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Abstract

How to reconcile the classical Heston model with its rough counterpart? We introduce
a lifted version of the Heston model with n multi-factors, sharing the same Brownian mo-
tion but mean reverting at different speeds. Our model nests as extreme cases the classical
Heston model (when n = 1), and the rough Heston model (when n goes to infinity). We
show that the lifted model enjoys the best of both worlds: Markovianity and satisfactory
fits of implied volatility smiles for short maturities with very few parameters. Further, our
approach speeds up the calibration time and opens the door to time-efficient simulation
schemes.

Keywords: Stochastic volatility, implied volatility, affine Volterra processes, Riccati equa-
tions, rough volatility.

1 Introduction
Conventional one-dimensional continuous stochastic volatility models, including the renowned
Heston model [25]:

dSt = St
√
VtdBt, S0 > 0, (1.1)

dVt = λ(θ − Vt)dt+ ν
√
VtdWt, V0 ≥ 0, (1.2)

have struggled in capturing the risk of large price movements on a short timescale. In the
pricing world, this translates into failure to reproduce the at-the-money skew observed in the
market as illustrated on the following figure.
∗abijaber@ceremade.dauphine.fr. I would like to thank Bruno Bouchard and Camille Illand for very fruitful

discussions and insightful comments.
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Figure 1: Term structure of the at-the-money skew for the S&P index on June 20, 2018 (red
dots) and a power-law fit t→ 0.35× t−0.41.

In view of improving the overall fit, several directions have been considered over the past decades.
Two of the most common extensions are adding jumps [11, 22] and stacking additional random
factors [7, 20], in order to jointly account for short and long timescales. While the two approaches
have structural differences, they both suffer from the curse of dimensionality, as more parameters
are introduced, slowing down the calibration process. Recently, rough volatility models have
been introduced as a fresh substitute with remarkable fits of the implied volatility surface, see
[23, 5, 17]. The rough variance process involves a one-dimensional Brownian motion, keeps the
number of parameters small and enjoys continuous paths. However, the price to pay is that
rough volatility models leave the realm of semimartingale and Markovian models, which makes
pricing and hedging a challenging task, while degrading the calibration time. Here, the curse of
dimensionality hits us straight in the face in the non-Markovianity of the process. Indeed, the
rough model can be seen as an infinite dimensional Markovian model, as shown in [2, 13].

Going back to the standard Heston model (1.1)-(1.2), despite its lack of fit for short maturities,
it remains increasingly popular among practitioners. This is due to its high tractability, by
virtue of the closed form solution of the characteristic function, allowing for fast pricing and
calibration by Fourier inversion techniques [9, 18]. Recently, El Euch and Rosenbaum [16]
combined the tractability of the Heston model with the flexibility of rough volatility models,
to elegantly concoct a rough counterpart of (1.1)-(1.2), dubbed the rough Heston model. More
precisely, the rough model is constructed by replacing the variance process (1.2) by a fractional
square-root process as follows

dSt = St
√
VtdBt, S0 > 0, (1.3)

Vt = V0 + 1
Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

(
λ(θ − Vs)ds+ ν

√
VsdWs

)
, (1.4)

where H ∈ (0, 1/2] has a physical interpretation, as it measures the regularity of the sample
paths of V , see [23, 6], the case H = 1/2 corresponding to the standard Heston model. More
precisely, the sample paths of V are locally Hölder continuous of any order strictly less than
H. As for the standard Heston model, the characteristic function of the log-price is known, but
only up to the solution of a certain fractional Riccati Volterra equation. Indeed, both models
belong to the tractable and unifying class of affine Volterra processes introduced in [3]. The
following table summarizes the characteristics of the two models.
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Characteristics Heston Rough Heston
Markovian 3 7

Semimartingale 3 7

Simulation Fast Slow

Affine Volterra process 3 3

Characteristic function Closed Fractional Riccati
Calibration Fast Slower

Fit short maturities 7 3

Regularity of sample paths H = 0.5 0 < H ≤ 0.5

Table 1: Summary of the characteristics of the models.

In the present paper, we introduce a conventional multi-factor continuous stochastic volatility
model: the lifted Heston model. The variance process is constructed as a weighted sum of n
factors, driven by the same one-dimensional Brownian motion, but mean reverting at different
speeds, in order to accommodate a full spectrum of timescales. At first glance, the model
seems over-parametrized, with already 2n parameters for the mean reversions and the weights.
Inspired by the approximation results of [1], we provide a good parametrization of these 2n
parameters in terms of one single parameter H, which is nothing else but the Hurst index of
a limiting rough Heston model (1.3)-(1.4), obtained after sending the numbers of factors to
infinity.

The lifted model not only nests as extreme cases the classical Heston model (when n = 1) and
the rough Heston model (when n goes to infinity), but also enjoys the best of both worlds: the
flexibility of rough volatility models, and the Markovianity of their conventional counterparts.
Further, the model remains tractable, as it also belongs to the class of affine Volterra processes.
Here, the characteristic function of the log-price is known up to a solution of a finite system of
Riccati ordinary differential equations. From a practical viewpoint, we demonstrate that the
lifted Heston model:

• reproduces the same volatility surface as the rough Heston model for maturities ranging
from one week to two years,

• mimics the explosion of the at-the-money skew for short maturities,

• calibrates twenty times faster than its rough counterpart,

• is easier to simulate than the rough model.

All in all, the lifted Heston model can be more easily implemented than its rough counterpart,
while still retaining the precision of implied volatility fits of the rough Heston model. Further,
the lifted Heston model is able to generate a volatility surface, which cannot be generated by
the classical Heston model, with only one additional parameter. Finally, the stock price and
the variance process enjoy continuous paths and only depend on a two-dimensional Brownian
motion, leading to simple and feasible hedging strategies.

The paper is outlined as follows. In Section 2 we introduce our lifted Heston model and pro-
vide its existence, uniqueness and its affine Fourier-Laplace transform. Exploiting the limiting
rough model, we proceed in Section 3 to a reduction of the number of parameters to calibrate.
Numerical experiments for the model, with n = 20 factors, are illustrated in Section 4, both for
calibration and simulation. Finally, some technical material is postponed to Appendices A-C.
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2 The lifted Heston model
We fix n ∈ N and we define the lifted Heston model as a conventional stochastic volatility model,
with n factors for the variance process:

dSnt = Snt

√
V n
t dBt, Sn0 > 0, (2.1)

V n
t = gn0 (t) +

n∑
i=1

cni U
n,i
t , (2.2)

dUn,it =
(
−xni U

n,i
t − λV n

t

)
dt+ ν

√
V n
t dWt, Un,i0 = 0, i = 1, . . . , n, (2.3)

with parameters the function gn0 , λ, ν ∈ R+, cni , xni ≥ 0, for i = 1, . . . , n, and B = ρW +√
1− ρ2W⊥, with (W,W⊥) a two dimensional Brownian motion on a fixed filtered probability

space (Ω,F ,F := (Ft)t≥0,Q), with ρ ∈ [−1, 1].

We stress that all the factors (Un,i)1≤i≤n start from zero1 and share the same dynamics, with
the same one-dimensional Brownian motionW , except that they mean revert at different speeds
(xni )1≤i≤n. Further, the deterministic input curve gn0 allows one to plug-in initial term-structure
curves. More precisely, taking the expectation in (2.2) leads to the following relation

E[V n
t ] + λ

n∑
i=1

cni

∫ t

0
e−x

n
i (t−s)E[V n

s ]ds = gn0 (t), t ≥ 0.

