the implied volatility
surface (3.5)-(3.6).

All in all, we notice that the number of effective parameters remains constant and does not
depend on the number of factors n. This has to be contrasted with the usual multi-factor ex-
tensions: the double Heston model (2.7)-(2.8) already has 10 parameters (U, 0;, \;, i, Pi)ief1,2}5
the multi-scale model of [21] also suffers from over-parametrization.

In the subsequent subsection, we will explain how to fix n and r,, so that the parameters to
calibrate are reduced to only six effective parameters (Vy, 0, \, v, p, H), one additional parameter
than the standard Heston model!

3.2 Practical choice of n and r,

We suggest to fix the following values
n=20 and 179 = 2.5. (3.10)

Our choice will be based on the numerical comparison with the rough Heston model of the
previous section.

We start by explaining our choice for the number of factors n in (3.10). Based on Table 2, we
choose n with a good trade-off between time-efficiency and proximity to the rough volatility
surface. Fixing n = 20 seems to be a good choice. Visually, as already shown on Figure 2, the
two implied volatility slices have almost identical shapes. Whence, one would expect that by
letting the parameters rog free, one could achieve a perfect fit of the rough surface with only
n = 20 factors. This can be formulated as follows: keeping the six parameters of the lifted
model fixed as in (3.7), can one find 75,(60g) > 1 such that

0'20(K, T; T’;O(@o), @0) ~ O'OO(K,T; @0), for all K, T?

The next subsection provides a positive answer.
3.2.1 Mimicking roughness by increasing ry

First, one needs to understand the influence of the parameter r,, on the lifted Heston model.
Increasing r,, has the effect of boosting the parameters (¢, z')i1<i<p in (3.3), leading to an
increase of the vol-of-vol parameter of the lifted model given by v 7" ¢}, together with faster
mean-reversions (x}');<i<p for the factors. In analogy with conventional stochastic volatility
models, such as the standard Heston model (1.1)-(1.2), increasing the vol-of-vol parameter
together with the speed of mean reversion yields a steeper skew at the short-maturity end of
the volatility surface. Consequently, increasing the parameter r, in the lifted model should
steepen the implied volatility slice for short-maturities. Figure 3 below confirms that this is

10



indeed the case when one increases the value of roy from 1.67 to 2.8, for the 20-dimensional
lifted model, as the two slices now almost perfectly match:

Maturity 1 week Maturity 1 year

=== Rough Heston

0.30-
0.30- — 1=2.80
— =250
0.25- — 1=2.20
0.25-
r=1.90
0.20- r=1.67
0.20-
0.15-
0.15-
0.10-
-0.15 -0.10 -0.05 0.00 -1.2 -0.8 -0.4 0.0
Log—moneyness Log—moneyness

Figure 3: Implied volatility of the 20-dimensional lifted model o9 (k, T’ 720, ©p), for different
values of rop ranging from 1.67 to 2.8, and the rough surface o (k,T;0y), for two maturities
slices T' € {1 week, 1 year}.

The corresponding mean squared errors of Figure 3 are collected in Table 3 below.

Lifted Heston (n = 20)

720 MSE

1.67 1.85e-04
1.90 4.16e-05
2.20 8.72e-06
2.50 3.64e-06
2.80 2.81e-06

Table 3: Mean squared errors between the 20-dimensional lifted model o9g(k, T; 720, ©p) and
the rough model o (k,T’; ©p), for different values of ro.

Because 7, has to converge to 1, when n goes to infinity, recall (3.4), we seek to keep r,, as small
as possible. For n = 20, fixing r3,(09) = 2.5 yields already satisfactory results, improving the
mean squared error of 1.85e-04 in Table 2 to 3.64e-06.

Before moving to a physical justification of the choice of 79y, we proceed to the full calibration of
the lifted Heston model with n = 20 and rgg = 2.5 to the rough volatility surface o (K, T; ).
That is, we let the six effective parameters (Vp, 0, A\, v, p, H) of the lifted model free. The
calibrated values O := (‘70, 0.\, 0, D, f]), provided in Table 4, agree with (3.7). At the visual
level, as shown on Figure 13 in the Appendix, the calibrated lifted surface is indistinguishable
from the rough surface o (K,T;0y) for all maturities ranging from one week to two years,
with a mean squared error of order 4.01e-07.
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Parameters Calibrated values

Vo 0.02012504
0 0.02007956
A 0.29300681
% 0.30527694
p -0.70241116
H 0.09973346

Table 4: Calibrated lifted Heston model parameters.

We now provide another physical justification for the choice of ryy based on the infinite-
dimensional Markovian representation of Remark 3.1. We notice that for the lifted model,
the mean reversions in (3.3) satisfy

n i—1—n/2 .
Ty >y, /, 1=1,...,n.

Therefore, based on Remark 3.1, for n = 20, one would like to force x33 to be large enough in
order to mimic roughness and account for very short timescales, while having 23° small enough
to accommodate a whole palette of timescales. Setting

rog A 2.5,

would cover mean reversions between 10~% and 10%.

