A Linear Algorithm For Computing Polynomial Dynamical Systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

A Linear Algorithm For Computing Polynomial Dynamical Systems

Résumé

Computation biology helps to understand all processes in organisms from interaction of molecules to complex functions of whole organs. Therefore, there is a need for mathematical methods and models that deliver logical explanations in a reasonable time. For the last few years there has been a growing interest in biological theory connected to finite fields: the algebraic modeling tools used up to now are based on Gröbner bases or Boolean group. Let n variables representing gene products, changing over the time on p values. A Polynomial dynamical system (PDS) is a function which has several components; each one is a polynom with n variables and coefficient in the finite field Z/pZ that model the evolution of gene products. We propose herein a method using algebraic separators, which are special polynomials abundantly studied in effective Galois theory. This approach avoids heavy calculations and provides a first Polynomial model in linear time.
Fichier principal
Vignette du fichier
PDS_2018.pdf (386.83 Ko) Télécharger le fichier
essai3.pdf (3.76 Ko) Télécharger le fichier
fil4181.pdf (241.83 Ko) Télécharger le fichier
poly1.pdf (8.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01890698 , version 1 (08-10-2018)

Identifiants

  • HAL Id : hal-01890698 , version 1

Citer

Ines Abdeljaoued-Tej, Alia Benkahla, Ghassen Haddad, Annick Valibouze. A Linear Algorithm For Computing Polynomial Dynamical Systems. 2018. ⟨hal-01890698⟩
217 Consultations
645 Téléchargements

Partager

More