In practice, the forward variance curve, up to a horizon T > 0, can be extracted from vari-
ance swaps observed in the market and then plugged-in in place of (E[V n

t ])t≤T in the previous
expression. For a suitable choice of continuous curves gn0 , for instance if

gn0 is non-decreasing such that gn0 (0) ≥ 0, (2.4)

or

gn0 : t→ V0 +
n∑
i=1

cni

∫ t

0
e−x

n
i (t−s)θ(s)ds, with V0, θ ≥ 0, (2.5)

there exists a unique continuous F-adapted strong solution (Sn, V n, (Un,i)1≤i≤n) to (2.1)-(2.3),
such that V n

t ≥ 0, for all t ≥ 0, and Sn is a F-martingale. We refer to Appendix A for more
details and the exact definition of the set of admissible input curves gn0 .

Since our main objective is to compare the lifted model to other existent models, we will restrict
to the case of input curves of the form

gn0 : t→ V0 + θ
n∑
i=1

cni

∫ t

0
e−x

n
i (t−s)ds, with V0, θ ≥ 0. (2.6)

Setting n = 1, c1
1 = 1 and x1

1 = 0, the lifted Heston model degenerates into the standard Heston
model (1.1)-(1.2). So far, the multi-factor extensions of the standard Heston model have been
considered by stacking additional square-root processes as in the double Heston model2 of [10]

1Notice that the initial value of the variance process V n is gn0 (0).
2The double Heston model is defined in [10] as follows

dSnt = Snt

(√
U1
t dB

1
t +

√
U2
t dB

2
t

)
, (2.7)

dU it = λi(θi − U it )dt+ νi
√
U itdW

i
t , U i0 ≥ 0, i ∈ {1, 2}, (2.8)

where Bi = ρiW
i +
√

1− ρ2
iW

i,⊥ with ρi ∈ [−1, 1] and (W 1,W 2,W 1,⊥,W 2,⊥) a four-dimensional Brownian
motion.
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and the multi-scale Heston model of [19], or by considering a Wishart matrix-valued process as
in [14]. In both cases, the dimension of the driving Brownian motion for the variance process,
along with the number of parameters, grows with the number of factors. Clearly, the lifted
Heston model differs from these extensions, one can compare (2.1)-(2.3) for n = 2 with (2.7)-
(2.8).

Just like the classical Heston model, the lifted Heston model remains tractable. Specifically, fix
u ∈ C such that Re(u) ∈ [0, 1]. By virtue of Appendix B, the Fourier-Laplace transform of the
log-price is exponentially affine with respect to the factors (Un,i)1≤i≤n:

E
[
exp (u logSnt )

∣∣∣ Ft] = exp
(
φn(t, T ) + u logSnt +

n∑
i=1

cni ψ
n,i(T − t)Un,it

)
, (2.9)

for all t ≤ T , where (ψn,i)1≤i≤n solves the following n-dimensional system of Riccati ordinary
differential equations

(ψn,i)′ = −xni ψn,i + F

u, n∑
j=1

cnj ψ
n,j

 , ψn,i(0) = 0, i = 1, . . . , n, (2.10)

with
F (u, v) = 1

2(u2 − u) + (ρνu− λ)v + ν2

2 v
2,

and
φn(t, T ) =

∫ T−t

0
F

(
u,

n∑
i=1

cni ψ
n,i(s)

)
gn0 (T − s)ds, t ≤ T.

In particular, for t = 0, since Un,i0 = 0 for i = 1, . . . , n, the unconditional Fourier-Laplace
transform reads

E [exp (u logSnt )] = exp
(
u logSn0 +

∫ T

0
F

(
u,

n∑
i=1

cni ψ
n,i(s)

)
gn0 (T − s)ds

)
. (2.11)

A similar formula holds for the Fourier-Laplace transform of the joint process (logSn, V n) with
integrated log-price and variance, we refer to the Appendix B for the precise expression.

Consequently, the Fourier-Laplace transform of the lifted Heston model is known in closed-form,
up to the solution of a deterministic n-dimensional system of ordinary differential equations
(2.10), which can be solved numerically. Once there, standard Fourier inversion techniques can
be applied on (2.11) to deduce option prices. This is illustrated in the following sections.

3 Parameter reduction and the choice of the number of factors
In this section, we proceed to a reduction of the number of parameters to calibrate. Our
inspiration stems from rough volatility. In a first step, for every n, we provide a parametrization
of the weights and the mean reversions (cni , xni )1≤i≤n in terms of the Hurst index H of a limiting
rough volatility model and one additional parameter rn. Then, we specify the number of factors
n and the value of the additional parameter rn so that the lifted model reproduces the same
volatility surface as the rough Heston model for maturities ranging from one week up to two
years, while calibrating twenty times faster than its rough counterpart. Benchmarking against
rough volatility models is justified by the fact that one of the main strengths of these models is
their ability to achieve better fits of the implied volatility surface than conventional stochastic
volatility models. This has been illustrated on real market data in [5, 17]. Finally, for the sake
of completeness, we provide a comparison with the standard Heston model.

5



3.1 Parametrization in terms of the Hurst index

For an initial input curve of the form (2.6), the lifted Heston model (2.1)-(2.3) has the same five
parameters (V0, θ, λ, ν, ρ) of the Heston model, plus 2n additional parameters for the weights
and the mean reversions (cni , xni )1≤i≤n.3 At first sight, the model seems to suffer from the
curse of dimensionality, as it requires the calibration of (2n + 5) parameters. This is where
the exciting theory of rough volatility finally comes into play. Inspired by the approximation
result [1, Theorem 3.5], we suggest to use a parametrization of (cni , xni )1≤i≤n in terms of two
well-chosen parameter. By doing so, we reduce the 2n additional parameters to calibrate to
only two effective parameters.

Qualitatively, we choose the weights and mean reversions (cni , xni )1≤i≤n in such a way that
sending the number of factors n → ∞ would yield the convergence of the lifted Heston model
towards a rough Heston model (1.3)-(1.4), with parameters (V0, θ, λ, ν, ρ,H). The additional
parameter H ∈ (0, 1/2) is the so-called Hurst index of the limiting fractional variance process
(1.4), and it measures the regularity of its sample paths.

More precisely, for a fixed even number of factors n, we fix rn > 1 and we consider the following
parametrization for the weights and the mean reversions

cni = (r1−α
n − 1)r(α−1)(1+n/2)

n

Γ(α)Γ(2− α) r(1−α)i
n and xni = 1− α

2− α
r2−α
n − 1
r1−α
n − 1

ri−1−n/2
n , i = 1, . . . , n, (3.1)

where α := H + 1/2 for some H ∈ (0, 1/2).4

If in addition, the sequence (rn)n≥1 satisfies

rn ↓ 1 and n ln rn →∞, as n→∞, (3.2)

then, Theorem A.2 in the Appendix ensures the convergence of the lifted model towards the
rough Heston model, as n goes to infinity. We refer to Appendix A for more details.