Remark 3.2 (An alternative way of fixing r,). Fiz n, H and maturities (T;)1<i<n. Lemma
A.3 in the Appendiz suggests to determine the ‘optimal’ value of ) (H,T1,...,Tn) as

N
ro(H,Ty1,...,Tn) = arg;niﬁ szHKn — Kl[z200,1)
=1
for some fized weights (w;)i1<i<n. Forn =20, H =01, N =1 and T = 0.1, 5, = 2.55. For

T =1, r5 = 3.15.

The previous justification suggests that once n = 20 is fixed, one can choose 799 independently
of the parameters ©. The next experiment shows that this is indeed the case.

3.2.2 Robustness of r9: a numerical test

Throughout this section, we fix the three parameters V4,0 = 0.02 and A = 0. In order to verify
experimentally the robustness of r9g = 2.5, we proceed as follows.

1. Simulate M = 500 set of parameters (O := (0.02,0.02,0, vk, pg, Hi))k=1,.. ;s uniformly
distributed with the following bounds

0.05<v <05 -09<p<-05 005<H<0.2.

2. Foreach k=1,..., M:

(a) Generate the rough volatility surface o (K, T’; ), for all pairs (7, K) in (3.5)-(3.6),

(b) Generate the lifted volatility surface ooo(K,T;r20 = 2.5,0%), for all pairs (T, K) in
(3.5)-(3.6),

12



(c) Compute the mean squared error between the two volatility surfaces:

! Z ’U)(K, T)(O—QO(K’ T7 720 = 257 ®k) - O—OO(KaT; @k))2

MSEy, :=
k Z(K’,T/) 'U}(K/, T’) (K.T)

The scatter plot and the empirical distribution of the mean squared error (MSEj)r=1, . are
illustrated in Figure 4 below.

0.00025- . 250-
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0.00020-  °. . » . — 200-
0.00015- , o — — . 150~
LLI L] g —
) 5
s . . e ee . 2
0.00010- o« *5 *° . ° e, oo S © 100-
L] L] L .‘
. e %o e %ot ,ea’ e
0.00005 - S — o0 0o S %ege, ] 50-
o e . °* o o ®
oo . S . ¢ o % . < .
0.00000- e IFami i hnevdtiiunstonist SBA L 0. el - .
0 100 200 300 400 500 0.06e+00  2.56-05  50e-05  7.56-05  1.0e-04
Set of simulated parameters MSE

Figure 4: Scatter plot (left) and empirical distribution (right) of the mean squared error
(MSEy)g=1,....m of the M = 500 simulated set of parameters (Of)r=1,.. m-

The first twenty values of the simulated set of parameters with the corresponding mean squared
error are provided in Table 8 in the Appendix. We observe that the lifted surfaces are quite
close to the rough surface, for any value of the simulated parameters. This is confirmed by
Table 5 below, where we collect the descriptive statistics of the computed mean squared errors

(MSEg)g=1,....m-

MSE
Minimum 1.81e-06
1st Quantile 3.83e-06
Median 5.48e-06
3rd Quantile 4.91e-05
Maximum  2.42e-04

Table 5: Descriptive statistics of the mean squared error (MSEj)p—1,. v of the M = 500
simulated set of parameters (O)r=1,.. M-

We now show that the mean squared errors can be improved by letting the three parameters
(v, p, H) of the lifted model free. Specifically, consider the worst mean squared error of Table 5

max MSEj, = 2.42¢-04, (3.11)
k

which is attained for the set of parameters ©19; with

V101 = 0.1537099, p101 = —0.8112745 and H101 = 0.1892725.
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Keeping the first three parameters fixed Vj,0 = 0.02 and A = 0, we proceed to the calibration
of the lifted model to the rough surface oo (K, T;O101). The calibration yields

D =0.1647801, p = —0.7961080 and H = 0.1957235,

improving the previous mean squared error (3.11) to 1.62e-06. This shows that, by fine tuning
the parameters of the lifted model, for any rough volatility surface oo (K, T; ©) with a realistic
set of parameters ©, one can find a set of parameters ©, not too far from O, such that

090(K, T; 190 = 2.5,0) = 040 (K, T;0), for any pair (K,T) in (3.5)-(3.6).

To sum up, we showed so far that the lifted Heston model, with n = 20 and r99 = 2.5, is
able to produce the same volatility surfaces of the rough Heston model, for any realistic set of
parameters, for maturities ranging between one week and two years. Consequently, it can be
used directly to fit real market data instead of the rough Heston model.

Why is it more convenient to use the lifted Heston model rather than its rough counterpart?

On the one hand, it speeds-up calibration time. Indeed, solving numerically the 20-dimensional
system of Riccati ordinary differential equations (2.10) is up to twenty times faster than the
Adams scheme for the fractional Riccati equation (3.8). On the other hand, the lifted model
remains Markovian and semimartingale, which opens the door to time-efficient recursive simu-
lation schemes for pricing and hedging more complex exotic options. Before testing the lifted
model in practice, we compare it to the standard Heston model.

