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Abstract 

In the aeronautic industry, composite materials are becoming more widespread due to their high 

strength to mass ratio. Piezoelectric elements can be permanently incorporated on composite parts during 

the manufacturing process and can then be used to provide a diagnosis of their current health and the 

prognosis of their remaining operational life. This approach is called Structural Health Monitoring (SHM). 

In this work, we approach delamination quantification in Carbon Fiber Reinforced Polymer (CFRP) plates 

as a classification problem whereby each class corresponds to a certain damage extent. Starting from the 

assumption that damage causes a structure to exhibit nonlinear response, we investigate whether the use of 

Nonlinear Model Based Features (NMBF) increases classification performance. NMBF are computed 

based on parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) signal. 

Delamination damage is introduced into samples in a calibrated and realistic way using LASER Shock 

Wave Technique (LSWT) and more particularly symmetrical LASER shock configuration. Obtained results 

demonstrate that the proposed approach is very reliable for delamination quantification. 

1. Introduction

Structural Health Monitoring (SHM) combines advanced sensor technology with 

intelligent algorithms to interrogate the structural health condition of newly designed 

composite materials [1]. A SHM process aims at establishing: (1) the existence of damage, 

(2) its localization, (3) its type, and (4) its severity [2]. In this work, the focus is put on 

the quantification step of the SHM process, i.e. the assessment of damage severity. 

Delamination quantification problem is addressed here as a classification problem 

whereby each class corresponds to a certain damage severity. Based on the assumption 

that damage causes a structure to exhibit nonlinear response, it is expected that the 

damage quantification process can be significantly enhanced by taking advantage of these 

nonlinear effects [3]. The aim is thus here to exploit a richer nonlinear representation of 

our test structure [4, 5] and to investigate whether the use of nonlinear model based 

features allows for an enhanced damage quantification approach. A support Vector 

Machine (SVM) is used to perform multi-class classification task [6, 7]. Two types of 

features are used to feed the SVM algorithm: Signal Based Features (SBF) and Nonlinear 

Model Based Features (NMBF). SBF are rooted in a direct use of response signals and 

do not consider any underlying model of the monitored structure [8, 9]. NMBF are 

computed based on parallel Hammerstein models which are identified with an 

Exponential Sine Sweep (ESS) signal [4, 5]. Dimensionality reduction of features vector 

using Principal Component Analysis (PCA) is also conducted to find out if it allows to 

robustify the quantification process [8]. CFRP composite plates equipped with 5 

piezoelectric elements and containing various delamination severities are considered for 

demonstration purposes. LASER Shock Wave Technique (LSWT) and more particularly 

symmetrical LASER shock configuration is used to introduce realistic and well calibrated 

delamination-type damage into test coupons [10, 11]. In the following, after the 
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presentation of laser shock wave technique and CFRP test coupons, the main key 

elements of the quantification workflow proposed in this paper are detailed. The 

experimental investigation conducted in this work is then described. Results and analysis 

are afterwards presented. Conclusions are finally provided. 

2. Test Structures

2.1. LASER Shock Wave Technique 

Test structures considered for demonstration consist of four CFRP composite plates 

equipped with 5 piezoelectric elements and containing various delamination severities. 

Damage is introduced into samples (see Figure 1 [Left]) in a calibrated way using LSWT 

and more particularly symmetrical laser shock configuration (see Figure 1 [Right]). LSWT 

is chosen as an alternative to conventional damage generation techniques such as 

conventional impacts and Teflon inserts since it allows for a better calibration of damage 

in type, depth, and size [10, 11]. Four CFRP test coupons are considered. The first one is 

kept in a healthy state. The second one was subjected to a symmetrical laser impact at 0 

ns time delay and at 100 % of the maximum energy of the two laser beams. This resulted 

in approximately 7 mm diameter delamination which occurred at 1.1 mm depth. The third 

coupon was subjected to two symmetrical and contiguous laser impacts which resulted in 

14 mm diameter delamination while the fourth coupon was impacted with three 

contiguous impacts which in turn resulted in approximately 21 mm diameter 

delamination. 

Figure 1: [Left] Experimental set-up of symmetrical laser shock configuration. [Right] Cross-

sectional observation showing a delamination generated using LSWT. 

2.2. Composite plates under study 

The dimensions of the composites plates are 300mm / 400mm / 2:2mm and they are 

made up of 16 plies with the following stacking sequence [0°/90°/0°/90°/0°/90°/0°/90°]s. 

Each ply is of 0,14 mm thickness and is made up of unidirectional carbon fibers lying 

within an epoxy matrix. The first plate, referenced as "healthy", is kept healthy. The 

second plate referenced "1 impact", has been impacted using symmetric LSWT and this 

results in a 7 mm delamination in the mid-thickness plate. The second plate referenced "1 

impact", has been impacted twice using symmetric LSWT and this results in a 14 mm 

delamination in the mid-thickness plate. The third plate referenced "3 impacts", has been 



M. Ghrib, M. Rebillat, M. Guskov, L. Berthe & N. Mechbal 

impacted three times using symmetric LSWT and this results in a 21 mm delamination in 

the mid-thickness plate. The plates as well as their geometry are depicted in Figure 2. 