In order to visualize this convergence, we first define the following sequence

rn = 1 + 10n−0.9, n ≥ 1, (3.3)

which clearly satisfies (3.2). Then, we generate our benchmark implied volatility surface,

for 9 maturities T ∈ {1w, 1m, 2m, 3m, 6m, 9m, 1y, 1.5y, 2y}, (3.4)
with up to 80 strikes K per maturity, (3.5)

with a rough Heston model5 with parameters Θ0 := (V0, θ, λ, ν, ρ,H) given by

V0 = 0.02, θ = 0.02, λ = 0.3, ν = 0.3, ρ = −0.7 and H = 0.1. (3.6)
3If one chooses gn0 to match the forward variance curve, then, the parameters (V0, θ) can be eliminated from

both models.
4This corresponds to equation (3.6) in [1] with the geometric partition ηni = r

i−n/2
n for i = 0, . . . , n, which is

in the spirit of [8] for the approximation of the factional Brownian motion.
5The implied volatility surface is generated by first solving numerically the corresponding fractional Riccati

equations with the Adams Predictor-Corrector scheme [15] with 200 time steps, see [17, Appendix A] for more
details. Then, call prices are computed via the cosine method [18] for the inversion of the characteristic function.
We note that other Fourier inversion techniques can be used for the second step, for instance, the Carr-Madan
method [9], as done in [17]. As illustrated in [18], for the same level of accuracy, the cosine method is approximately
20 times faster than the Carr-Madan method, and needs drastically less evaluation points of the characteristic
function (E [exp (ui logSnt )])i∈I (|I| = 160 for the cosine methods and |I| = 4096 for the Carr-Madan method).
This latter point is crucial in our case since, for every i ∈ I, evaluation of E [exp (ui logSnt )] requires a numerical
discretization of the corresponding Riccati equation.
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The generated implied volatility is kept fixed and is denoted by σ∞(K,T ; Θ0), for every pair
(K,T ) in (3.4)-(3.5).

Then, for each n ∈ {10, 20, 50, 100, 500}, we generate the implied volatility surface of the lifted
Heston model6 with n-factors, with the same set of parameters Θ0 as in (3.6), and (3.3) plugged
in (3.1). For each n, the generated surface is denoted by σn(K,T ; rn,Θ0), for every pair (K,T )
in (3.4)-(3.5).

Because the sequence (rn)n≥1 defined in (3.3) satisfies condition (3.2), as n grows,

σn(K,T ; rn,Θ0)→ σ∞(K,T ; Θ0),

by virtue of Theorem A.2 in the Appendix. This convergence phenomenon is illustrated in
Figure 2 below for two maturity slices, one week and one year.

0.10

0.15

0.20

0.25

0.30

−0.15 −0.10 −0.05 0.00
Log−moneyness

 

Maturity 1 week

0.1

0.2

0.3

−1.2 −0.8 −0.4 0.0
Log−moneyness

 

Rough Heston

n=500

n=100

n=50

n=20

n=10

Maturity 1 year

Figure 2: Convergence of the implied volatility surface of the lifted model σn(k, T ; rn,Θ0), with
rn = 1 + 10n−0.9, towards its rough counterpart σ∞(k, T ; Θ0), illustrated on two maturities
slices T ∈ {1 week, 1 year}. Here k := ln(K/S0) stands for the log-moneyness.

In view of assessing the proximity between the implied volatility surface σn(K,T ; rn,Θ0) of the
lifted Heston model and that of the rough Heston model σ∞(K,T ; Θ0), we compute the mean
squared error (MSE) between the two volatility surfaces defined as follows

1∑
(K′,T ′)w(K ′, T ′)

∑
(K,T )

w(K,T )(σn(K,T ; rn,Θ0)− σ∞(K,T ; Θ0))2,

where we sum over all pairs (K,T ) as in (3.4)-(3.5). Here, w stands for a matrix of weights,
where we put more weight on options near the money and with short time to maturity (one
could also set w(K,T ) = 1 for all (K,T )).

The corresponding mean squared errors of Figure 2 are reported in Table 2 below, along with
the computational time7 for generating the whole volatility surface, for all pairs (K,T ) as in

6The implied volatility surface is generated by first solving numerically the n-dimensional Riccati equations
with the explicit-implicit scheme (C.2) detailed in the Appendix with a number of time steps N = 300. As before,
the call prices are then computed via the cosine method [18] for the inversion of the characteristic function.

7All cpu times are computed on a laptop with Intel core i7 processor at 2.2GHz and 16GB of memory. The
code, written in R, is far from being optimized.
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(3.4)-(3.5), that is, for 9 maturities slices with up to 80 strikes per maturity.8

n rn = 1 + 10n−0.9 Time (seconds) MSE
Lifted Heston 10 2.26 3.9 1.20e-03

20 1.67 4.4 1.85e-04
50 1.3 5.2 6.81e-05
100 1.16 6.6 2.54e-05
500 1.04 17.4 3.66e-06

Rough Heston n→∞ rn ↓ 1 106.8

Table 2: Convergence of the lifted model towards its rough counterpart for rn = 1 + 10n−0.9,
with the corresponding computational time in seconds for generating the implied volatility
surface (3.4)-(3.5).

All in all, we notice that the number of effective parameters remains constant and does not
depend on the number of factors n. This has to be contrasted with the usual multi-factor ex-
tensions: the double Heston model (2.7)-(2.8) already has 10 parameters (U i0, θi, λi, νi, ρi)i∈{1,2},
the multi-scale model of [19] also suffers from over-parametrization.

In the subsequent subsection, we will explain how to fix n and rn, so that the parameters to
calibrate are reduced to only six effective parameters (V0, θ, λ, ν, ρ,H), one additional parameter
than the standard Heston model!

3.2 Practical choice of n and rn

We suggest to fix the following values

n = 20 and r20 = 2.5. (3.7)

Our choice will be based on the numerical comparison with the rough Heston model of the
previous section.

We start by explaining our choice for the number of factors n in (3.7). Based on Table 2, we
choose n with a good trade-off between time-efficiency and proximity to the rough volatility
surface. Fixing n = 20 seems to be a good choice. Visually, as already shown on Figure 2, the
two implied volatility slices have almost identical shapes. Whence, one would expect that by
letting the parameters r20 free, one could achieve a perfect fit of the rough surface with only
n = 20 factors. This can be formulated as follows: keeping the six parameters of the lifted
model fixed as in (3.6), can one find r∗20(Θ0) > 1 such that

σ20(K,T ; r∗20(Θ0),Θ0) ≈ σ∞(K,T ; Θ0), for all K,T?