3.3 Comparison with the standard Heston model

For the sake of comparison, we calibrate a standard Heston model (1.1)-(1.2) to the full rough
volatility surface o (K,T;0y), with O as in (3.7). Recall that the standard Heston model
corresponds to the case n = 1, z1 = 0 and ¢} = 1. The calibrated parameters of the standard
Heston are provided in Table 6 below. We observe that the calibrated values of (Vo, 0, p) have
the same magnitude as the ones of (3.7). This is not surprising since these parameters have the
same interpretation in the two models: the first two parameters (%, é) govern the level of the
term structure of forward variance at time 0 while p dictates the leverage effect between the
stock price and its variance.

Parameters Calibrated values

Vo 0.019841
0 0.032471
A 3.480784
v 0.908037
b -0.710067

Table 6: Calibrated Heston model parameters.

Despite the extreme values of the calibrated mean reversion and vol-of-vol parameters (5\, v),
the Heston model is not able to reproduce the steepness of the skew for short maturities as
shown on Figure 14 in the Appendix, with a mean squared error of order 2.06e-03. For long
maturities, the fit is fairly good.

In order to compare our findings with the observed stylized fact of Figure 1, we plot on Figure
5 below the term structure of the at-the-money skew of the three models: the rough Heston

14



with parameters as in (3.7), the calibrated lifted Heston model of Table 4 and the calibrated
Heston model of Table 6. The Heston model fails in reproducing the explosive behavior of the
term structure of the at-the-money skew observed in the market. On the contrary, this feature
is captured by the lifted and rough counterparts. For long maturities, all three model have the
same behavior.

ATM skew 98/102

[ ]
A
° == Heston
1.5- O e Rough
A Lifted
[ ]
1.0-
0.5-
— —_
00 05 10 15 2.0

Maturity (in years)

Figure 5: Term structure of the at-the-money skew of the rough Heston model o (K, T;0q) of
(3.7) (red circles), the calibrated lifted Heston model o20(K,T;re0 = 2.5,00) of Table 4 (blue
triangles) and the calibrated Heston model of Table 6 (green line).

In the sequel, we will show that, for n = 20 factors, the lifted Heston model provides an
appealing trade-off between consistency with market data and tractability. We stress that
rog = 2.5 is kept fixed in the lifted model, which now has only six effective parameters to
calibrate (Vp,0,\, v, p, H). Again, in practice, Vj and Oy can be eliminated by specifying the
initial forward variance curve as input and A can be set to 0, as mean reversions at different
speeds are naturally encoded in the lifted model through the family (z}")1<i<n. By doing so,
one reduces the effective number of parameters to only three (v, p, H), as already done in [19]
for the rough Heston model.

4 Calibration on market data and simulation

In this section, we fix the number of factors to n = 20 and set rop = 2.5 in (3.3). We demonstrate
that the lifted Heston model:

e captures the explosion of the at-the-money skew observed in the market,
e is easier to simulate than the rough model,

e tricks the human eye as well as the statistical estimator of the Hurst index.

4.1 Calibration to the at-the-money skew

Going back to real market data, we calibrate the lifted model to the at-the-money skew of Figure
1. Keeping the parameters Vo = 0.02, 8 = 0.02 and A = 0 fixed, the calibrated parameters are
given by

D =0.3161844, p=—0.6852625 and H = 0.1104290. (4.1)
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The fit is illustrated on Figure 6 below.
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Figure 6: Term structure of the at-the-money skew for the S&P index on June 20, 2018 (red
dots) and for the lifted model with calibrated parameters (4.1) (blue circles with dashed line).

We notice the calibrated value H in (4.1) is coherent with the value (0.5 — 0.41) = 0.09, which
can be read off the power-law fit of Figure 1. Consequently, in the pricing world, the parameter

H quantifies the explosion of the at-the-money skew through a power-law t — Ct%5~#  see also
[23].

We discuss the simulation procedure and the statistical estimation of H of our lifted model in
the next subsection.

4.2 Simulation and estimated roughness

Until now, there is no existing scheme to simulate the variance process (1.4) of the rough Heston
model, the crux resides in the non-Markovianity of the variance process, the singularity of the
kernel and the square-root dynamics. In contrast, numerous approximation schemes have been
developed for the simulation of the standard square-root process (1.2), see [4, Chapters 3 and
4] and the references therein. Because the lifted Heston model (2.1)-(2.3) is a Markovian and
semimartingale model, one can adapt standard recursive Euler-Maruyama schemes to simulate
the variance process V" first, and then the stock price S™. For T' > 0, we consider the modified
explicit-implicit scheme (C.3)-(C.4) detailed in the Appendix for the variance process V.

We observe on Figure 7 below that the factors (U 2O’i)1§¢§20 are highly correlated. We can distin-
guish between the short-term factors with fast mean reversions, responsible of the ‘roughness’,
and the long-term factors, with slower mean reversions, determining the level of the variance
process. The variance process is then obtained by aggregating these factors with respect to (2.2).
We also notice that some of the factors (U™%);<;<, become negative, but that the aggregated
process V™ remains nonnegative at all time.