Figure 2: [Left] The four composite plates under study. [Right] Geometrical details of the four 

specimens under study. 

2.3. Data acquisition 

Test coupons were excited using an exponential sine sweep signal with 1 kHz 

minimum frequency, 100 kHz maximum frequency, 0.45 s sweep duration and 10 V 

amplitude. Twenty repetitions were considered. At each repetition one goes around all 

PZT elements and only one PZT operates as an actuator while others operate as sensors. 

Sampling frequency was set to 1 MHz. 

3. Damage quantification approach

Figure 3 illustrates the main key ingredients of the quantification workflow proposed 

in this work. An input signal is firstly selected to excite a test structure containing a given 

damage severity. The structure response signal is then recorded, and damage sensitive 

features are extracted. In this work, we investigate whether NMBF allow for an enhanced 

damage quantification strategy. Two types of features are thus considered: SBF and 

NMBF. 

Figure 3: Proposed damage quantification workflow 
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3.1. -based features (SBF) 

Signal-based Features are rooted in a direct use of response signals and do not 

consider any underlying model of the test structure. Four signal-based features are 

considered in this study and are computed as follows. Let 𝑠𝑟𝑒𝑓(𝑡)  and 𝑠𝑑(𝑡)  be the 

structure output signal in reference and damaged state respectively, where t refers to time, 

one defines the signal-based features as in Table 1. 

Table 1: Definition of the signal-based features (SBF) 

Name Comments Definition 

CC 

FFT based implementation of the maximum of 

the correlation between the reference and 

damaged signals 

1 − max

(

𝐼𝐹𝐹𝑇[𝐹𝐹𝑇[𝑠𝑟𝑒𝑓(𝑡)] × 𝐹𝐹𝑇[𝑠𝑑(𝑡)]
∗]

√(𝐸𝑠𝑟𝑒𝑓 × 𝐸𝑠𝑑) )

NRE 
Normalized residual energy of the difference 

between the reference and damaged signals 
∫(𝑠𝑟𝑒𝑓(𝑡) − 𝑠𝑑(𝑡))

2

𝑑𝑡

𝑇

0

 

MA 
Maximum amplitude of the difference between 

the reference and damaged signals 
max[𝑠𝑟𝑒𝑓(𝑡) − 𝑠𝑑(𝑡)] 

ENV 
Maximum envelope of the difference between 

the reference and damaged signals 
max[𝐸𝑁𝑉(𝑠𝑟𝑒𝑓(𝑡) − 𝑠𝑑(𝑡))] 

3.2. Nonlinear model-based features (NLMBF) 

NMBF are considered based on previous work presented in [12, 13]. Parallel 

Hammerstein models identified by means of Exponential Sine Sweeps excitation signal 

are used to model the damaged structure [4, 5]. Once a nonlinear model of the structure 

has been identified, the system output 𝑠(𝑡) can be rewritten as follows: 

𝑠(𝑡) = 𝑠𝐿(𝑡) + 𝑠𝑁𝐿(𝑡) = 𝑠𝐿(𝑡) + 𝑠𝑜
𝑁𝐿(𝑡) + 𝑠𝑒

𝑁𝐿(𝑡) Eq.  1 

Once a model has been estimated, the output signal can be decomposed into a linear 

part 𝑠𝐿(𝑡) and a nonlinear part 𝑠𝑁𝐿(𝑡) as in Eq.  1. The nonlinear part can then in turn be

decomposed into odd harmonics contribution 𝑠𝑜
𝑁𝐿(𝑡) and even harmonics contribution

𝑠𝑒
𝑁𝐿(𝑡). Three nonlinear model-based features are then chosen and computed on this basis

as detailed in Table 2. 

Table 2: Definition of the nonlinear model-based features (NLMBF) 

Name Comments Definition 

𝑓𝑠ℎ𝑖𝑓𝑡

Frequency shift of the first vibration mode 

between the reference (𝑓𝑟𝑒𝑓) and damaged (𝑓𝑑)

states. These frequencies can here be easily 

extracted from the estimated model. 