The next subsection provides a positive answer.
3.2.1 Mimicking roughness by increasing r20

First, one needs to understand the influence of the parameter rn on the lifted Heston model.
Increasing rn has the effect of boosting the parameters (cni , xni )1≤i≤n in (3.1), leading to an

8One cannot draw definite quantitative conclusions regarding the comparison between the computational times
of the lifted surface and the one of the rough surface. Indeed, one needs a more careful study of the discretization
errors of the corresponding Riccati equations before comparing the computational times needed to reach the same
level of accuracy. We omit to do so here. However, even if one reduces the number of time steps from 200 to
150 in the Adams scheme, it still takes 67.2 seconds to compute the rough surface. Recall that we used N = 300
time steps for the n-dimensional Riccati equation of the lifted model. In any case, it should be clear that solving
the 20-dimensional Riccati equations is considerably faster then solving the fractional Riccati equation.
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increase of the vol-of-vol parameter of the lifted model given by ν
∑n
i=1 c

n
i , together with faster

mean-reversions (xni )1≤i≤n for the factors. In analogy with conventional stochastic volatility
models, such as the standard Heston model (1.1)-(1.2), increasing the vol-of-vol parameter
together with the speed of mean reversion yields a steeper skew at the short-maturity end of
the volatility surface. Consequently, increasing the parameter rn in the lifted model should
steepen the implied volatility slice for short-maturities. Figure 3 below confirms that this is
indeed the case when one increases the value of r20 from 1.67 to 2.8, for the 20-dimensional
lifted model, as the two slices now almost perfectly match:

0.10

0.15

0.20

0.25

0.30

−0.15 −0.10 −0.05 0.00
Log−moneyness

 

Maturity 1 week
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Log−moneyness

 

Rough Heston

r=2.80

r=2.50

r=2.20

r=1.90

r=1.67

Maturity 1 year

Figure 3: Implied volatility of the 20-dimensional lifted model σ20(k, T ; r20,Θ0), for different
values of r20 ranging from 1.67 to 2.8, and the rough surface σ∞(k, T ; Θ0), for two maturities
slices T ∈ {1 week, 1 year}.

The corresponding mean squared errors of Figure 3 are collected in Table 3 below.

Lifted Heston (n = 20)
r20 MSE
1.67 1.85e-04
1.90 4.16e-05
2.20 8.72e-06
2.50 3.64e-06
2.80 2.81e-06

Table 3: Mean squared errors between the 20-dimensional lifted model σ20(k, T ; r20,Θ0) and
the rough model σ∞(k, T ; Θ0), for different values of r20.

Because rn has to converge to 1, when n goes to infinity, recall (3.2), we seek to keep rn as
small as possible. For n = 20, fixing r∗20(Θ0) = 2.5 yields already satisfactory results, improving
the mean squared error of 1.85e-04 in Table 2 to 3.64e-06. Further, this choice yields the same
order of precision as with n = 500 factors given in Table 2.

Before moving to a physical justification of the choice of r20, we proceed to the full calibration of
the lifted Heston model with n = 20 and r20 = 2.5 to the rough volatility surface σ∞(K,T ; Θ0).
That is, we let the six effective parameters (V0, θ, λ, ν, ρ,H) of the lifted model free. The
calibrated values Θ̂0 := (V̂0, θ̂, λ̂, ν̂, ρ̂, Ĥ), provided in Table 4, agree with (3.6). At the visual
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level, as shown on Figure 10 in the Appendix, the calibrated lifted surface is indistinguishable
from the rough surface σ∞(K,T ; Θ0) for all maturities ranging from one week to two years,
with a mean squared error of order 4.01e-07.

Parameters Calibrated values
V̂0 0.02012504
θ̂ 0.02007956
λ̂ 0.29300681
ν̂ 0.30527694
ρ̂ -0.70241116
Ĥ 0.09973346

Table 4: Calibrated lifted Heston model parameters.

We now provide another physical justification for the choice of r20 based on an infinite-dimensional
Markovian representation of the limiting rough variance process (1.4) due to [2], which we recall
in the following remark.

Remark 3.1 (Representation of the limiting rough process). The fractional kernel appearing
in the limiting rough process (1.4) admits the following Laplace representation

tH−1/2

Γ(H + 1/2) =
∫ ∞

0
e−xtµ(dx), with µ(dx) = x−H−1/2

Γ(1/2−H)Γ(H + 1/2) ,

so that the stochastic Fubini theorem, after setting V0 ≡ 0 in (1.4), leads to

Vt =
∫ ∞

0
Ut(x)µ(dx), x > 0,

where, for all x > 0,

Ut(x) :=
∫ t

0
e−x(t−s)

(
λ(θ − Vs)ds+ ν

√
VsdWs

)
.

This can be seen as the mild formulation of the following stochastic partial differential equation

dUt(x) =
(
−xUt(x) + λ

(
θ −

∫ ∞
0

Ut(y)µ(dy)
))

dt+ ν

√∫ ∞
0

Ut(y)µ(dy)dWt, (3.8)

U0(x) = 0, x > 0. (3.9)

Whence, the rough process can be reinterpreted as a superposition of infinitely many factors
(U·(x))x>0 sharing the same dynamics but mean reverting at different speeds x ∈ (0,∞). We
refer to [2] for the rigorous treatment of this representation. One makes the following observa-
tions:

• multiple timescales are naturally encoded in rough volatility models, which can be a plau-
sible explanation for their ability to achieve better fits than conventional one-dimensional
models,

• the largest mean reversions going to infinity characterize the factors responsible of the
roughness of the process.
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We notice that for the lifted model, the mean reversions in (3.1) satisfy

xni ≥ ri−1−n/2
n , i = 1, . . . , n.

Therefore, based on Remark 3.1, for n = 20, one would like to force x20
20 to be large enough in

order to mimic roughness and account for very short timescales, while having x20
1 small enough

to accommodate a whole palette of timescales. Setting

r20 ≈ 2.5,

would cover mean reversions between 10−4 and 104.

The previous justification suggests that once n = 20 is fixed, one can choose r20 independently
of the parameters Θ. The next experiment shows that this is indeed the case.

3.2.2 Robustness of r20: a numerical test

Throughout this section, we fix the three parameters V0, θ = 0.02 and λ = 0. In order to verify
experimentally the robustness of r20 = 2.5, we proceed as follows.

1. Simulate M = 500 set of parameters (Θk := (0.02, 0.02, 0, νk, ρk, Hk))k=1,...,M uniformly
distributed with the following bounds

0.05 ≤ ν ≤ 0.5, −0.9 ≤ ρ ≤ −0.5, 0.05 ≤ H ≤ 0.2.

2. For each k = 1, . . . ,M :

(a) Generate the rough volatility surface σ∞(K,T ; Θk), for all pairs (T,K) in (3.4)-(3.5),
(b) Generate the lifted volatility surface σ20(K,T ; r20 = 2.5,Θk), for all pairs (T,K) in

(3.4)-(3.5),
(c) Compute the mean squared error between the two volatility surfaces:

MSEk := 1∑
(K′,T ′)w(K ′, T ′)

∑
(K,T )

w(K,T )(σ20(K,T ; r20 = 2.5,Θk)− σ∞(K,T ; Θk))2.

The scatter plot and the empirical distribution of the mean squared error (MSEk)k=1,...,M are
illustrated in Figure 4 below.
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Figure 4: Scatter plot (left) and empirical distribution (right) of the mean squared error
(MSEk)k=1,...,M of the M = 500 simulated set of parameters (Θk)k=1,...,M .
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The first twenty values of the simulated set of parameters with the corresponding mean squared
error are provided in Table 8 in the Appendix. We observe that the lifted surfaces are quite
close to the rough surface, for any value of the simulated parameters. This is confirmed by
Table 5 below, where we collect the descriptive statistics of the computed mean squared errors
(MSEk)k=1,...,M .

MSE
Minimum 1.81e-06

1st Quantile 3.83e-06
Median 5.48e-06

3rd Quantile 4.91e-05
Maximum 2.42e-04

Table 5: Descriptive statistics of the mean squared error (MSEk)k=1,...,M of the M = 500
simulated set of parameters (Θk)k=1,...,M .

