The weak convergence of regenerative processes using some excursion path decompositions - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Year : 2014

The weak convergence of regenerative processes using some excursion path decompositions

Abstract

We consider regenerative processes with values in some general Polish space. We define their ε-big excursions as excursions e such that φ(e) > ε, where φ is some given functional on the space of excursions which can be thought of as, e.g., the length or the height of e. We establish a general condition that guarantees the convergence of a sequence of regenerative processes involving the convergence of ε-big excursions and of their endpoints, for all ε in a set whose closure contains 0. Finally, we provide various sufficient conditions on the excursion measures of this sequence for this general condition to hold and discuss possible generalizations of our approach to processes that can be written as the concatenation of i.i.d. motifs.
Fichier principal
Vignette du fichier
Lambert_20904.pdf (390.11 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01890571 , version 1 (08-10-2018)

Identifiers

Cite

Amaury Lambert, Florian Simatos. The weak convergence of regenerative processes using some excursion path decompositions. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2014, 50 (2), pp.492-511. ⟨10.1214/12-AIHP531⟩. ⟨hal-01890571⟩
94 View
44 Download

Altmetric

Share

Gmail Facebook X LinkedIn More