Remark 4.1 (Nonnegativity of the variance process). Looking at the stochastic differential
equation (2.2)-(2.3), it is not straightforward at all why V™ should stay nonnegative at all time,
even for the zero initial curve go = 0. Indeed, some of the factors (U’“i)lgign may become
negative, but surprisingly enough, their aggregated sum V'™ remains nonnegative, at all time.
This is due to a very special underlying structure: equations (2.2)-(2.3) can be recast as a
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stochastic Volterra equation of convolution type for a suitable kernel, we refer to Appendiz A
for more details.
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0.005-
[
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Figure 7: One sample path of the simulated factors (U2°%); <;<90 with blue intensity proportional
to the speed of mean reversions (z]')1<j<20 (upper) and the corresponding aggregated variance
process V" (lower) with parameters V5 = 0.05, 6 = 0.05, A = 0.3, v = 0.1 and H = 0.1 for a
time step of 0.001 and T' =1 year.

Visually, the sample path of the variance process seems rougher than the one of a standard
Brownian motion, closer to that of a fractional Brownian motion with a small Hurst index.
This observation is strengthened by Figure 8 below: the sample path of the volatility process in
the lifted model (lower subgraph) looks clearly rougher than the sample path of the volatility
process in the standard Heston model (middle subgraph). It also seems to enjoy the same
regularity as that of the realized volatility of the S&P (upper subgraph).

In what follows, we provide a quantitative analysis of the previous observation by running two
standard statistical experiments that have been used in [6, 26] to estimate the roughness of a
realized volatility time series. More precisely, the empirical studies of [6, 26] on a very wide
range of assets volatility time series revealed that the dynamics of the log-realized volatility are
close to that of a fractional Brownian motion with a ‘universal’ Hurst parameter H of order
0.1, from intra-day up to daily timescales. These studies provide a physical interpretation of
the parameter H, as it measures the roughness of the empirical realized volatility of the upper
graph of Figure 8. We run these two procedures on a simulated path of the lifted model. First,
we apply the estimation procedure of [26] for daily timescales. Then, we apply the methodology
that was used in [6], focusing on intra-day timescales. We recall that, theoretically speaking,
because the lifted variance process is a semimartingale, it has the same regularity as a standard
Brownian motion, that is H = 0.5.
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Figure 8 Estimated Hurst index of: the realized volatility of the S&P(®) (upper), a sample
path of the volatility process in the Heston model (middle), and a sample path of the volatility
process in the the lifted model with H = 0.1 (lower). The simulation is run with N = 250 time

steps for each year.
@ The realized volatility data series can be downloaded from https://realized.oxford-man.ox.ac.uk/.

4.2.1 First statistical experiment for daily timescales as in [26]

We replicate the methodology used in [26, Section 2] for estimating the smoothness of the
volatility process o = v/V™.2 This boils down to estimating the following g-variation
1 Y q
(g, A) ==Y ‘UkA - U(k—l)A‘ (4.2)
Ni=
for different values of ¢ and timescales A greater than one day. We recall that the notion of
g-variation is linked to the notion of Besov smoothness of stochastic processes, and to that of
Holder regularity as A — 0, see [33]. In order to estimate (4.2), we simulate a sample path of
the lifted variance model V" (recall that n = 20) with H = 0.1 and T = 2 years with N = 500
time steps. This corresponds to one time step per day with the convention of 250 trading days

per year. On the left hand side of Figure 9 below, we plot the value of log (g, A) against log A,
for A =1,2,...,100 days and ¢ € {0.5,1,1.5,2,3}.

9More details can be found in the Python notebook of Jim Gatheral https://tpq.io/p/rough_volatility_
with_python.html.
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Figure 9: Estimation procedure of [26] applied to a sample path of the lifted volatility process:
log-log plot for different estimated moments (g, A) (left); (, against ¢ (right).

For each ¢, the points seem to lie on a straight line, which suggests the following scaling
(g, A) = KgA%,

where ¢, > 0 corresponds to the slope of the fitted line in the log-log plot. Further, plotting ¢,
against ¢ on the right hand side of Figure 9, shows that

A

¢, ~Hq, H=0.19.

To sum up, this shows that, statistically speaking, the estimated g-variation of the lifted volatil-
ity process enjoys the following scaling

(g, A) = KA,

similar to that of a fractional Brownian motion with Hurst index H = 0.19. Consequently, at
daily timescales, the simulated volatility process of the lifted Heston model not only tricks the
human eye, but also misleads the estimator of the Hurst index used in [26] with an estimated
H = 0.19, way below 0.5. What about intra-day timescales? We provide an answer in the
following subsection.

4.2.2 Second statistical experiment for intra-day timescales as in [6]

In [6], an efficient estimator for H based on the autocorrelation function is applied for intra-
day timescales, ranging from couple minutes to a day. The estimated H is determined by the
following linear regression

log(1 — ps(kA)) = b+ 2H log(kA), k=1,...,K, (4.3)
where p, is the autocorrelation function of the time series of the volatility o. We refer to [6,
section 2.3.1] for more details on the estimation procedure.