We now show that the mean squared errors can be improved by letting the three parameters
(ν, ρ,H) of the lifted model free. Specifically, consider the worst mean squared error of Table 5

max
Θk

MSEk = 2.42e-04, (3.10)

which is attained for the set of parameters Θ101 with

ν101 = 0.1537099, ρ101 = −0.8112745 and H101 = 0.1892725.

Keeping the first three parameters fixed V0, θ = 0.02 and λ = 0, we proceed to the calibration
of the lifted model to the rough surface σ∞(K,T ; Θ101). The calibration yields

ν̂ = 0.1647801, ρ̂ = −0.7961080 and Ĥ = 0.1957235,

improving the previous mean squared error (3.10) to 1.62e-06. This shows that, by fine tuning
the parameters of the lifted model, for any rough volatility surface σ∞(K,T ; Θ) with a realistic
set of parameters Θ, one can find a set of parameters Θ̂, not too far from Θ, such that

σ20(K,T ; r20 = 2.5, Θ̂) ≈ σ∞(K,T ; Θ), for any pair (K,T ) in (3.4)-(3.5).

To sum up, we showed so far that the lifted Heston model, with n = 20 and r20 = 2.5, is
able to produce the same volatility surfaces of the rough Heston model, for any realistic set of
parameters, for maturities ranging between one week and two years. Consequently, it can be
used directly to fit real market data instead of the rough Heston model.

Why is it more convenient to use the lifted Heston model rather than its rough counterpart?

On the one hand, it speeds-up calibration time. Indeed, solving numerically the 20-dimensional
system of Riccati ordinary differential equations (2.10) is up to twenty times faster than the
Adams scheme for the fractional Riccati equation. On the other hand, the lifted model remains
Markovian and semimartingale, which opens the door to time-efficient recursive simulation
schemes for pricing and hedging more complex exotic options. Before testing the lifted model
in practice, we compare it to the standard Heston model.
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3.3 Comparison with the standard Heston model

For the sake of comparison, we calibrate a standard Heston model (1.1)-(1.2) to the full rough
volatility surface σ∞(K,T ; Θ0), with Θ0 as in (3.6). Recall that the standard Heston model
corresponds to the case n = 1, x1

1 = 0 and c1
1 = 1. The calibrated parameters of the standard

Heston are provided in Table 6 below. We observe that the calibrated values of (V̂0, θ̂, ρ̂) have
the same magnitude as the ones of (3.6). This is not surprising since these parameters have the
same interpretation in the two models: the first two parameters (V̂0, θ̂) govern the level of the
term structure of forward variance at time 0 while ρ dictates the leverage effect between the
stock price and its variance.

Parameters Calibrated values
V̂0 0.019841
θ̂ 0.032471
λ̂ 3.480784
ν̂ 0.908037
ρ̂ -0.710067

Table 6: Calibrated Heston model parameters.

Despite the extreme values of the calibrated mean reversion and vol-of-vol parameters (λ̂, ν̂),
the Heston model is not able to reproduce the steepness of the skew for short maturities as
shown on Figure 11 in the Appendix, with a mean squared error of order 2.06e-03. For long
maturities, the fit is fairly good.

In order to compare our findings with the observed stylized fact of Figure 1, we plot on Figure
5 below the term structure of the at-the-money skew of the three models: the rough Heston
with parameters as in (3.6), the calibrated lifted Heston model of Table 4 and the calibrated
Heston model of Table 6. The Heston model fails in reproducing the explosive behavior of the
term structure of the at-the-money skew observed in the market. On the contrary, this feature
is captured by the lifted and rough counterparts. For long maturities, all three model have the
same behavior.
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Figure 5: Term structure of the at-the-money skew of the rough Heston model σ∞(K,T ; Θ0) of
(3.6) (red circles), the calibrated lifted Heston model σ20(K,T ; r20 = 2.5, Θ̂0) of Table 4 (blue
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triangles) and the calibrated Heston model of Table 6 (green line).

In the sequel, we will show that, for n = 20 factors, the lifted Heston model provides an
appealing trade-off between consistency with market data and tractability. We stress that
r20 = 2.5 is kept fixed in the lifted model, which now has only six effective parameters to
calibrate (V0, θ, λ, ν, ρ,H). Again, in practice, V0 and Θ0 can be eliminated by specifying the
initial forward variance curve as input and λ can be set to 0, as mean reversions at different
speeds are naturally encoded in the lifted model through the family (xni )1≤i≤n. By doing so,
one reduces the effective number of parameters to only three (ν, ρ,H), as already done in [17]
for the rough Heston model.

4 Calibration on market data and simulation
In this section, we fix the number of factors to n = 20 and set r20 = 2.5 in (3.1). We demonstrate
that the lifted Heston model:

• captures the explosion of the at-the-money skew observed in the market,

• is easier to simulate than the rough model,

• tricks the human eye as well as the statistical estimator of the Hurst index.

4.1 Calibration to the at-the-money skew

Going back to real market data, we calibrate the lifted model to the at-the-money skew of Figure
1. Keeping the parameters V0 = 0.02, θ = 0.02 and λ = 0 fixed, the calibrated parameters are
given by

ν̂ = 0.3161844, ρ̂ = −0.6852625 and Ĥ = 0.1104290. (4.1)

The fit is illustrated on Figure 6 below.
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Figure 6: Term structure of the at-the-money skew for the S&P index on June 20, 2018 (red
dots) and for the lifted model with calibrated parameters (4.1) (blue circles with dashed line).

We notice the calibrated value Ĥ in (4.1) is coherent with the value (0.5− 0.41) = 0.09, which
can be read off the power-law fit of Figure 1. Consequently, in the pricing world, the parameter
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H quantifies the explosion of the at-the-money skew through a power-law t→ Ct0.5−H , see also
[21].

We discuss briefly the simulation procedure of our lifted model in the next subsection.

4.2 Simulation and estimated roughness

Until now, there is no existing scheme to simulate the variance process (1.4) of the rough Heston
model, the crux resides in the non-Markovianity of the variance process, the singularity of the
kernel and the square-root dynamics. In contrast, numerous approximation schemes have been
developed for the simulation of the standard square-root process (1.2), see [4, Chapters 3 and
4] and the references therein. Because the lifted Heston model (2.1)-(2.3) is a Markovian and
semimartingale model, one can adapt standard recursive Euler-Maruyama schemes to simulate
the variance process V n first, and then the stock price Sn. For T > 0, we consider the modified
explicit-implicit scheme (C.3)-(C.4) detailed in the Appendix for the variance process V n.

We observe on Figure 7 below that the factors (U20,i)1≤i≤20 are highly correlated. We can distin-
guish between the short-term factors with fast mean reversions, responsible of the ‘roughness’,
and the long-term factors, with slower mean reversions, determining the level of the variance
process. The variance process is then obtained by aggregating these factors with respect to (2.2).
We also notice that some of the factors (Un,i)1≤i≤n become negative, but that the aggregated
process V n remains nonnegative at all time.