𝑓𝑠ℎ𝑖𝑓𝑡 =
𝑓𝑑 − 𝑓𝑟𝑒𝑓

𝑓𝑟𝑒𝑓

NLL 

Ratio between the energy contained in the 

nonlinear and linear parts of the model over the 

frequency range of interest [𝑓1, 𝑓2].
𝑁𝐿𝐿 =

∫ |𝑆𝑁𝐿(𝑓)|2𝑑𝑓 
𝑓2
𝑓1

∫ |𝑆𝐿(𝑓)|2𝑑𝑓 
𝑓2
𝑓1

EO 

Ratio between the energy contained in the even 

nonlinear and odd nonlinear parts of the model 

over the frequency range of interest [𝑓1, 𝑓2].
𝐸𝑂 =

∫ |𝑆𝑒
𝑁𝐿(𝑓)|2𝑑𝑓

𝑓2
𝑓1

∫ |𝑆𝑜
𝑁𝐿(𝑓)|2𝑑𝑓 

𝑓2
𝑓1
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3.3. Integration among the PZt network 

The damage indexes defined in the previous sections are computed for each path 

“actuator 𝑖 to sensor 𝑗” where 𝑖 and 𝑗 denotes two of the 5 piezoelectric elements glued 

on the specimens. Let’s denote 𝐷𝐼𝑖𝑗 an arbitrary damage index computed for such a path. 

The damage indexes for all the paths are then integrated within a global damage index 

𝐷𝐼𝐺  defined by Eq.  2. Machine learning algorithms are then applied to these global 

damage indexes. 

𝐷𝐼𝐺 =  ∑ ∑ 𝐷𝐼𝑖𝑗

𝑁𝑐𝑎𝑝𝑡

𝑗=1

𝑁𝑎𝑐𝑡

𝑖=1

 Eq.  2 

3.4. SVM and PCA 

SVM learning technique is used for the classification step [6, 7]. When used for 

classification, SVMs separate a given set of binary labeled training data with a hyper-

plane that is maximally distant from them (known as the maximal margin hyper-plane). 

For cases in which no linear separation is possible, they can work in combination with 

the technique of “kernels”, that automatically realizes a non-linear mapping to a feature 

space. The hyper-plane found by the SVM in the feature space corresponds to a non-linear 

decision boundary in the input space. To extend SVMs to multi-class scenario, a typical 

conventional way is to decompose a multi-class problem into a series of two-class 

problems. One can distinguish between two implementations: the “one against one” 

(OAO) and the “one against all” (OAA). OAO builds one SVM for each pair of classes 

while OAA consists of building one SVM per class, trained to distinguish the samples in 

a single class from the samples in all remaining classes. In this work, a Gaussian kernel 

SVM is considered. SVM and Kernel Methods (SVM-KM) Matlab toolbox [6] is used to 

perform multiclass classification. 

Principal Component analysis (PCA) [8] is a popular tool for linear dimensionality 

reduction and feature extraction. Intuitively, PCA can supply the user with a lower-

dimensional picture of data when viewed from its most informative viewpoint. In this 

work we opted for the standard PCA since our features vector is not very high-

dimensional. 

3.5. Input Features Scenarios 

Several input features scenarios are considered according to which features to select 

to feed and train the SVM algorithm: 

• Scenario 1: Only SBF are used to train the SVM algorithm

• Scenario 2: Only NMBF are used to train the SVM algorithm

• Scenario 3: Both SBF and NMBF are used to train the SVM algorithm

• Scenario 4: PCA is performed on both SBF and NMBF and only 2 principal

components are used to train the SVM algorithm

• Scenario 5: PCA is performed on both SBF and NMBF and only 3 principal

components are used to train the SVM algorithm
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4. Results and analysis

4.1. From Output Signals to Input Features 

Once signals are acquired, we proceeded to information condensation, that is, to 

damage sensitive features computing. Each class of damage state (Class 1: healthy, 

Class 2: one laser impact, Class 3: two contiguous laser impacts and Class 4: three 

contiguous laser impacts) has 400 instances. Each instance is characterized by a total 

of seven features. Stratified sampling is considered; 70% of data is used for training the 

SVM model and 30% of data is used for testing the model. In the following figures, we 

represent training data in principal components spaces. 

Figure 4 clearly reveals a structure of four classes. Each corresponds to a state of 

damage severity, especially when 3 principal components are considered. 

Figure 4: Data representation in principal components spaces 

4.2. Classification Performance 

Ten SVM models are established according to which approach is adopted (OAO or 

OAA) and to which scenario is being considered. Models performance on test data is then 

assessed. As illustrated in Figure 5, independently of which approach is used, SVM models 

trained on NMBF or on principal components perform better than those trained on SBF. 

This is clearly due to class overlapping introduced by SBF and which induces the 

classifiers into error and to the additional information provided by NLMBF. 
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Figure 5: Performance assessment of the considered SVM models on test data 

5. Conclusion

In this work, we approach delamination quantification in Carbon Fiber Reinforced 

Polymer (CFRP) plates as a classification problem whereby each class corresponds to a 

certain damage extent. Starting from the assumption that damage causes a structure to 

exhibit nonlinear response, we investigate whether the use of Nonlinear Model Based 

Features (NMBF) increases classification performance. NMBF are computed based on 

parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) 

signal. Delamination damage is introduced into samples in a calibrated and realistic way 

using LASER Shock Wave Technique (LSWT) and more particularly symmetrical 

LASER shock configuration. Obtained results demonstrate that the proposed approach is 

very reliable for delamination quantification. 
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