We apply the same methodology that was used in [6] to the lifted volatility process o = /¥
with H = 0.1 and n = 20. We set T" = 2 years and we simulate one sample path of the lifted
volatility process o for N = 3x10° times steps. To fix ideas, in a high frequency trading environ-
ment, this corresponds roughly to one time step per minute, under the convention of 250 trading

19



days per year and 10 hours per day. Then, from this simulated sample path, we extract subsam-
ples of length 500 with different time steps A € {lmin, 5min, 10min, 30min, 1h, 2h, ..., 1day},
and we estimate H on each subsample using the regression (4.3). The estimated values, illus-
trated on Figure 10 below, are aligned with the previous estimation H= 0.19, for any timescale
greater than 10 minutes. The estimator converges towards the true value 0.5 only for very short
timescales which are less than 10 minutes. One can compare Figure 10 with [6, Figure 3].
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Figure 10: Estimated Hurst index of the simulated path of the lifted volatility process with
H = 0.1 for different timescales ranging from 1 minute up to 1 day with n = 20 factors.

We point out that the estimator recognizes a semimartingale model for the simulated volatility
of the Heston model, with an estimated H close to 0.5 and displays a value of H = 0.11 for the
S&P. The lifted model is therefore capable of mimicking, up to some extent, the ‘roughness’
of the volatility observed on the market, even for short intra-day timescales. This should be
paralleled with the explosive-like behavior of the at-the-money skew encountered earlier on
Figures 5-6. Stated otherwise, if one is only provided the lower graph of Figure 8, one cannot
conclude whether the path has been generated by a rough volatility model with Hurst index
H = 0.19 or by our lifted model with H = 0.1, for any reasonable timescale. As the timescale
goes to 0, the estimated value for H of the lifted model has to converge to 0.5, since V" is a
semimartingale, and therefore has the same regularity as a standard Brownian motion. However,
depending on the number of factors, finer timescales are needed for the estimator to recognize a
semimartingale model with an estimated H close to 0.5. This is illustrated on Figure 11 below,
where the same experiment is carried for n = 50 factors and r, = 1.8.
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Figure 11: Estimated Hurst index of the simulated path of the lifted volatility process with
H = 0.1 for different timescales ranging from 1 minute up to 1 day with n = 50 factors.

20



5 Conclusion

We introduced the lifted Heston model, a conventional multi-factor stochastic volatility model,
where the factors share the same one-dimensional Brownian motion but mean revert at different
speeds corresponding to different timescales. The model nests as extreme cases the standard
Heston model (for n = 1 factor), and the rough Heston model (when n goes to infinity). Inspired
by rough volatility models, we provided a good parametrization of the model reducing the
number of parameters to calibrate: the model has only one additional effective parameter than
the standard Heston model, independently of the number of factors. The first five parameters
have the same interpretation as in the standard Heston model, whereas the additional one has
a physical interpretation as it is linked to the regularity of the sample paths and the explosion
of the at-the-money skew.

This sheds some new light on the reason behind the remarkable fits of rough volatility models.
Indeed, a rough variance process can be seen as a superposition of infinitely many factors
sharing the same one-dimensional Brownian motion but mean reverting at different speeds
ranging from 07 to co. Each factor corresponds to a certain timescale. Therefore, time multi-
scaling is naturally encoded in rough volatility models, which explains why these models are
able to jointly handle different maturities in a satisfactory fashion.'”

Finally, Table 7 below compares the characteristics of the three different models. As it can be
seen, the lifted Heston model possesses an appealing trade-off between flexibility and tractability!

Stochastic volatility models

Characteristics Heston Rough Heston Lifted Heston
Markovian v X v/
Semimartingale v X v
Simulation Fast Slow Fast
Affine Volterra process v v v
Characteristic function Closed Fractional Riccati n-Riccati
Calibration Fast Slower 20x rough(®)
Fit short maturities X v v
Estimated daily regularity H =~ 0.5 H=~0.1 H =~ 0.2

Table 7: Summary of the characteristics of the different models. ®for n = 20.

A Existence, uniqueness and rough limiting model

In the sequel, the symbol * stands for the convolution operation, that is (f * u)(t) = [y f(t —
s)u(ds) for any suitable function f and measure p. For a right-continuous function f of locally
bounded variation, we denote by df the measure induced by its distributional derivative, that

is £(t) = F(0) + [ dF(s)-

10N\ [ultiple timescales in the volatility process have been identified in the literature, see for instance [22, Section
3.4].
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A.1 Existence and uniqueness

We provide in this section the strong existence and uniqueness of (2.1)-(2.3), for a fixed n € N.
We start by noticing that (2.1) is equivalent to

t
f_g(/ Vs’"‘st), t>0,
0

where £ is the Doléans-Dade exponential. Therefore, it suffices to prove the existence and
uniqueness of (2.2)-(2.3). Formally, starting from a solution to (2.2)-(2.3), the variation of
constants formula on (2.3) yields