Remark 4.1 (Nonnegativity of the variance process). Looking at the stochastic differential
equation (2.2)-(2.3), it is not straightforward at all why V n should stay nonnegative at all time,
even for the zero initial curve g0 ≡ 0. Indeed, some of the factors (Un,i)1≤i≤n may become
negative, but surprisingly enough, their aggregated sum V n remains nonnegative, at all time.
This is due to a very special underlying structure: equations (2.2)-(2.3) can be recast as a
stochastic Volterra equation of convolution type for a suitable kernel, we refer to Appendix A
for more details.
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Figure 7: One sample path of the simulated factors (U20,i)1≤i≤20 with blue intensity proportional
to the speed of mean reversions (xni )1≤i≤20 (upper) and the corresponding aggregated variance
process V n (lower) with parameters V0 = 0.05, θ = 0.05, λ = 0.3, ν = 0.1 and H = 0.1 for a
time step of 0.001 and T = 1.
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Visually, the sample path of the variance process seems rougher than the one of a standard
Brownian motion. As shown on Figure 8 below, at the daily timescale, the simulated volatility
process of the lifted Heston model not only tricks the human eye, but also misleads the statis-
tical estimator of the Hurst index constructed in [6]. Specifically, the estimator recognizes a
semimartingale model for the simulated volatility of the Heston model, with an estimated Ĥ
close to 0.5. However, it fails to do so for the lifted model, the estimator displays Ĥ = 0.18.
The lifted model is therefore capable of mimicking, up to some extent, the ‘roughness’ of the
volatility observed on the market, at least at the daily timescale. This should be paralleled with
the explosive-like behavior of the at-the-money skew encountered earlier on Figures 5-6. Stated
otherwise, if one is only provided the lower graph of Figure 8, one cannot say if the path has
been generated by a rough volatility model with Hurst index H = 0.18 or by our lifted model
with H = 0.1. As the step size of the discretization scheme goes to 0, the estimated H of the
lifted model has to converge to 0.5, since V n is a semimartingale, and therefore has the same
regularity as a standard Brownian motion. The convergence is illustrated on Figure 12 below.

On another note, the upper graph of Figure 8 highlights the physical interpretation of the
parameter H as it measures the roughness of the empirical realized volatility. Indeed, empirical
studies on a very wide range of assets volatility time-series in [23, 6] revealed that the dynamics
of the log-volatility are close to that of a fractional Brownian motion with a ‘universal’ Hurst
parameter H of order 0.1, from intra-day up to daily timescales.
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Figure 8: Estimated Hurst index of: the realized volatility of the S&P(a) (upper), a sample
path of the volatility process in the Heston model (middle), and a sample path of the volatility
process in the the lifted model with H = 0.1 (lower). The simulation is run with N = 250 time
steps for each year.

(a)The realized volatility data series can be downloaded from https://realized.oxford-man.ox.ac.uk/.

5 Conclusion
We introduced the lifted Heston model, a conventional multi-factor stochastic volatility model,
where the factors share the same one-dimensional Brownian motion but mean revert at different
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speeds corresponding to different timescales. The model nests as extreme cases the standard
Heston model (for n = 1 factor), and the rough Heston model (when n goes to infinity). Inspired
by rough volatility models, we provided a good parametrization of the model reducing the
number of parameters to calibrate: the model has only one additional effective parameter than
the standard Heston model, independently of the number of factors. The first five parameters
have the same interpretation as in the standard Heston model, whereas the additional one has
a physical interpretation as it is linked to the regularity of the sample paths and the explosion
of the at-the-money skew.

This sheds some new light on the reason behind the remarkable fits of rough volatility models.
Indeed, a rough variance process can be seen as a superposition of infinitely many factors
sharing the same one-dimensional Brownian motion but mean reverting at different speeds
ranging from 0+ to ∞. Each factor corresponds to a certain timescale. Therefore, time multi-
scaling is naturally encoded in rough volatility models, which explains why these models are
able to jointly handle different maturities in a satisfactory fashion.9

Finally, Table 7 below compares the characteristics of the three different models. As it can be
seen, the lifted Heston model possesses an appealing trade-off between flexibility and tractability!

Stochastic volatility models
Characteristics Heston Rough Heston Lifted Heston
Markovian 3 7 3

Semimartingale 3 7 3

Simulation Fast Slow Fast

Affine Volterra process 3 3 3

Characteristic function Closed Fractional Riccati n-Riccati
Calibration Fast Slower 20x rough(a)

Fit short maturities 7 3 3

Estimated daily regularity H ≈ 0.5 H ≈ 0.1 H ≈ 0.2

Table 7: Summary of the characteristics of the different models. (a)for n = 20.

A Existence and uniqueness
In the sequel, the symbol ∗ stands for the convolution operation, that is (f ∗ µ)(t) =

∫ t
0 f(t −

s)µ(ds) for any suitable function f and measure µ. For a right-continuous function f of locally
bounded variation, we denote by df the measure induced by its distributional derivative, that
is f(t) = f(0) +

∫
(0,t] df(s).

We provide in this appendix the strong existence and uniqueness of (2.1)-(2.3), for a fixed n ∈ N.
We start by noticing that (2.1) is equivalent to

Snt = E
(∫ t

0
V n
s dBs

)
, t ≥ 0,

9Multiple timescales in the volatility process have been identified in the literature, see for instance [20, Section
3.4].
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where E is the Doléans-Dade exponential. Therefore, it suffices to prove the existence and
uniqueness of (2.2)-(2.3). Formally, starting from a solution to (2.2)-(2.3), the variation of
constants formula on (2.3) yields

Un,it =
∫ t

0
e−x

n
i (t−s)

(
−λV n

s ds+ ν
√
V n
s dWs

)
, i = 1, . . . , n, (A.1)

so that (2.2) reads

V n
t = gn0 (t) +

∫ t

0
Kn(t− s)

(
−λV n

s ds+ ν
√
V n
s dWs

)
, (A.2)

where Kn is the following completely monotone10 kernel

Kn(t) =
n∑
i=1

cni e
−xni t, t ≥ 0. (A.3)

Whence, if one proves the uniqueness of (A.2), then, uniqueness of (2.3) follows by virtue of
(A.1). Conversely, if one proves the existence of a nonnegative solution V n to (A.2), then, one
can define (Un,i)1≤i≤n as in (A.1), showing that (V n, (Un,i)1≤i≤n) is a solution to (2.2)-(2.3).
Therefore, the problem is reduced to proving the existence and uniqueness for the stochastic
Volterra equation (A.2).

In [2], the existence of a nonnegative solution to (A.2) is proved, provided the initial input curve
gn0 satisfies a certain ‘monotonicity’ condition. This condition is related to the resolvent of the
first kind Ln of the kernel (A.3), which is defined as the unique measure satisfying∫ t

0
Kn(t− s)Ln(ds) = 1, t ≥ 0.11

More precisely, denoting by ∆h the semigroup of right shifts acting on continuous functions,
i.e. ∆hf = f(h+ ·) for h ≥ 0, gn0 should satisfy

∆hg
n
0 − (∆hK

n ∗ Ln)(0)gn0 − d(∆hK
n ∗ Ln) ∗ gn0 ≥ 0, h ≥ 0, 12 (A.4)

leading to the following definition of the set GKn of admissible input curves:

GKn = {gn0 Hölder continuous of any order less than 1/2, satisfying (A.4) and gn0 (0) ≥ 0} .

It is shown in [2, Example 2.2] that the two specifications of input curves (2.4)-(2.5) provided
earlier satisfy (A.4).

We now provide the rigorous existence and uniqueness result.

Theorem A.1 (Existence and uniqueness). Fix n ∈ N, Sn0 > 0 and assume that gn0 ∈ GKn.
Then, the stochastic differential equation (2.1)-(2.3) has a unique continuous strong solution
(Sn, V n, (Un,i)1≤i≤n) such that V n

t ≥ 0, for all t ≥ 0, almost surely. Further, the process Sn is
a martingale.

10A function f is said to be completely monotone, if it is infinitely differentiable on (0,∞) such that (−1)pf (p) ≥
0, for all p ∈ N.

11The existence of Ln is ensured by the complete monoticity of Kn, see [24, Theorem 5.5.4].
12 One can show that ∆hK

n ∗ Ln is right-continuous and of locally bounded variation, thus the associated
measure d(∆hK

n ∗ Ln) is well defined.
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Proof. By virtue of the variation of constants formula on the factors, the lifted Heston model
is equivalent to a Volterra Heston model in the sense of [2] of the form

dSnt = Snt

√
V n
t dBt, Sn0 > 0, (A.5)

V n
t = gn0 (t) +

∫ t

0
Kn(t− s)

(
−λV n

s ds+ ν
√
V n
s dWs

)
, (A.6)

with Kn given by (A.3). Since Kn is locally Lipschitz and completely monotone, the assump-
tions of [2, Theorem 2.1] are met. Consequently, the stochastic Volterra equation (A.5)-(A.6)
has a unique R2

+-valued weak continuous solution (Sn, V n) on some filtered probability space
(Ωn,Fn, (Fnt )t≥0,Qn) for any initial condition Sn0 > 0 and admissible input curve gn0 ∈ GKn .
Moreover, since Kn is differentiable, strong uniqueness is ensured by [1, Proposition B.3]. The
claimed existence and uniqueness statement now follows from (A.1). Finally, the martingality
of Sn follows along the lines of [3, Theorem 7.1(iii)].

A.1 The rough limiting model

We now discuss the convergence of the lifted Heston model towards the rough Heston model
(1.3)-(1.4), as the number of factors goes to infinity, we refer to [1] for more details. We fix
H ∈ (0, 1/2) and we denote by KH : t → tH−

1
2 /Γ(H + 1/2) the fractional kernel of the rough

Heston model appearing in (1.4). The kernel KH can be re-expressed as a Laplace function

KH(t) =
∫ ∞

0
e−xtµ(dx), t ≥ 0,

with µ(dx) = x−α

Γ(α)Γ(1−α) and α = H + 1/2. On the one hand, for a fixed n, the parametrization
(3.1) is linked to µ as follows:

cni =
∫ ηni

ηni−1

µ(dx), xni = 1
cni

∫ ηni

ηni−1

µ(dx), i = 1, . . . , n, (A.7)

where ηni = r
i−n/2
n , for i = 0, . . . , n. We will show that, under (3.2),

Kn → KH , as n goes to infinity, in the L2 sense. (A.8)

On the other hand, for each n ∈ N, we have proved the existence of a solution to (A.2). One
would therefore expect from (A.8) the convergence of the sequence of solutions of (A.6) towards
the solution of (1.4). This is indeed the case, as illustrated by the following theorem, which
adapts [1, Theorem 3.5] to the geometric partition.

Theorem A.2 (Convergence towards the rough Heston model). Consider a sequence (rn)n≥1
satisfying (3.2), and set gn0 as in (2.6) and (cni , xni )1≤i≤n as in (3.1), for every even n = 2p,
with p ≥ 1. Assume Sn0 = S0, for all n, then, the sequence of solutions (Sn, V n)n=2p,p≥1 to
(2.1)-(2.2) converges weakly, on the space of continuous functions on [0, T ] endowed with the
uniform topology, towards the rough Heston model (1.3)-(1.4), for any T > 0.

We will only sketch the proof for the L2 convergence of the kernels (A.8), in order to highlight
the small adjustments that one needs to make to the proof of [1, Theorem 3.5]. Indeed, since
ηn0 6= 0 in our case, [1, Theorem 3.5] cannot be directly applied, compare with [1, Assumption
3.1] where the left-end point of the partition is zero. The following lemma adapts [1, Proposition
3.3] to the geometric partition. The rest of the proof of Theorem A.2 follows along the lines of
[1, Theorem 3.5] by making the same small adjustments highlighted below, mainly to treat the
integral chunk between [0, ηn0 ].
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Lemma A.3 (Convergence of Kn towards KH). Let (rn)n≥1 as in (3.2), and (cni , xni )1≤i≤n
given by (3.1). Define Kn by (A.3), then,

‖Kn −KH‖L2(0,T ) → 0, as n→∞, (A.9)

for all T > 0.

Proof. Set ηni = r
i−n/2
n , for i = 0, . . . , n. Using (A.7), we start by decomposing (KH −Kn) as

follows

KH −Kn =
∫ ∞

0
e−x(·)µ(dx)−

n∑
i=1

cni e
−xni (·)

=
∫ ηn0

0
e−x(·)µ(dx) +

(
n∑
i=1

∫ ηni

ηni−1

(
e−x(·) − e−xni (·)

)
µ(dx)

)
+
∫ ∞
ηnn

e−x(·)µ(dx)

:= Jn1 + Jn2 + Jn3 ,

so that

‖KH −Kn‖L2(0,T ) ≤ In1 + In2 + In3 ,

with Ink = ‖Jnk ‖L2(0,T ), for k = 1, 2, 3. We now prove that each Ink → 0, as n tends to ∞.
Relying on a second order Taylor expansion, along the lines of the proof of [12, Proposition 7.1],
we get the following bound∣∣∣∣∣

∫ ηni

ηni−1

(
e−xt − e−xni t

)
µ(dx)

∣∣∣∣∣ ≤ C t2 r1/2
n (rn − 1)2

∫ ηni

ηni−1

(1 ∧ x−1/2)µ(dx), t ≤ T,

for all i = 1, . . . , n, where C is a constant independent of n, i and t. Summation over i = 1, . . . , n
leads to

In2 ≤ C
T 5/2
√

5
r1/2
n (rn − 1)2

∫ ∞
0

(1 ∧ x−1/2)µ(dx),

so that In2 → 0, as n→∞, by virtue of the first condition in (3.2). On another note,

In1 ≤
∫ ηn0

0
µ(dx) = (ηn0 )1−α

Γ(α)Γ(2− α) = r
−(1−α)n/2
n

Γ(α)Γ(2− α) → 0, when n→∞,

thanks to the second condition in (3.2). Similarly,

In3 ≤
∫ ∞
ηnn

√
1− e−2xT

2x µ(dx) ≤ r
(1/2−α)n/2
n

Γ(α)Γ(1− α)(1/2− α) → 0, when n→∞.

Combining the above leads to (A.9).

B The full Fourier-Laplace transform
We provide the full Fourier-Laplace transform for the joint processXn := (logSn, V n) extending
(2.9). The formula can be used to price path-dependent options on the stock price Sn and the
variance process V n.