_ t
Ut = / e i (t=s) <_)\V5"ds +v VsndWS> , i=1,...,n, (A1)
0
so that (2.2) reads
t
V= a0+ [ K (-avds v V). (A2)
0

where K" is the following completely monotone'! kernel

n

K"(t) =Y cle ™ t>0. (A.3)

i=1
Whence, if one proves the uniqueness of (A.2), then, uniqueness of (2.3) follows by virtue of
(A.1). Conversely, if one proves the existence of a nonnegative solution V" to (A.2), then, one
can define (U™)1<;<, as in (A.1), showing that (V™ (U™")1<;<,) is a solution to (2.2)-(2.3).
Therefore, the problem is reduced to proving the existence and uniqueness for the stochastic
Volterra equation (A.2).

In [2], the existence of a nonnegative solution to (A.2) is proved, provided the initial input curve
gy satisfies a certain ‘monotonicity’ condition. This condition is related to the resolvent of the
first kind L™ of the kernel (A.3), which is defined as the unique measure satisfying

/Ot K"(t—s)L"(ds) =1, ¢>0.12
More precisely, denoting by Ay the semigroup of right shifts acting on continuous functions,
ie. Apf = f(h+-) for h >0, gy should satisfy
Angy — (ApK" * L")(0)gy — d(ApK™ L") % g5 >0, h=0," (A.4)
leading to the following definition of the set Gxn of admissible input curves:
Gin = {gy Holder continuous of any order less than 1/2, satisfying (A.4) and g5 (0) > 0}.

It is shown in [2, Example 2.2] that the two specifications of input curves (2.4)-(2.5) provided
earlier satisfy (A.4).

We now provide the rigorous existence and uniqueness result for any initial input curve gj €
Ggn. We note that, for the specific choice (2.5), the result is an immediate consequence of [3,
Theorem 7.1].

1A function f is said to be completely monotone, if it is infinitely differentiable on (0, co) such that (—l)pf(”> >
0, for all p € N.

12The existence of L™ is ensured by the complete monoticity of K™, see [28, Theorem 5.5.4].

13 One can show that A, K™ % L™ is right-continuous and of locally bounded variation, thus the associated
measure d(Ap K™ x L™) is well defined.
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Theorem A.1 (Existence and uniqueness). Fiz n € N, S§' > 0 and assume that gi € Ggn.
Then, the stochastic differential equation (2.1)-(2.3) has a unique continuous strong solution
(S™, V™ (U™)1<i<pn) such that V* >0, for all t > 0, almost surely. Further, the process S™ is
a martingale.

Proof. By virtue of the variation of constants formula on the factors, the lifted Heston model
is equivalent to a Volterra Heston model in the sense of [2] of the form

dsr = S\ /VrdB,, St > 0, (A.5)

t
V" = gy (t) +/ K"(t—s) <—/\V9"ds +v V;”dWS> , (A.6)
0

with K™ given by (A.3). Since K" is locally Lipschitz and completely monotone, the assump-
tions of [2, Theorem 2.1] are met. Consequently, the stochastic Volterra equation (A.5)-(A.6)
has a unique Ri—valued weak continuous solution (S™, V™) on some filtered probability space
Q™ F" (F)e>0, Q™) for any initial condition S§ > 0 and admissible input curve g € Ggn.
Moreover, since K™ is differentiable, strong uniqueness is ensured by [1, Proposition B.3]. The
claimed existence and uniqueness statement now follows from (A.1). Finally, the martingality
of S™ follows along the lines of [3, Theorem 7.1(iii)]. O

A.2 The rough limiting model

We now discuss the convergence of the lifted Heston model towards the rough Heston model
(1.3)-(1.4), as the number of factors goes to infinity, we refer to [1] for more details. We fix
H € (0,1/2) and we denote by Kg : t — tH_%/I‘(H + 1/2) the fractional kernel of the rough
Heston model appearing in (1.4). The kernel Ky can be re-expressed as a Laplace function

Ku(t) = /0 e~ u(dr), t>0,

with p(dz) = nga) and & = H 4+ 1/2. On the one hand, for a fixed n, the parametrization
(3.3) is linked to p as follows:

;' ;'
o = / pldx), i = —n/ p(dx), i=1,...,n, (A7)
n n

n C. n
i—1 1 i—1

where 0" = r;_n/z, for i =0,...,n. We will show that, under (3.4),

K" — Ky, asn goes to infinity, in the L? sense. (A.8)

On the other hand, for each n € N, we have proved the existence of a solution to (A.2). One
would therefore expect from (A.8) the convergence of the sequence of solutions of (A.6) towards
the solution of (1.4). This is indeed the case, as illustrated by the following theorem, which
adapts [1, Theorem 3.5] to the geometric partition.