Once again, this is a particular case of [2, Section 4], by observing that Kn defined in (A.3) is
the Laplace transform of the following nonnegative measure

µn(dx) =
n∑
i=1

cni δxni (dx).
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Fix row vectors u = (u1, u2) ∈ C2 and f ∈ L1
loc(R+, (C2)) such that

Re (u1 + 1 ∗ f1) ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0,

then, it follows from [2, Remark 4.3] with µ =
∑n
i=1 c

n
i δxni that the Fourier-Laplace transform

of Xn = (logSn, V n) is exponentially affine with respect to the family (Un,i)1≤i≤n,

E
[
exp (uXn

T + (f ∗Xn)T )
∣∣∣ Ft] = exp

(
φn(t, T ) + ψ1(T − t) logSnt +

n∑
i=1

cni ψ
n,i
2 (T − t)Un,it

)
,

for all t ≤ T , where (ψ1, (ψn,i2 )1≤i≤n) are the unique solutions of the following system of Riccati
ordinary differential equations

ψ1 = u1 + 1 ∗ f1,

(ψn,i2 )′ = −xni ψ
n,i
2 + F

ψ1,
n∑
j=1

cnj ψ
n,j
2

 , ψn,i2 (0) = u2, i = 1, . . . , n,

with

F (ψ1, ψ2) = f2 + 1
2
(
ψ2

1 − ψ1
)

+ (ρνψ1 − λ)ψ2 + ν2

2 ψ
2
2

and

φn(t, T ) = u2g
n
0 (T ) +

∫ T−t

0
F

(
ψ1,

n∑
i=1

cni ψ
n,i
2 (s)

)
gn0 (T − s)ds+

∫ t

0
f(T − s)Xsds, t ≤ T.

C Discretization schemes

C.1 Riccati equations

The aim of this section is to design an approximation scheme of the n-dimensional Riccati
system of equations (2.10). In order to gain some insights, consider first the case where F ≡ 0
so that (2.10) reduces to

(ψn,i)′ = −xni ψn,i, i = 1, . . . , n, (C.1)

and the solution is given by

ψn,i(t) = ψn,i(0)e−xni t, i = 1, . . . , n.

One could start with an explicit Euler scheme for (C.1), that is

ψ̂n,itk+1
= ψ̂n,itk − x

n
i ∆tψ̂n,itk = (1− xni ∆t) ψ̂n,itk , i = 1, . . . , n,

for a regular time grid tk = (kT )/N for all k = 1, . . . , N , where T is the terminal time, N the
number of time steps and ∆t = T/N . A sufficient condition for the stability of the scheme reads

∆t ≤ min
1≤i≤n

1
xni
.
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Recall from (3.1) that xnn grows very large as n increases. For instance, for n = 20, r20 = 2.5
and H = 0.1, xnn = 6417.74. Consequently, if one needs to ensure the stability of the explicit
scheme, one needs a very large number of time steps N . In contrast, the implicit Euler scheme

ψ̂n,itk+1
= ψ̂n,itk − x

n
i ∆t ψ̂n,itk+1

, i = 1, . . . , n,

is stable for any number of time steps N and reads

ψ̂n,itk+1
= 1

1 + xni ∆t ψ̂
n,i
tk
, i = 1, . . . , n.

For this reason, we consider the following explicit-implicit discretization scheme of the n-
dimensional Riccati system of equations (2.10)

ψ̂n,i0 = 0, ψ̂n,itk+1
= 1

1 + xni ∆t

ψ̂n,itk + ∆t F

u, n∑
j=1

cnj ψ̂
n,j
tk

 , i = 1, . . . , n, (C.2)

for a regular time grid tk = k∆t for all k = 1, . . . , N , with time step size ∆t = T/N , terminal
time T and number of time steps N . Alternatively, one could also consider the exponential
scheme for the Riccati equations by replacing the term 1/(1 + xni ∆t) with e−x

n
i ∆t. One can

also combine more involved discretization schemes for the explicit part involving the quadratic
function F , for instance higher order Runge-Kutta methods can be used, see [26].

C.2 Stochastic process

Similarly, we suggest to consider the following modified explicit-implicit scheme for the variance
process V n:

V̂ n
tk

= gn0 (tk) +
n∑
i=1

cni Û
n,i
tk
, Ûn,i0 = 0, (C.3)

Ûn,itk+1
= 1

1 + xni ∆t

(
Ûn,itk

− λV̂ n
tk

∆t+ ν

√(
V̂ n
tk

)+ (
Wtk+1 −Wtk

))
, i = 1, . . . , n, (C.4)

for a regular time grid tk = k∆t, k = 1 . . . N , ∆t = T/N and (Wtk+1 −Wtk) ∼ N (0,∆t). Notice
that we take the positive part (·)+ since the simulated process can become negative. Once
there, simulating the spot-price process Sn is straightforward. We leave the theoretical study of
convergence and stability for future work. Numerically, the scheme seems stable. Alternatively,
one could also consider the exponential scheme for the stochastic process by replacing the term
1/(1 + xni ∆t) with e−x

n
i ∆t. As a final remark, one notices that (C.3)-(C.4) corresponds to

the space-time discretization of the integro-differential stochastic partial differential equation
(3.8)-(3.9). This is illustrated on Figure 9 below.
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Figure 9: Simulated path of the stochastic partial differential equation (3.8)-(3.9) by using the
scheme (C.3)-(C.4).
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Figure 10: Implied volatility surface of the rough Heston model σ∞(K,T ; Θ0) of (3.6) (red)
and the calibrated lifted Heston model σ20(K,T ; r20 = 2.5, Θ̂0) of Table 4 (blue) for maturities
ranging from 1 week to 2 years (MSE = 4.01e-07).
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Figure 11: Implied volatility surface of the rough Heston model σ∞(K,T ; Θ0) (red) and the
calibrated Heston model of Table 6 (green) for maturities ranging from 1 week to 2 years
(MSE = 2.06e-03).
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Figure 12: Estimated Hurst index of the simulated sample path of the volatility process in the
lifted model with H = 0.1 as a function of the number of time steps per year.
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ν ρ H MSE
0.22 -0.67 0.09 3.63e-06
0.14 -0.54 0.19 5.34e-06
0.35 -0.65 0.19 8.17e-06
0.14 -0.83 0.06 9.74e-05
0.22 -0.59 0.15 4.60e-06
0.37 -0.50 0.12 4.55e-06
0.40 -0.53 0.11 4.56e-06
0.34 -0.85 0.08 3.45e-04
0.22 -0.89 0.09 1.25e-04
0.44 -0.76 0.11 2.79e-04
0.32 -0.70 0.12 4.56e-06
0.42 -0.63 0.08 5.22e-06
0.10 -0.61 0.17 3.69e-06
0.42 -0.64 0.11 4.81e-06
0.30 -0.69 0.17 5.96e-06
0.06 -0.71 0.17 2.98e-06
0.36 -0.71 0.16 6.14e-06
0.25 -0.80 0.18 1.63e-04
0.09 -0.77 0.06 2.87e-06
0.35 -0.74 0.13 1.44e-04

Table 8: Robustness of r20 = 2.5: First 20 values of the simulated parameters and the
corresponding mean squared error between the implied volatility surface of the lifted model
σ20(K,T ; 2.5,Θk) and the rough model σ∞(K,T ; Θk), for k = 1, . . . , 20.
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