Theorem A.2 (Convergence towards the rough Heston model). Consider a sequence (ry)n>1
satisfying (3.4), and set g as in (2.6) and (', z])1<i<n as in (3.3), for every even n = 2p,
with p > 1. Assume S = Sy, for all n, then, the sequence of solutions (S™,V")p—opp>1 to
(2.1)-(2.2) converges weakly, on the space of continuous functions on [0,T] endowed with the
uniform topology, towards the rough Heston model (1.3)-(1.4), for any T > 0.
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We will only sketch the proof for the L? convergence of the kernels (A.8), in order to highlight
the small adjustments that one needs to make to the proof of [1, Theorem 3.5]. Indeed, since
ng # 0 in our case, [1, Theorem 3.5] cannot be directly applied, compare with [1, Assumption
3.1] where the left-end point of the partition is zero. The following lemma adapts [1, Proposition
3.3] to the geometric partition. The rest of the proof of Theorem A.2 follows along the lines of
[1, Theorem 3.5] by making the same small adjustments highlighted below, mainly to treat the
integral chunk between [0, 73].

Lemma A.3 (Convergence of K™ towards Kp). Let (rp)n>1 as in (3.4), and (¢, )i1<i<n
given by (3.3). Define K™ by (A.3), then,

|K" = Kullz20) — 0, asn — oo, (A.9)
for all T > 0.

Proof. Set nf* = yin/2 , for i =0,...,n. Using (A.7), we start by decomposing (Ky — K™) as

follows

Kyg— K" = / e O pu(dx) — Z e ()
0 5

i=1
) S [T (mal) _ et ()
:/ e "Yu(dx) + Z/ (e —e % )M(d:c) +/ e " p(dx)
0 =1 n:l—l 7777;
= J{L + JEL + J3,
so that
1Ko — K™ 200y < 1T + I3 + I3,
with 17! = ||J¢ |2 (0,m), for & = 1,2,3. We now prove that each I} — 0, as n tends to oco.

Relying on a second order Taylor expansion, along the lines of the proof of [14, Proposition 7.1],
we get the following bound

/n:;l (e—xt _ e—x?t) u(dm)

i—1

'
<Ct2 et (r, — 1) / (LA 2~ Y2 u(dx), t<T,
0

n
i—1

forallt =1,...,n, where C is a constant independent of n, i and ¢. Summationoveri =1,...,n

leads to

D2 a2 (1 [ (A ()
T Tn — ANx™ xT),

NG /0 a

so that I3 — 0, as n — oo, by virtue of the first condition in (3.4). On another note,

Iy <

( nyl-a po(-a)n/2
I = — h
1 / pu(dr) = (@2 = a) I‘(a)I‘(2—a)_>0’ when n — o0,
thanks to the second condition in (3.4). Similarly,
1— 6—2:(:T p1/2=a)n/2

I3 \| ———pu(dx) = h :

3 /n w_F (1—a)(a—1/2)_>0’ when n — oo
Combining the above leads to (A.9). O]
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B The full Fourier-Laplace transform

We provide the full Fourier-Laplace transform for the joint process X™ := (log S™, V") extending
(2.9). The formula can be used to price path-dependent options on the stock price S™ and the
variance process V".

Once again, this is a particular case of [2, Section 4], by observing that K™ defined in (A.3) is
the Laplace transform of the following nonnegative measure

' (dx) = Z ci'0gn (d).
i=1

Fix row vectors u = (uy,uz2) € C* and f € L{ (R4, (C?)) such that

Re(u; + 1% f1) € [0,1], Reus <0 and Refs2 <0,
then, it follows from [2, Remark 4.3] with u = >7i"; ¢]'d;» that the Fourier-Laplace transform
of X" = (log S™, V™) is exponentially affine with respect to the family (U™")1<;<p,
E [exp (uXf + (f * X")r) | Fi] = exp <¢”(t, T) + 41 (T — ) log S} + > (T — t)Ut””) )

i=1

for all t < T, where (11, (5 ’i)lgign) are the unique solutions of the following system of Riccati
ordinary differential equations

Y1 =wu1 + 1% fi,
(¢g7i)/ = _J;?wg,l + F (wh ZC?T/J;W) ) ¢g’z(0) = uz, 1= 17 e, N,
=1
with
1 9 V2 9
F(1,v2) = fa + B (1/’1 - ¢1> + (prip1 — Ao + ?1#2

and

T—t n X t
(T) = uagy () + [ F (wl, Zc?@z);’l(s)) (T —s)ds+ [ f(T—s)Xeds, t<T.
=1

C Discretization schemes

C.1 Riccati equations

The aim of this section is to design an approximation scheme of the n-dimensional Riccati
system of equations (2.10). In order to gain some insights, consider first the case where F' =0
so that (2.10) reduces to

(P = —alp™ i=1,...,n, (C.1)
and the solution is given by

¢TL7Z(t) — ,(/}n7i(0>e_x?t7 Z = 1’ RN
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One could start with an explicit Euler scheme for (C.1), that is

bt = - a AR = (- 2P AP, i=1,.m,

for a regular time grid ¢, = (kT)/N for all k = 1,..., N, where T is the terminal time, N the

number of time steps and At = T//N. A sufficient condition for the stability of the scheme reads
1

At < min —.
1<i<n :1:?

Recall from (3.3) that z]' grows very large as n increases. For instance, for n = 20, rop = 2.5
and H = 0.1, z] = 6417.74. Consequently, if one needs to ensure the stability of the explicit
scheme, one needs a very large number of time steps N. In contrast, the implicit Euler scheme

g Tngd n oy -
¢tk+1 =y —wiAt¢tk+1, i=1,...,n,
is stable for any number of time steps N and reads

Iy 1 .
n,e n,t M
wtkﬂ = m%k , t=1,...,n.
For this reason, we consider the following explicit-implicit discretization scheme of the n-
dimensional Riccati system of equations (2.10)

o . 1 . n o ]
Vo' =0, Wyl = M(%WNF(U’ZCM’J», i=1l....n,  (C2)
) Jj=1

for a regular time grid ¢t = kAt for all k = 1,..., N, with time step size At = T'/N, terminal
time T and number of time steps IN. Alternatively, one could also consider the exponential
scheme for the Riccati equations by replacing the term 1/(1 4 z7At) with e~%'2*. One can
also combine more involved discretization schemes for the explicit part involving the quadratic
function F, for instance higher order Runge-Kutta methods can be used, see [31].

C.2 Stochastic process

Similarly, we suggest to consider the following modified explicit-implicit scheme for the variance
process V™.

n

Vie = gb(te) +>_tUn", U =0, (C.3)
=1

1

~ . ~ . ~ ~ J’-

O, = e T (Ut’}j —AVEAL+ [ (V) (W, — Wtk>> , i=1,...,n, (C4)
for a regular time grid t, = kAt, k=1...N, At = T/N and (W, , —W;,) ~ N(0, At). Notice
that we take the positive part (-)* since the simulated process can become negative. Once
there, simulating the spot-price process S" is straightforward. We leave the theoretical study of
convergence and stability for future work. Numerically, the scheme seems stable. Alternatively,
one could also consider the exponential scheme for the stochastic process by replacing the term
1/(1 + 2P At) with e 2t As a final remark, one notices that (C.3)-(C.4) corresponds to
the space-time discretization of the integro-differential stochastic partial differential equation

(3.1)-(3.2). This is illustrated on Figure 12 below.
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0.05

-0.05

Figure 12: Simulated path of the stochastic partial differential equation (3.1)-(3.2) by using the
scheme (C.3)-(C.4).
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1 week 1 month 2 months
0.30 = 0.25-
0.35-
=¢= Rough Heston
0.25 =% Calibrated Lifted 0301
0.20-
0.25-
0.20 =
0.20 -
0.15-
0.15-
0.15 =
0.10 - 0.10- 0.10 -
0.90 0.95 1.00 0.90 0.95 1.00 1.05 0.7 0.8 0.9 1.0 11
3 months 6 months 9 months
0.4- 04- 0.4-
03- 03- 03-
02- 0.2- 02~
0.1- 0.1- 0.1-
0.6 0.8 1.0 1.2 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25
1 year 1.5 years 2 years
0.35-
0.30 -
0.30-
03-
0.25-
0.25~-
.. 0.20 -
02- 0.20
0.15- 0.15-
01- ) 1 ) ) ] 1 ) 1 1 ] ] ]
0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25

Figure 13: Implied volatility surface of the rough Heston model oo (K,T;00) of (3.7) (red)
and the calibrated lifted Heston model o9 (K, T'; 790 = 2.5,0¢) of Table 4 (blue) for maturities
ranging from 1 week to 2 years (MSE = 4.01e-07).
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| | | | | | | |
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3 months 6 months 9 months
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Figure 14: Implied volatility surface of the rough Heston model o (K, T;0g) (red) and the
calibrated Heston model of Table 6 (green) for maturities ranging from 1 week to 2 years
(MSE = 2.06e-03).
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v p H MSE
0.22 -0.67 0.09 3.63e-06
0.14 -0.54 0.19 5.34e-06
0.35 -0.65 0.19 8.17e-06
0.14 -0.83 0.06 9.74e-05
0.22 -0.59 0.15 4.60e-06
0.37 -0.50 0.12 4.55e-06
0.40 -0.53 0.11 4.56e-06
0.34 -0.85 0.08 3.45e-04
0.22 -0.89 0.09 1.25e-04
0.44 -0.76 0.11 2.79e-04
0.32 -0.70 0.12 4.56e-06
0.42 -0.63 0.08 5.22e-06
0.10 -0.61 0.17 3.69e-06
0.42 -0.64 0.11 4.81e-06
0.30 -0.69 0.17 5.96e-06
0.06 -0.71 0.17 2.98e-06
0.36 -0.71 0.16 6.14e-06
0.25 -0.80 0.18 1.63e-04
0.09 -0.77 0.06 2.87e-06
0.35 -0.74 0.13 1.44e-04

Table 8: Robustness of rop = 2.5: First 20 values of the simulated parameters and the
corresponding mean squared error between the implied volatility surface of the lifted model
o20(K,T;2.5,0y) and the rough model oo (K, T;0y), for k =1,...,20.
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